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ABSTRACT
Question answering over knowledge graph (QA-KG) aims to use
facts in the knowledge graph (KG) to answer natural language
questions. It helps end users more efficiently and more easily access
the substantial and valuable knowledge in the KG, without knowing
its data structures. QA-KG is a nontrivial problem since capturing
the semantic meaning of natural language is difficult for a machine.
Meanwhile, many knowledge graph embedding methods have been
proposed. The key idea is to represent each predicate/entity as a
low-dimensional vector, such that the relation information in the
KG could be preserved. The learned vectors could benefit various
applications such as KG completion and recommender systems. In
this paper, we explore to use them to handle the QA-KG problem.
However, this remains a challenging task since a predicate could be
expressed in different ways in natural language questions. Also, the
ambiguity of entity names and partial names makes the number of
possible answers large.

To bridge the gap, we propose an effective Knowledge Embed-
ding based Question Answering (KEQA) framework. We focus
on answering the most common types of questions, i.e., simple
questions, in which each question could be answered by the ma-
chine straightforwardly if its single head entity and single predicate
are correctly identified. To answer a simple question, instead of
inferring its head entity and predicate directly, KEQA targets at
jointly recovering the question’s head entity, predicate, and tail
entity representations in the KG embedding spaces. Based on a
carefully-designed joint distance metric, the three learned vectors’
closest fact in the KG is returned as the answer. Experiments on a
widely-adopted benchmark demonstrate that the proposed KEQA
outperforms the state-of-the-art QA-KG methods.

KEYWORDS
Question answering, knowledge graph embedding, deep learning

ACM Reference Format:
XiaoHuang, Jingyuan Zhang, Dingcheng Li, Ping Li. 2019. Knowledge Graph
Embedding Based Question Answering. In The Twelfth ACM International
Conference on Web Search and Data Mining (WSDM ’19), February 11–15,
2019, Melbourne, VIC, Australia. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3289600.3290956

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290956

1 INTRODUCTION
With the rise of large-scale knowledge graphs such as Wikidata,
Freebase [19], DBpedia [22], and YAGO [33], question answering
(QA) over knowledge graph becomes a crucial topic and attracts
massive attention [6, 27, 29]. A knowledge graph (KG) is a di-
rected graph with real-world entities as nodes and their relations as
edges [25, 36]. In this graph, each directed edge, along with its head
entity and tail entity, constitute a triple, i.e., (head entity, predicate,
tail entity), which is also named as a fact. Real-world knowledge
graphs often contain millions or billions of facts1. Their large vol-
ume and complex data structures make it difficult for regular users
to access the substantial and valuable knowledge in them. To bridge
the gap, Question Answering over Knowledge Graph (QA-KG) is
proposed [10, 21]. It targets at automatically translating the end
users’ natural language questions into structured queries such as
SPARQL, and returning entities and/or predicates in the KG as an-
swers. For example, given the question “Which Olympics was in
Australia?”, QA-KG aims to identify its corresponding two facts, i.e.,
(Australia, olympics_participated_in, 1952/2004 Summer Olympics).

Question answering over knowledge graph provides a way for
artificial intelligence systems to incorporate knowledge graphs as
a key ingredient to answer human questions, with applications
ranging from search engine design2 to conversational agent build-
ing [20]. However, the QA-KG problem is far from solved since it
involves multiple challenging subproblems such as semantic analy-
sis [45] and entity linking [4, 30].

The effectiveness of knowledge graph embedding [7, 38] in dif-
ferent real-world applications [36] motivates us to explore its po-
tential usage in solving the QA-KG problem. Knowledge graph
embedding [26, 41] targets at learning a low-dimensional vector
representation for each predicate/entity in a KG, such that the
original relations are well preserved in the vectors. These learned
vector representations could be employed to complete a variety
of downstream applications efficiently. Examples include KG com-
pletion [25, 34], recommender systems [49], and relation extrac-
tion [20, 40]. In this paper, we propose to take advantage of the
knowledge graph embedding to perform QA-KG. The KG embed-
ding representations could advance the QA-KG in several ways.
They not only are within a low-dimensional space, but also could
promote the downstream applications to take the entire KG into
consideration [49], because even a single predicate/entity represen-
tation is a result of interactions with the whole KG. In addition,
similar predicates/entities tend to have similar vectors. This prop-
erty could help the downstream algorithms handle predicates or
entities that are not in the training data.

However, it remains a nontrivial task to conduct QA-KG based
on the knowledge graph embedding [23]. There are three major

1https://www.wikidata.org/wiki/Wikidata:Statistics
2https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
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challenges. First, a predicate often has various expressions in nat-
ural language questions [3, 45]. These expressions could be quite
different from the predicate names. For instance, the predicate per-
son.nationality can be expressed as “what is ... ’s nationality”, “which
country is ... from”, “where is ... from”, etc. Second, even assuming
that the entity names could be accurately identified, the ambiguity
of entity names and partial names would still make it difficult to
find the correct entity, since the number of candidates is often large.
As the size of KG keeps increasing, many entities would share the
same names. Also, end users could use partial names in their utter-
ances. For example, in the question “How old is Obama?”, only part
of the entity name Barack Obama is indicated. Third, the domains
of end users’ questions are often unbounded, and any KG is far
from complete [25]. New questions might involve predicates that
are different from the ones in the training. This makes demands on
the robustness of the QA-KG algorithms.

