

Knowledge Graph Embedding Based Question Answering

Xiao Huang, Dingcheng Li, Jingyuan Zhang, Ping Li

Cognitive Computing Lab (CCL), Baidu Research, USA

Emails: {huangxiao518, pingli98}@gmail.com, {lidingcheng, zhangjingyuan03}@baidu.com

Knowledge Graph

➤ A fact: head entity → predicate → tail entity

Question Answering Over Knowledge Graph is Crucial

- Large-scale knowledge graphs are available.
 - Difficult for regular users to find particular facts.
- Question answering over knowledge graph automatically identify facts in KG to answer natural language questions.
 - It provides a way for AI systems to incorporate KG as a key ingredient to answer human questions.
 - Applications: search engine design & conversational agent building.

Challenges

- A predicate often has various expressions.
 - *person.nationality*: what is ...'s nationality, which country is ... from, where is ... from, etc.
- Ambiguity of entity names and partial names make it hard to find correct entities.
 - Many entities share the same name.
 - Partial names: how old is Obama?

- > Domains of end users' questions are often unbounded.
 - Any KG is far from complete.
 - New questions might involve predicates that are different from training ones.

Existing Methods

- Semantic parsing based methods:
 - It converts natural language questions into logical expressions.
- Embedding based methods:
 - It projects questions and candidate facts into a unified low-dimensional space based on training questions.
 - It measure their matching scores by the similarities between their low-dimensional representations.
 - A typical way is to define a margin-based ranking criterion and train together with negative samples, i.e., wrong answers.

Opportunity: Knowledge Graph Embedding

- The idea is to learn a low-dimensional vector representation for each predicate/entity in a KG to preserve original relations.
- > Learn vector representations benefit downstream tasks.
 - KG completion.
 - Recommender systems.
 - Relation extraction.

Knowledge Graph Embedding

> Represent each predicate/entity in a KG as a low-dimensional vector, such that original relations are preserved.

- > Typical Solution
 - TransE minimize $\sum \|\mathbf{e}_h + \mathbf{p}_\ell - \mathbf{e}_t\|_2^2$
 - **TransH** minimize $\sum \|\mathbf{e}_h^{\perp} + \mathbf{p}_{\ell} - \mathbf{e}_t^{\perp}\|_2^2,$ where $\mathbf{e}_t^{\perp} = \mathbf{e}_t - \mathbf{m}_{\ell}^{\top} \mathbf{e}_t \mathbf{m}_{\ell}$
 - TransR minimize $\sum \|\mathbf{e}_h \mathbf{M}_{\ell} + \mathbf{p}_{\ell} - \mathbf{e}_t \mathbf{M}_{\ell}\|_2^2$

Problem Statement

- Input: a KG, predicates' and entities' names & embedding representations, training questions with answers.
- Output: a trained end-to-end framework that takes a new simple question as input and returns its head entity & predicate.

Knowledge Embedding based Question Answering

- \triangleright Each fact (h, l, t) can be represented as $(\boldsymbol{e}_h, \boldsymbol{p}_l, \boldsymbol{e}_t)$.
- \triangleright Given a question, we aim to jointly predict e_h , p_l , and e_t .
- > Three components:
 - Predicate learning model & head entity learning model.
 - Head entity detection model.
 - Joint search on embedding spaces.

Predicate & Head Entity Learning Model

- \succ Each fact (h, l, t) can be represented as $(\boldsymbol{e}_h, \boldsymbol{p}_l, \boldsymbol{e}_t)$.
 - For a question can be answered by KG, its predicates' vector representation lies in the predicate embedding space.
- Design a model.
 - Input: a question.
 - Output: a vector $\hat{\boldsymbol{p}}_l$ that is as close as possible to the \boldsymbol{p}_l .

