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Roadmap

» Network Embedding

» Heterogeneous Information
» Challenges: Heterogeneity and Large Scale

» Proposed Framework Heterogeneous Information
Learning in Large-Scale Networks (HILL)

Embedding Heterogeneity Challenges ‘ HILL



Traditional Network Analysis

Network Graph Theory Tasks
* Shortest path * Clustering
* Maximum flow  Link Prediction
* Graph partition * Classification
* Centrality * Visualization




Network Embedding
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» To take advantage of machine learning, it learns a low-
dimensional vector representation for each node, to preserve
the geometrical structure G.

> Nodes with similar structure — similar vectors.

»> H benefits real-world applications.
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Examples of Node Attributes

Apple 15" MacBook Pro,
by Apple

Customer Reviews
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3,304 Tweets
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1 #Time100
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> Examples:iuser content'in social media, reviews'in co-
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purchasing networks, & paper abstracts in citation networks.

> Rich node attributes are available.
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Attributed Networks

» Nodes are not just vertices.
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Nodes Have

Different Attributes

» Node attributes: a rich set of data that describes the unique
features of each node.



Heterogeneous Information

» Nodes are accompanied with other types of meaningful
information.

* Node attributes
* Second-order proximity

* Link directionality

» Incorporating it into network embedding is potentially helpful
in learning better vector representations.

Embedding Heterogeneity Challenges HILL 7



Node Attributes Benefit Embedding

Texas A&M Universitya Tweets Following Followers Likes Lists
@TAMU 18.7K 1,733 258K 12.3K 8

TETAS:‘\&‘ UNIVERSITY' ' A 5 ' 3 e
| ¥ R

Gho&e of lnﬁwa‘g ik

¢ '“ 4 ) 1& Acodemic Coaching  Supplementol Instruction  On-Compus Tutoring  Transfer Student Mentoring
Texas A&M School of Innov... Academic Success Center
@TAMUischool @SuccessTAMU
Official account for the School of This is the official Twitter page of the
Innovation, "I-School," at @tamu-- Academic Success Center at Texas A&M
Connecting Ags across campus to University.

multiply the impact of A&M on the...

> Node attributes are informative.

» Network and node attributes influence each other and are
inherently correlated. (Homophily & social influence)

* High correlation of user posts and following relationships

* Strong association between paper topics and citations



Attributes & Network are Correlated

Dataset Scenarios CorrCoet Intersect  p-value
Real-world  3.69e-002 42 0.00e-016
BlogCatalog RandomMean  3.14e-005 7.32 0.18
RandomMax  1.40e-003 13 4.42e-016
Real-world 1.85e-002 25 0.00e-016
Flickr RandomMean 2.15e-005 3.56 0.49
RandomMax 5.48e-004 9 3.37e-003

» Hypothesis: there is no correlation between network
affinities and node attribute affinities.

» Real-world networks vs randomly-generated networks.
Mean and max results on synthetic networks as baselines
A significance level of 0.05



How to Incorporate the Heterogeneous Information?

TWEETS  FOLLOWING  FOLLOWERS  LKES  LISTS
15.5K 1,681 228K 8,468 8

Tweets  Tweets &replies ~ Media

Texas A&M University &
aTAMU

Heterogeneous Information,
e.g., Node Attributes

 iNIUP

Will you Step In and Stand Up?

TAKE THE PLEDGE

#StepInStandUp | SteplnStandUp.tamu.edu

Embedding
Representation
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at 1f We Have a Large Network?




Real-world Attributed Network are Large

Number of monthly active Facebook users worldwide as of 3rd quarter 2018
(in millions)
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Source Additional Information
Facebook Worldwide; Facebook; Q3 2008 to Q3 2018
© Statista 2018




Real-world Node Attributes are High-dimensional

Number of tweets posted by all current MEP per day. (MEP: European Parliament)

The dotted line presents the final day of the latest European Parliament elections

2000

Tweets per day

o
o
o

2010 2012 2014 2016 2018

https://euobserver.com/institutional/141025

*Calculated on a 31 days rolling average for clarity



Challenges

» Hard to jointly assessing node proximity from heterogeneous
information.