To bridge the gap, we explore how to take advantage of the
knowledge graph embedding to perform question answering. In
this paper, we focus on the most common type of questions [2, 13]
in QA-KG, i.e., simple questions. A simple question is a natural
language question that only involves a single head entity and a
single predicate. Through analyzing the problem, we aim to answer
three research questions. (i) How to apply the predicate embedding
representations to bridge the gap between the natural language
expressions and the KG’s predicates? (ii) How to leverage the en-
tity embedding representations to tackle the ambiguity challenge?
(iii) How to take advantage of the global relations preserved in
the KG embedding representations to advance the QA-KG frame-
work? Following these questions, we propose a simple framework
named Knowledge Embedding based Question Answering (KEQA).
In summary, our key contributions are presented as follows.
• Formally define the knowledge graph embedding based ques-
tion answering problem.
• Propose an effective framework KEQA that could answer
a natural language question by jointly recovering its head
entity, predicate, and tail entity representations in the knowl-
edge graph embedding spaces.
• Design a joint distance metric that takes the structures and
relations preserved in the knowledge graph embedding rep-
resentations into consideration.
• Empirically demonstrate the effectiveness and robustness of
KEQA on a large benchmark, i.e., SimpleQuestions.

2 PROBLEM STATEMENT
Notations: We use an uppercase bold letter to denote a matrix (e.g.,
W) and a lowercase bold letter to represent a vector (e.g., p). The
ith row of a matrix P is denoted as pi . The transpose of a vector is
denoted as p⊤. The ℓ2 norm of a vector is denoted as ∥p∥2. We use
{pi } to represent a sequence of vectors pi . The operation s = [x; h]
denotes concatenating column vectors x and h into a new vector s.

Definition 1 (Simple Question) [6] If a natural language ques-
tion only involves a single head entity and a single predicate in the
knowledge graph, and takes their tail entity/entities as the answer,
then this question is referred as a simple question.

We summarize the important symbols in this paper in Table 1.
We use (h, ℓ, t ) to represent a fact, which means that there exists a

Table 1: The important symbols and their definitions.

Notations Definitions

G a knowledge graph
(h, ℓ, t ) a fact, i.e., (head entity, predicate, tail entity)
Q a set of simple questions with ground truth facts
M total number of predicates in G
N total number of entities in G
d dimension of the embedding representations

P ∈ RM×d embedding representations of all predicates in G
E ∈ RN×d embedding representations of all entities in G

f (·) relation function, given (h, ℓ, t ),⇒ et ≈ f (eh , pℓ )
p̂ℓ ∈ R1×d predicted predicate representation
êh ∈ R1×d predicted head entity representation

HED Head Entity Detection model
HEDentity head entity name tokens returned by the HED
HEDnon non entity name tokens returned by the HED

relation ℓ from a head entityh to a tail entity t . LetG be a knowledge
graph that consists of a large number of facts. The total numbers
of predicates and entities are represented asM and N . The names
of these predicates and entities are given. We apply a scalable KG
embedding algorithm such as TransE [7] and TransR [25] to G, and
obtain the embedding representations of its predicates and entities
denoted as P and E respectively. Thus, the vector representations of
the ith predicate and jth entity are denoted as pi and ej respectively.
The relation function defined by the KG embedding algorithm is
f (·), i.e., given a fact (h, ℓ, t ), we have et ≈ f (eh , pℓ ). Let Q be a
set of simple questions. For each question in Q, the corresponding
head entity and predicate are given.

The terminology simple question is defined in Definition 1. A sim-
ple question could be answered by the machine straightforwardly if
its single head entity and single predicate are identified. Given the
conditions described above, we now formally define the knowledge
graph embedding based question answering problem.

Given a knowledge graph G associated with all its predicates’ and
entities’ names and embedding representations P & E, the relation
function f (·), as well as a set of simple questions Q associated
with corresponding head entities and predicates, we aim to design
an end-to-end framework that takes a new simple question as
input and automatically returns the corresponding head entity
and predicate. Performance of the framework is evaluated by the
accuracy of predicting both head entity and predicate correctly.

3 KNOWLEDGE EMBEDDING BASED QA-KG
Simple questions constitute the majority of questions [2, 13] in
the QA-KG problem. Each of them can be answered by the tail
entity/entities if the correct head entity and predicate are identified.
To accurately predict the head entity and predicate, we propose
the Knowledge Embedding based Question Answering (KEQA)
framework. Its main idea is illustrated in Figure 1. The KG G is
already embedded into two low-dimensional spaces, and each fact
(h, ℓ, t ) could be represented as three latent vectors, i.e., (eh , pℓ , et ).
Thus, given a question, as long as we could predict its corresponding
fact’s eh and pℓ , then this question could be answered correctly.
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Figure 1: Instead of inferring the head entity and predicate directly, KEQA targets at jointly recovering the question’s head
entity, predicate, and tail entity representations (êh , p̂, êt ) in the knowledge graph embedding spaces.

