

Label Informed Attributed Network Embedding

Xiao Huang, [†] Jundong Li, [‡] and Xia (Ben) Hu [†]

[†]Computer Science & Engineering, Texas A&M University, College Station, TX, USA [‡]Computer Science & Engineering, Arizona State University, Tempe, AZ, USA Emails: {xhuang,xiahu}@tamu.edu, jundongl@asu.edu

What is **Network Embedding**

- Preserve the geometrical structure by mapping each node into a continuous low-dimensional vector space
- > Pave the way for numerous applications

Source: http://www.perozzi.net/projects/deepwalk/

What is **Attributed Network**

- > Powerful in modeling real-world information systems
- Network topological structure & node attribute information

Why Label Informed

- Abundant label info observed: group, community, category
- Labels and attributed network affect and depend on each other

Same labels:

- Similar photos
- Interact with each other

Problem Statement

Label Informed Attributed Network Embedding (LANE): leverage both labels and node proximity in attributed network to learn a more efficient latent representation

Opportunities & Challenges

- Labels are informative:
 - They are strongly influenced by and inherently correlated to the attributed network
 - Jointly exploiting them with node proximity in attributed network benefits various data mining applications

- ➤ Noise & Heterogeneity:
 - Data could be sparse, incomplete and noisy
 - Label info is distinct from topological structure and node unique features

Major Contributions

Propose a framework LANE that embeds nodes with similar network structure, attribute proximity, or same label into similar vector representations

Framework LANE

I. Collectively model network proximity and node attribute info via spectral technique

$$\underset{\mathbf{U}^{(G)},\mathbf{U}^{(A)}}{\text{maximize}} \quad \mathcal{J}_{G} + \alpha_{1}(\mathcal{J}_{A} + \rho_{1}) = \text{Tr}\left(\mathbf{U}^{(G)^{\top}}\mathcal{L}^{(G)}\mathbf{U}^{(G)} + \alpha_{1}\mathbf{U}^{(A)^{\top}}\mathcal{L}^{(A)}\mathbf{U}^{(A)} + \alpha_{1}\mathbf{U}^{(A)^{\top}}\mathbf{U}^{(G)}\mathbf{U}^{(G)^{\top}}\mathbf{U}^{(A)}\right)$$

II. Consider nodes with the same label as a clique, and employ the learned network proximity to smooth the label info

$$\underset{\mathbf{U}^{(G)},\mathbf{U}^{(Y)}}{\text{maximize}} \quad \mathcal{J}_{Y} = \mathbf{U}^{(Y)^{\top}} (\mathcal{L}^{(YY)} + \mathbf{U}^{(G)} \mathbf{U}^{(G)^{\top}}) \mathbf{U}^{(Y)}$$

III. Uniformly and jointly model proximities of heterogeneous info

Experimental Results

- ➤ LANE and its variation outperform Original Features
- LANE achieves significantly better performance than the state-of-the-art embedding algorithms

Acknowledgement

DATA Lab and collaborators

Data Analytics at Texas A&M (DATA Lab)

- Funding agencies
 - National Science Foundation
 - Defense Advanced Research Projects Agency

Everyone attending the talk

WSDM 2017, Cambridge, United Kingdom