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Embedding
Representation 𝑯

• Classification
• Clustering
• Link Prediction
• Visualization
•		⋯𝑛-dimensional d ≪ 𝑛

Source: http://www.perozzi.net/projects/deepwalk/

Network Application

What is Network Embedding

Ø Preserve the geometrical structure by mapping each node into
a continuous low-dimensional vector space

Ø Pave the way for numerous applications



3Source:	http://www.designandanalytics.com/visualizing-the-history-of-philosophy-as-a-social-network-the-problem-with-hegel

What is Attributed Network

Ø Powerful in modeling real-world information systems
Ø Network topological structure & node attribute information
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Why Label Informed

Ø Abundant label info observed: group, community, category
Ø Labels and attributed network affect and depend on each other

Same labels:
• Similar photos
• Interact with

each other

Colors ?
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Problem Statement

Ø Label Informed Attributed Network Embedding (LANE):
leverage both labels and node proximity in attributed
network to learn a more efficient latent representation
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Opportunities & Challenges

Ø Labels are informative:
• They are strongly influenced by and inherently correlated

to the attributed network
• Jointly exploiting them with node proximity in attributed

network benefits various data mining applications

Ø Noise & Heterogeneity:
• Data could be sparse, incomplete and noisy
• Label info is distinct from topological structure and node

unique features
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Major Contributions

Ø Propose a framework LANE that embeds nodes with similar
network structure, attribute proximity, or same label into
similar vector representations
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Framework LANE

I. Collectively model network proximity and node attribute info
via spectral technique

II. Consider nodes with the same label as a clique, and employ 
the learned network proximity to smooth the label info

III. Uniformly and jointly model proximities of heterogeneous info
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Experimental Results

Ø LANE and its variation outperform Original Features
Ø LANE achieves significantly better performance than the

state-of-the-art embedding algorithms
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