KEQA achieves the goal via three steps. (i) Based on the questions
in Q and their predicates’ embedding representations, KEQA trains
a predicate learning model that takes a question as the input and
returns a vector p̂ℓ that lies in the KG embedding space as the
predicted predicate representation. Similarly, a head entity learning
model could be constructed to predict the question’s head entity
representation êh . (ii) Since the number of entities in a KG is often
large, KEQA employs a Head Entity Detection model to reduce the
candidate head entities. The main goal is to identify several tokens
in the question as the predicted head entity name, then the search
space is reduced from the entire entities to a number of entities with
the same or similar names. Then êh is mainly used to tackle the
ambiguity challenge. (iii) Given the relation function f (·) defined
by the KG embedding algorithm, KEQA computes the predicted tail
entity representation êt = f (êh , p̂ℓ ). Based on a carefully-designed
joint distance metric, the predicted fact (êh , p̂ℓ , êt )’s closest fact in
G is returned as the question’s answer.

3.1 Knowledge Graph Embedding
The proposed framework KEQA employs the embedding represen-
tations of all predicates P and entities E as the infrastructure. We
utilize an existing KG embedding algorithm to learn P and E.

Knowledge graph embedding [8, 36] aims to represent each pred-
icate/entity in a KG as a low-dimensional vector, such that the
original structures and relations in the KG are preserved in these
learned vectors. The core idea of most of the existing KG embed-
ding methods [7, 24, 25, 38–41] could be summarized as follows.
For each fact (h, ℓ, t ) in G, we denote its embedding representa-
tions as (eh , pℓ , et ). The embedding algorithm initializes the values
of eh , pℓ , and et randomly [7, 14] or based on the trained word
embedding models [26, 32]. Then, a function f (·) that measures
the relation of a fact (h, ℓ, t ) in the embedding spaces is defined,
i.e., et ≈ f (eh , pℓ ). For example, TransE [7] defines the relation as
et ≈ eh+pℓ and TransR [25] defines it as etMℓ ≈ ehMℓ+pℓ , where
Mℓ is a transform matrix of predicate ℓ. Finally, the embedding al-
gorithm minimizes the overall distance between et and f (eh , pℓ ),
for all the facts in G. A typical way is to define a margin-based
ranking criterion and train on both positive and negative samples,
i.e., facts and synthetic facts that do not exist in G.

As shown in Figure 1, we define the surface where the learned
predicate representations {pi } for i = 1, . . . ,M lie in, as the predi-
cate embedding space. The surface where {ei } for i = 1, . . . ,N lie
in is denoted as the entity embedding space.

3.2 Predicate and Head Entity Learning Models
Given a simple question, our goal is to find a point in the predicate
embedding space as its predicate representation p̂ℓ , and a point in
the entity embedding space as its head entity representations êh .

For all the questions that can be answered by G, their predi-
cates’ vector representations must lie in the predicate embedding
space. Thus, we aim to design a model that takes a question as the
input and returns a vector p̂ℓ that is as close as possible to this
question’s predicate embedding representation pℓ . To achieve this
goal, a simple neural network architecture is employed, as shown
in Figure 2. It mainly consists of a bidirectional recurrent neural
network layer and an attention layer. The core idea is to take the
order and the importance of words into consideration. Words with
different orders could have different meanings, and the importance
of words could be different. For example, the entity name related
words in a question often have less contribution to the predicate
learning model.

3.2.1 Neural Network Based Predicate Representation Learning. To
predict the predicate of a question, a traditional solution is to learn
the mapping based on the semantic parsing and manually-created
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Figure 2: The architecture of the proposed predicate and
head entity learning models.



lexicons [3], or simply consider each type of predicate as a label cat-
egory to transform it into a classification problem [29, 35]. However,
since the domains of end users’ questions are often unbounded, a
new question’s predicate might be different from all the ones in the
training data Q. The traditional solutions could not handle this sce-
nario. In addition, we observe that the global relation information
preserved in P and E is available and could be potentially used to
improve the overall question answering accuracy. To bridge the gap,
we develop a predicate learning model based on neural networks.

With the long short-term memory (LSTM) [1] as a typical ex-
ample of the recurrent neural network, Figure 2 illustrates the
architecture of our proposed solution. Given a question with length
L, we first map its L tokens into a sequence of word embedding
vectors {xj }, for j = 1, . . . ,L, based on a pre-trained model such
as GloVe [31]. Then we employ a bidirectional LSTM [1] to learn
a forward hidden state sequence (

−→
h1,
−→
h2, . . . ,

−→
hL ) and a backward

hidden state sequence (
←−
h1,
←−
h2, . . . ,

←−
hL ). Taking the backward one

as an example, {
←−
hj } are computed via the following equations.

fj = σ (Wxf xj +Whf
←−
hj+1 + bf ), (1)

ij = σ (Wxixj +Whi
←−
hj+1 + bi ), (2)

oj = σ (Wxoxj +Who
←−
hj+1 + bo ), (3)

cj = fj ◦ cj+1 + ij tanh(Wxcxj +Whc
←−
hj+1 + bc ), (4)

←−
hj = oj ◦ tanh(cj ), (5)

where fj , ij , and oj are the forget, input, and output gates’ activation
vectors respectively. cj is the cell state vector. σ and tanh are the
sigmoid and Hyperbolic tangent functions. ◦ denotes the Hadamard
product. We concatenate the forward and backward hidden state
vectors and obtain hj = [

−→
hj ;
←−
hj ].