10

Predicate & Head Entity Learning Model

- \triangleright Train on all training questions and use their p_l as the labels.
- > Pseudocode:
 - 1 for Q_i in Q do
 - Take the L tokens of Q_i as the input and its predicate ℓ as the label to train, as shown in Figure 2;
 - Update weight matrices $\{\mathbf{W}\}$, \mathbf{w} , $\{\mathbf{b}\}$, and b_q to minimize the objective function $\|\mathbf{p}_{\ell} \frac{1}{L} \sum_{i=1}^{L} \mathbf{r}_{i}^{\top}\|_{2}$;

Predicate & Head Entity Learning Model

Head Entity Detection Model (HED)

- > Select successive tokens as the name of head entity.
- Reduce the search space from entire entities to a number of entities with the same or similar names.
- ➤ Head entity name position is used as the label.
- \triangleright $\hat{\mathbf{e}}_h$ is used to handle the ambiguity.

Head Entity Detection Model (HED)

Joint Search on Embedding Spaces

- $\triangleright \hat{\mathbf{e}}_t = f(\hat{\mathbf{e}}_h, \hat{\mathbf{p}}_\ell).$
- Function $n(\cdot)$ returns the name of the entity or predicate.
- ➤ HED_{entity} and HED_{non} denote the tokens that are classified as entity name and non entity name by the HED model.
- \triangleright sim[·,·] measures the similarity of two strings.

Advantages of Proposed Framework

- ➤ KEQA could handle questions with predicates and entities that not exist in training data.
- ➤ KG embedding enables KEQA to perform head entity, predicate, and tail entity predictions jointly.
- ➤ KEQA is general to all KG embedding algorithms. It might be further improved by more effective embedding algorithms.

Datasets

- SimpleQuestions: Benchmark for most recent methods.
- > FB2M & FB5M: subsets of Freebase knowledge graph.

	FB2M	FB5M	SimpleQuestions
# Training	14,174,246	17,872,174	75,910
# Validation	N.A.	N.A.	10,845
# Test	N.A.	N.A.	21,687
# Predicates (M)	6,701	7,523	1,837
# Entities (N)	1,963,130	3,988,105	131,681
# Words	733,278	1,213,205	61,336

Effectiveness of KEQA

	FB2M (Accuracy)	FB5M
Bordes et al. (2015) [6]	0.627	0.639
Dai et al. ³ (2016) [10]	N.A.	0.626
Yin et al. (2016) [46]	0.683 (+8.9%)	0.672
Golub and He (2016) [18]	0.709 (+13.1%)	0.703
Bao et al. (2016) [2]	0.728 (+16.1%) Enti	re Freebase
Lukovnikov et al. (2017) [27]	0.712 (+13.6%)	N.A.
Mohammed et al. $^{5}(2018)$ [29]	0.732 (+16.7%)	N.A.
KEQA_noEmbed	0.731 (+16.6%)	0.726
KEQA	$0.754 \; (+20.3\%)$	0.749

- > KEQA outperforms all baselines.
- ➤ KEQA achieves 3.1% higher accuracy than KEQA noEmbed.
- > KEQA decreases 0.7% when applied to FB5M.

Experimental Results

	SimpleQuestions	SimpleQ_Missing
KEQA_noEmbed	0.731	0.386
KEQA_TransE	0.754 (+3.1%)	0.418 (+8.3%)
KEQA_TransH	$0.749 \; (+2.5\%)$	0.411 (+6.5%)
KEQA_TransR	0.753 (+3.0%)	0.417 (+8.0%)

- Apply different KG embedding algorithms to learn the predicate and entity embedding representations.
- ➤ SimpleQ_Missing: All predicates in test have never been mentioned in the training and validation.
- > KEQA is general and robust.

Conclusions

- We formally define knowledge graph embedding based question answering problem.
- ➤ KEQA could answer a natural language question by jointly recovering its head entity, predicate, and tail entity representations in the KG embedding spaces.
- We design a joint distance metric that takes the structures and relations preserved in the KG embedding representations into consideration.
- We empirically demonstrate that the separate task KG embedding indeed could help the question answering task.

Acknowledgement

Cognitive Computing Lab

Everyone attending the talk

WSDM 2019, Melbourne, USA