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What 1s Network Embedding

» Preserve the geometrical structure by mapping each node into
a continuous low-dimensional vector space
» Pave the way for numerous applications
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* Classification

* Clustering

e Link Prediction
* Visualization

Source: http://www.perozzi.net/projects/deepwalk/ 2



What is Attributed Network

» Powerful in modeling real-world information systems
» Network topological structure & node attribute information
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Source: http://www.designandanalytics.com/visualizing-the-history-of-philosophy-as-a-social-network-the-problem-with-hegel



Why Label Informed

» Abundant label info observed: group, community, category
» Labels and attributed network affect and depend on each other
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Problem Statement

» Label Informed Attributed Network Embedding (LANE):
leverage both labels and node proximity 1n attributed
network to learn a more efficient latent representation
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Opportunities & Challenges

» Labels are informative:
* They are strongly influenced by and inherently correlated
to the attributed network
* Jointly exploiting them with node proximity in attributed
network benefits various data mining applications

» Noise & Heterogeneity:
* Data could be sparse, incomplete and noisy
* Label info 1s distinct from topological structure and node
unique features



Major Contributions

» Propose a framework LANE that embeds nodes with similar
network structure, attribute proximity, or same label into
similar vector representations
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Framework LANE
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|. Collectively model network proximity and node attribute info
via spectral technique
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[ll. Uniformly and jointly model proximities of heterogeneous info
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F1 score
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Experimental Results

» LANE and its variation outperform Original Features
» LANE achieves significantly better performance than the
state-of-the-art embedding algorithms
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