The attention weight of the jth token, i.e., α j , is calculated based
on the following formulas.

α j =
exp(qj )∑L
i=1 exp(qi )

, (6)

qj = tanh(w⊤[xj ; hj ] + bq ). (7)

We apply the attention weight α j to hj and concatenate it with the
word embedding xj , resulting a hidden state sj = [xj ;α jhj ]. A fully
connected layer is then applied to sj , and its result rj ∈ Rd×1 is
denoted as the target vector of the jth token. The predicted predicate
representation p̂ℓ is computed as the mean of all tokens’ target
vectors, that is,

p̂ℓ =
1
L

L∑
j=1

r⊤j . (8)

All the weight matrices, weight vector w, and bias terms are
calculated based on the training data, i.e., questions in Q and their
predicates’ embedding representations.

3.2.2 Neural Network based Head Entity Learning Model. Given a
question, instead of inferring the head entity directly, we target at
recovering its representation in the KG embedding space. Thus, the
goal of the head entity learning model is to compute a vector êh
that is as close as possible to this question’s head entity embedding

representation. Similar to the computation of p̂ℓ , we use the same
neural network architecture in Figure 2 to obtain the predicted head
entity representation êh .

However, the number of entities in a KG is often large, and it
could be expensive and noisy when comparing êh with all entity
embedding representations in E. Tomake the learningmore efficient
and effective, KEQA employs a head entity detection model to
reduce the number of candidate head entities.

3.3 Head Entity Detection Model
In this step, our goal is to select one or several successive tokens in a
question, as the name of the head entity, such that the search space
could be reduced from the entire entities to a number of entities
with the same or similar names. Then the main role of êh would
become handling the ambiguity challenge.
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Figure 3: Structure of Head Entity Detection (HED) model.

To make our framework simple, we employ a bidirectional recur-
rent neural network (e.g., LSTM) based model to perform the head
entity token detection task. The architecture of this Head Entity
Detection (HED) model is shown in Figure 3. It has a similar struc-
ture to the one in predicate/head entity learning model, but without
the attention layer. We first map the question into a sequence of
word embedding vectors {xj }, for j = 1, . . . ,L, and then apply a
bidirectional recurrent neural network to xj to learn hj = [

−→
hj ;
←−
hj ].

A fully connected layer and a softmax function are then applied
to hj , resulting the target vector vj ∈ R2×1. The two values in vj
are corresponding to the probabilities that the jth token belongs to
the two label categories, i.e., entity name token and non entity name
token. In such a way, we classify each token and recognize one or
several tokens as the head entity name. We denote these tokens as
HEDentity, and the remaining tokens in the question as HEDnon.

We use the questions in Q and their head entity names as the
training data to train the HED model. Since entity name tokens
in these questions are successive, the trained model would also
return successive tokens as HEDentity with a high probability. If
discrete HEDentity is returned, then each successive part would be
considered as an independent head entity name. It should be noted



that HEDentity might be only part of the correct head entity name.
Thus, all entities that are the same as or contain HEDentity would be
included as the candidate head entities, which might still be large
since many entities would share the same names in a large KG.

3.4 Joint Search on Embedding Spaces
For each new simple question, we have predicted its predicate and
head entity representations p̂ℓ and êh , as well as its candidate head
entities. Our goal is to find a fact in G that matches these learned
representations and candidates the most.

3.4.1 Joint Distance Metric. If a fact’s head entity belongs to the
candidate head entities, we name it as a candidate fact. Let C be
a set that collects all the candidate facts. To measure the distance
between a candidate fact (h, ℓ, t ) and the predicted representations
(êh , p̂ℓ ), an intuitive solution is to represent (h, ℓ, t ) as (eh , pℓ ) and
define the distance metric as the sum of the distance between eh
and êh and distance between pℓ and p̂ℓ . This solution, however,
does not take the meaningful relation information preserved in the
KG embedding representations into consideration.

We propose a joint distance metric by taking advantage of the
relation information et ≈ f (eh , pℓ ). Mathematically, the proposed
joint distance metric is defined as,

minimize
(h, ℓ,t )∈C

∥pℓ − p̂ℓ ∥2 + β1∥eh − êh ∥2 + β2∥ f (eh , pℓ ) − êt ∥2

− β3sim[n(h),HEDentity] − β4sim[n(ℓ),HEDnon], (9)

where êt = f (êh , p̂ℓ ). Function n(·) returns the name of the entity
or predicate. HEDentity and HEDnon denote the tokens that are
classified as entity name and non entity name by the HED model.
Function sim[·, ·] measures the similarity of two strings. β1, β2, β3,
and β4 are predefined weights to balance the contribution of each
term. In this paper, we use ℓ2 norm to measure the distance, and it
is straightforward to extend to other vector distance measures.

The first three terms in Eq. (9) measure the distance between a
fact (h, ℓ, t ) and our prediction in the KG embedding spaces. We use
f (eh , pℓ ) to represent the tail entity’s embedding vector, instead
of et . It is because in a KG, there might be several facts that have
the same head entity and predicate, but different tail entities. Thus,
a single tail entity et might not be able to answer the question.
Meanwhile, f (eh , pℓ ) matches the predicted tail entity êt since it
is also inferred based on f (·). We tend to select a fact with head
entity name exactly the same as HEDentity, and with predicate
name mentioned by the question. We achieve these two goals via
the fourth and fifth terms in Eq. (9) respectively. The fact (h∗, ℓ∗, t∗)
that minimizes the objective function is returned.

3.4.2 Knowledge Embedding based Question Answering. The entire
processes of KEQA is summarized in Algorithm 1. Given a KG
G and a question set Q with corresponding answers, we train a
predicate learning model, a head entity learning model, and a HED
model, as shown from line 1 to line 9. Then, for any new simple
question Q , we input it into the trained predicate learning model,
head entity learning model, and HED model to learn its predicted
predicate representation p̂ℓ , head entity representation êh , entity
name tokens HEDentity, and non entity name tokens HEDnon. Based
on the learned entity name/names in HEDentity, we search the entire
G to find the candidate fact set C. For all facts in C, we compute

Algorithm 1: The proposed KEQA framework
Input: G, predicates’ and entities’ names, P, E, Q, a new

simple question Q .
Output: head entity h∗ and predicate ℓ∗.
/* Training the predicate learning model: */

1 for Qi in Q do
2 Take the L tokens of Qi as the input and its predicate ℓ as

the label to train, as shown in Figure 2;
3 Update weight matrices {W}, w, {b}, and bq to minimize

the objective function ∥pℓ − 1
L
∑L
j=1 r

⊤
j ∥2;

/* Training the head entity learning model: */

4 for Qi in Q do
5 Take the L tokens of Qi as the input and its head entity h

as the label to train, as shown in Figure 2;
6 Update weight matrices and bias terms to minimize the

objective function ∥eh − 1
L
∑L
j=1 r

⊤
j ∥2;

/* Training the HED model: */

7 for Qi in Q do
8 Take the L tokens of Qi as the input and its head entity

name positions as the label to train;
9 Update weight matrices and bias as shown in Figure 3;
/* Question answering processes: */

10 Input Q into the predicate learning model to learn p̂ℓ ;
11 Input Q into the head entity learning model to learn êh ;
12 Input Q into the HED model to learn HEDentity and HEDnon;
13 Find the candidate fact set C from G, based on HEDentity;
14 For all facts in C, calculate the fact (h∗, ℓ∗, t∗) that minimizes

the objective function in Eq. (9).

their joint distance to the predicted representations (êh , p̂ℓ , êt )
based on the objective function in Eq. (9). The fact (h∗, ℓ∗, t∗) with
the minimum distance is selected. Finally, we return the head entity
h∗ and predicate ℓ∗ as the answer of Q .

In summary, the proposed framework KEQA enjoys several nice
properties. First, by performing question answering based on the
KG embedding, KEQA is able to handle questions with predicates
and entities that are different from all the ones in the training
data. Second, by taking advantage of the structure and relation
information preserved in the KG embedding representations, KEQA
could perform the head entity, predicate, and tail entity predictions
jointly. The three subtasks would mutually complement each other.
Third, KEQA is generalizable to different KG embedding algorithms.
Thus, the performance of KEQAmight be further improved by more
sophisticated KG embedding algorithms.

4 EXPERIMENTS
We evaluate the effectiveness and generalizability of the proposed
framework KEQA on a large QA-KG benchmark. In this section,
we aim to study the following three research questions:

• Q1. How effective is KEQA compared with the state-of-the-
art QA-KG methods w.r.t. different freebase subsets?



• Q2. How does the performance of KEQA vary when different
KG embedding algorithms are employed?
• Q3. The objective function of KEQA consists of five terms
as shown in Eq. (9). How much does each term contribute?

4.1 Datasets
We first introduce the knowledge graph subsets and question an-
swering dataset used in the experiments. All the data are publicly
available. Their statistics are shown in Table 2.

Table 2: The statistics of the question answering datasets.

FB2M FB5M SimpleQuestions

# Training 14,174,246 17,872,174 75,910
# Validation N.A. N.A. 10,845

# Test N.A. N.A. 21,687
# Predicates (M ) 6,701 7,523 1,837
# Entities (N ) 1,963,130 3,988,105 131,681
Vocabulary Size 733,278 1,213,205 61,336

FB2M and FB5M [19]: Freebase is often regarded as a reliable
KG since it is collected and trimmed mainly by the community
members. Two large subsets of freebase are employed in this paper,
i.e., FB2M and FB5M. Their predicate numberM and entity number
N are list in Table 2. The repeated facts have been deleted. The
application programming interface (API) of freebase is no long
available. Thus, we use an entity name collection3 to build the
mapping between entities and their names.

SimpleQuestions [6]: It contains more than ten thousand sim-
ple questions associated with corresponding facts. All these facts
belong to FB2M. All questions are phrased by English speakers
based on the facts and their context. It has been used as the bench-
mark for the recent QA-KG methods [6, 18, 29].

4.2 Experimental Settings
To evaluate the performance of the QA-KG methods, we follow the
traditional settings [10, 27, 46] and use the same training, validation,
and test splits that are originally provided in SimpleQuestions [6].
Either FB2M or FB5M is employed as the KG G. Then a KG embed-
ding algorithm such as TransE [7] and TransR [25] is applied to G
to learn the P and E. It should be noted that P and E are not extra
information sources. Then, a QA-KG method is applied to predict
the head entity and predicate of each question in the test split. Its
performance is measured by the accuracy of predicting both head
entity and predicate correctly.

As claimed in our formal problem definition, the evaluation
criterion is defined as the accuracy of predicting a new question’
both head entity and predicate correctly. The dimension of the KG
embedding representations d is set to be 250. A pre-trained word
embedding based on GloVe [31] is used. To measure the similar-
ity of two string, i.e., to build the function sim[·, ·], we use the
implementation Fuzzy4. If it is not specific, the KG embedding al-
gorithm TransE [7] would be employed to learn the embedding
representations of all predicates P and entities E.
3https://github.com/zihangdai/CFO
4https://pypi.org/project/Fuzzy/

4.3 Effectiveness of KEQA
We now answer the first research question asked at the beginning
of this section, i.e., how effective is KEQA.We include 7 state-of-the-
art QA-KG algorithms and one variation of KEQA as the baselines:
• Bordes et al. [6]: It learns latent representations for words,
predicates, and entities, based on the training questions, such
that a new question and candidate facts could be projected
into the same space and compared.
• Dai et al. [10]: It employs a bidirectional gated recurrent
units based neural network to rank the candidate predicates.
Suggestions from the freebase API are used.
• Yin et al. [46]: It employs a character-level convolutional
neural network to match the questions and predicates.
• Golub and He [18]: It designs a character-level and attention-
based LSTM to encode and decode questions.
• Bao et al. [2]: It manually defines several types of constraints
and performs constraint learning to handle complex ques-
tions, in which each question is related to several facts. Extra
training questions and freebase API are used.
• Lukovnikov et al. [27]: It utilizes a character-level gated re-
current units neural network to project questions and predi-
cates/entities into the same space.
• Mohammed et al. [29]: It treats the predicate prediction as a
classification problem and uses different neural networks to
solve it. It performs entity linking based on Fuzzy4.
• KEQA_noEmbed: No KG embedding algorithm is used. In-
stead, it generates the predicate and entity embedding rep-
resentations P and E randomly.

As shown in the introduction above, all the baselines have taken
advantage of deep learning models to advance their methods. We
use their results reported in the corresponding papers or the au-
thors’ implementations. The performance of different methods on
SimpleQuestions w.r.t. FB2M and FB5M is listed in Table 3.

Table 3: Performance of all methods on SimpleQuestions.

FB2M (Accuracy) FB5M

Bordes et al. (2015) [6] 0.627 0.639
Dai et al.3 (2016) [10] N.A. 0.626
Yin et al. (2016) [46] 0.683 (+8.9%) 0.672

Golub and He (2016) [18] 0.709 (+13.1%) 0.703
Bao et al. (2016) [2] 0.728 (+16.1%) Entire Freebase

Lukovnikov et al. (2017) [27] 0.712 (+13.6%) N.A.
Mohammed et al.5(2018) [29] 0.732 (+16.7%) N.A.

KEQA_noEmbed 0.731 (+16.6%) 0.726
KEQA 0.754 (+20.3%) 0.749

Asmentioned by several otherwork [27, 29], a few algorithms [10,
46] achieve high accuracy, but they either used extra information
sources or have no available implementations [35, 47]. The extra
training data freebase API suggestions, freebase entity linking re-
sults, and trained segmentation models. These rely on the freebase
API, which is no longer available. Instead, our framework KEQA
uses an entity name collection3, which is incomplete. Thus, for Dai

5https://github.com/castorini/BuboQA/tree/master/evidence_integration

https://github.com/zihangdai/CFO
https://pypi.org/project/Fuzzy/
https://github.com/castorini/BuboQA/tree/master/evidence_integration


et al. [10] and Yin et al. [46], we report their results when no extra
training data is used. There are two work [35, 47] claimed much
higher accuracy, but without publicly available implementations.
We are not able to replicate them, which has also been pointed out
by other work [29].

From the results in Table 3, we have three observations. First, the
proposed framework KEQA outperforms all the baselines. KEQA
achieves 20.3% improvement comparing to the accuracy when Sim-
pleQuestions was released [6]. Second, KEQA achieves 3.1% higher
accuracy compared to KEQA_noEmbed. It demonstrates that the
separate task KG embedding indeed could help the question an-
swering task. Third, the performance of KEQA decreases 0.7%when
applied to FB5M. It is because all the ground truth facts belong to
FB2M [6], and FB5M has 26.1% more facts than FB2M.

By jointly predicting the question’s predicate and head entity,
KEQA achieves an accuracy of 0.754. In the predicate prediction
subtask, KEQA achieves an accuracy of 0.815 on the validation
split, which is worse than the most recent one 0.828 achieved by
Mohammed et al. [29]. This gap suggests that our framework might
be further improved by a more sophisticated model. Nevertheless,
KEQA still outperforms Mohammed et al. [29] in the simple ques-
tion answering task. This confirms the effectiveness of our proposed
jointly learning framework. Through the jointly learning, KEQA
achieves an accuracy of 0.816 in predicting the head entity, 0.754 in
predicting both head entity and predicate, and 0.680 in predicting
the entire fact, on the test split and FB2M. It implies that some of
the ground truth facts do not exist in FB2M.

4.4 Generalizability and Robustness Evaluation
4.4.1 Generalizability of KEQA. To study how general is KEQA
when different KG embedding algorithms are used, we include
three scalable KG embedding methods in the comparison. Detailed
introductions are listed as follows.
• KEQA_TransE: TransE [7] is used to perform the KG em-
bedding. It is a typical translation-based method. It defines
the relation function as et ≈ f (eh , pℓ ) = eh + pℓ , and then
performs the margin-based ranking to make all the facts
approach to satisfy the relation function.
• KEQA_TransH: TransH [39] is used to perform the KG em-
bedding. TransH is similar to TransE, and defines the relation
function as e⊥t ≈ e⊥h +pℓ , where e

⊥
t = et −m⊤ℓ etmℓ andmℓ

is the hyperplane of predicate ℓ.
• KEQA_TransR: TransR [25] is similar to TransE, and defines
the relation function as etMℓ ≈ ehMℓ + pℓ , whereMℓ is a
transform matrix of ℓ.

The performance of KEQA when not using the KG embedding
and when using different KG embedding algorithms is shown in
Table 4. From the results, we have three major observations. First,
the KG embedding algorithms have improved the performance of
KEQA. For example, KEQA achieves 3.1% improvement when it
is based on TransE, comparing to KEQA_noEmbed. Second, KEQA
has similar performance when using different KG embedding algo-
rithms. It demonstrates the generalizability of KEQA. Third, even
when not using the KG embedding, KEQA could still achieve com-
parable performance to the state-of-the-art QA-KG methods as
shown in Table 3. It validates the robustness of KEQA. The reason

that randomly-generated P and E could achieve comparable perfor-
mance is that it tends to make all {pℓ } uniformly distributed and
far away from each other. This would convert the representation
prediction problem to a one that is similar to the classification task.

4.4.2 Robustness of KEQA. To further validate the robustness of
KEQA, we reshuffle all the 108,442 questions in SimpleQuestions
and get a new dataset named SimpleQ_Missing. To perform the
reshuffle, we randomly split all the types of predicates into three
groups, and assign questions to these groups based on the predicates.
Thus, in SimpleQ_Missing, all the corresponding predicates of the
questions in the test split have never been mentioned in the training
and validation splits. In the end, we get 75,474 questions in the
training split, 11,017 questions in the validation split, and 21,951
questions in the test split, which are roughly the same ratios as the
ones in SimpleQuestions. The performance of KEQA with different
KG embedding algorithms on SimpleQ_Missing is shown in Table 4.

Table 4: The performance of KEQA with different knowl-
edge graph embedding algorithm on FB2M.

SimpleQuestions SimpleQ_Missing

KEQA_noEmbed 0.731 0.386
KEQA_TransE 0.754 (+3.1%) 0.418 (+8.3%)
KEQA_TransH 0.749 (+2.5%) 0.411 (+6.5%)
KEQA_TransR 0.753 (+3.0%) 0.417 (+8.0%)

From the results in Table 4, we observe that KEQA could still
achieve an accuracy of 0.418 with the help of TransE. The global
relation and structure information preserved in the KG embedding
representations P and E enables KEQA to perform 8.3% better than
Random. These observations demonstrate the robustness of KEQA.

4.5 Parameter Analysis
We now investigate how much could each term in the objective
function of KEQA contribute. There are five terms in our objective
function as shown in Eq. (9). We valid the performance of KEQA
w.r.t. three groups of different combinations of terms. To study the
contribution of every single term in Eq. (9), in the first group, i.e.,
Only_Keep, we only keep one of the five terms as the new objective
function. To study the impact of missing one of the five terms, in
the second group, i.e., Remove, we remove one of the five terms.
To study the accumulated contributions, in the third group, i.e.,
Accumulate, we add terms as the new objective function one by
one. The performance of KEQA w.r.t. different groups of objective
functions on FB2M is summarized in Table 5.

Table 5: The performance of KEQA with different objective
functions on FB2M.

Only_Keep Remove Accumulate

∥pℓ − p̂ℓ ∥2 0.728 0.701 0.728
∥eh − êh ∥2 0.195 0.751 0.745

∥ f (eh , pℓ ) − êt ∥2 0.730 0.753 0.745
sim[n(h),HEDentity] 0.173 0.754 0.746
sim[n(ℓ),HEDnon] 0.435 0.746 0.754



From the results in Table 5, we have three major observations.
First, the predicted predicate representation p̂ℓ has the most sig-
nificant contribution in our framework. The first term achieves
an accuracy of 0.728 independently. It is because the number of
predicates 1,837 is much smaller than the number of training ques-
tions 75,910. Second, the predicted head entity representation êh
could complement p̂ℓ in the joint learning. The accuracy increases
from 0.728 to 0.745 when êh is used. The second term achieves a
low accuracy independently since the total number of entities N is
too large, e.g., N = 1,963,115 in FB2M. Third, the predicate name
n(ℓ) improves the performance of the KEQA by 1.1%. It could be
explained by the fact that some utterances share a few words with
the corresponding predicate names.

5 RELATEDWORK
Embedding-based question answering over KG attracts lots of
attention recently. It is related to but different from our proposed
KG embedding based question answering problem. The former re-
lies on low-dimensional representations that are learned during the
training of the QA-KG methods. The latter performs KG embedding
to learn the low-dimensional representations first, and then con-
ducts the QA-KG task. Yih et al. [45] and Bao et al. [2] reformulated
the question answering problem as the generation of particular
subgraphs. A series of work [5, 6, 9, 11, 12, 21, 27, 43, 44] proposed
to project questions and candidate answers (or entire facts) into a
unified low-dimensional space based on the training questions, and
measure their matching scores by the similarities between their
low-dimensional representations. Bordes et al. [5, 6, 9] achieved
this projection by learning low-dimensional representations for
all words, predicates, and entities, based on the training questions
and paraphrases [16] of questions. Yang et al. [43, 44] achieved this
projection by using the logical properties of questions and poten-
tial facts, such as semantic embedding and entity types. Several
deep learning based models [10, 12, 21, 27, 46] achieved this pro-
jection by feeding words in questions into convolutional neural
networks [12, 46], LSTM networks [18, 21], or gated recurrent units
neural networks [10, 27]. Das et al. [11] achieved this projection
by using matrix factorization to incorporate the corpus into the
KG, and LSTM to embed a question. Most of these models rely on
the margin-based ranking objective functions to learn the model
weights. There are also several work [15, 18, 27, 46] explored to
leverage the character-level neural networks to advance the perfor-
mance. Most recently, Mohammed et al. [29] and Ture et al. [35]
considered each predicate as a label category, and performed predi-
cate linking via deep classification models.

Knowledge graph embedding targets at representing the high-
dimensional KG as latent predicate and entity representations P
and E. Bordes et al. [8] achieved this goal by constructing two trans-
form matrices Mhead and Mtail for each type of predicate ℓ, and
minimizing the distance between projections Mheadeh and Mtailet
for all facts (h, ℓ, t ) with ℓ as predicate. Bordes et al. [7] designed
a translation-based model TransE. It trains two matrices P and E,
aiming to minimize the overall distance

∑
∥eh + pℓ − et ∥22 for all

facts (h, ℓ, t ). Motivated by TransE, a series of translation-based
models [24, 25, 39] have been explored. Wang et al. [39] proposed
TransH to handle one-to-many or many-to-one relations. Instead of

measuring the distance between eh and et directly, TransH projects
them into a predicate-specific hyperplane. Lin et al. [25] proposed
TransR, which defines a transform matrix Mℓ for each predicate ℓ
and targets at minimizing

∑
∥ehMℓ + pℓ − etMℓ ∥

2
2 . Lin et al. [24]

proposed PTransE, which advances TransE via taking multi-hop
relations into consideration.

Efforts have also been devoted to incorporating the semantic
information in a corpus into KG embedding. Socher et al. [32] and
Long et al. [26] demonstrated that using pre-trained word embed-
ding to initialize KG embedding methods would enhance the perfor-
mance. Several work [14, 40, 41] explored to advance TransE, either
via taking relation mentions in corpus into consideration [14, 40],
or via projecting predicate/entity representations into a semantic
hyperplane learned from the topic model [41]. Attempts [37, 38, 50]
have also been made to apply TransE and word2vec [28] to model a
KG and a corpus respectively, and then fuse them based on anchors
in Wikipedia [38], entity descriptions [50], or contextual words of
predicates/entities learned from the corpus [37]. Zhang et al. [48]
jointly embedded the KG and corpus via negative sampling [28].
Xie et al. [42] and Fan et al. [17] explored the semantic information
in entity descriptions to advance KG embedding.

6 CONCLUSIONS AND FUTUREWORK
Question answering over knowledge graph is a crucial problem
since it enables regular users to easily access the valuable but com-
plex information in the large knowledge graphs via natural lan-
guage. It is also a challenging problem since a predicate could have
different natural language expressions. It is hard for a machine to
capture their semantic information. In addition, even assuming that
the entity name of a question is correctly identified, the ambiguity
of entity names and partial names would still make the number of
candidate entities large.

To bridge the gap, we investigate a novel knowledge graph em-
bedding based question answering problem and design a simple
and effective framework KEQA. It targets at solving simple ques-
tions, i.e., the most common type of question in QA-KG. Instead
of inferring the head entity and predicate directly, KEQA proposes
to jointly recover the question’s head entity, predicate, and tail en-
tity representations in the KG embedding spaces. Attention-based
bidirectional LSTM models are employed to perform the predicate
and head entity representation learning. Since it is expensive and
noisy to comparing with all entities in a KG, a head entity detection
model is used to select successive tokens in a question as the name
of the head entity, such that candidate head entity set would be
reduced to a number of entities with the same or similar names.
Given the predicted fact (êh , p̂ℓ , êt ), a carefully-designed joint dis-
tance metric is used to measure its distances to all candidate facts.
The fact with the minimum distance is returned as the answer. Ex-
periments on a large benchmark demonstrate that KEQA achieves
better performance than all state-of-the-art methods.

In future work, we plan to study the follow-up open problems. (i)
KEQA performs the question answering based on the pre-trained
KG embedding. How can we advance it by jointly conducting the
KG embedding and question answering? (ii) Real-world knowledge
graphs and training questions are often updated dynamically. How
can we extend our framework to handle this scenario?
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