* Node attribute information such as paper abstracts and user
posts 1s distinct from network topological structure

* Data could be sparse, incomplete and noisy

» Number of nodes and dimension of attributes could be large.

* C(lassical algorithms such as eigen-decomposition and
gradient descent cannot be applied

* [t could be expensive to store or manipulate the high-
dimensional matrices such as node attribute similarity

Embedding Heterogeneity Challenges HILL



Heterogeneous Information Learning with Joint Network
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» Given G and A, we aim to represent each node as a d-
dimensional row h;, such that H can preserve node proximity
both in network and the heterogeneous information.

» Examples of A: node attributes, second-order proximity, link

directionality. 15



Framework HILL
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» A General Embedding Framework for Heterogeneous
Information Learning in Large-Scale Networks, TKDD 2018.

» HILL accelerates the optimization by decomposing it into low
complexity sub-problems.

Embedding Heterogeneity Challenges HILL 16



Strategies of HILL
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1) Assimilate the two info in the similarity space to tackle
heterogeneity, but without calculating network similarity matrix.

2) Avoid high-dimensional matrix manipulation.

3) Make sub-problems independent to each other to allow parallel

computation.
17



Strategy 1. Incorporating Node Similarities

Similarity
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» Based on the decomposition of attribute similarity and penalty
of embedding difference between connected nodes.

mPiIn J=|S—HH'[Z+ X Z wij||hi — hy|l2
(i,5)€€
* {, norm alleviates the impacts from outliers and missing data.

* Fused lasso clusters the network without similarity matrix.
* A adjusts the size of clustering group.



Strategy 2. Avoid High-dimensional Matrix Manipulation

» Make a copy of H and reformulate into a linearly constrained
problem.

n

min Y [si—hZ 34X D willh -z,

H ;
1=1 (¢,5)€€

subject to h;=2z;,, 1=1,...,n.

* Given fixed H, all the row z; could be calculated independently.

* Each sub-problem only needs row s;, not the entire S.

 Time complexity of updating h; is O(d® +dn +d|N(7)|), with
space complexity O(n).

* Alternating Direction Method of Multipliers (ADMM)
converges to a modest accuracy in a few iterations.



Strategy 3. Enabling Parallel Computation
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Experimental Settings

> C(lassification on three real-world network.

* BlogCatalog (5,196 nodes)

* Flickr (7,564 nodes)

* Yelp (249,012 nodes, 1,779,803 edges, 20,000 attribute
categories, 47,216,356 entities)

» Three types of baselines.
* Scalable network embedding: DeepWalk & LINE.
* Node attribute modeling based on PCA.

» Attributed network representation learning: MultiSpec &
LCMF.
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(b) Flickr

» HILL outperforms the state-of-the-art embedding algorithms
with different latent dimension d.
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Effectiveness Evaluation

BlogCatalog Flickr
Training Set Percentage | 10% 25% 50% 100% | 10% 25% 50% 100%
# nodes for embedding | 1,455 2,079 3,118 5,196 | 2,118 3,026 4,538 7,564
DeepWalk 0.491 0.551 0.611 0.672 ] 0.312 0.373 0.465 0.535
LINE 0.433 0.545 0.624 0.684 | 0.259 0.332 0.421 0.516
HILL Net 0.556 0.628 0.690 0.747 | 0.315 0.397 0.496 0.626
Micro- PCA 0.695 0.782 0.823 0.857 | 0.508 0.606 0.666 0.692
average Spectral 0.717 0.791 0.841 0.869 | 0.698 0.771 0.813 0.846
LCMF 0.778 0.849 0.888 0.902 | 0.576 0.676 0.725 0.749
MultiSpec 0.678 0.788 0.849 0.896 | 0.589 0.720 0.800 0.859
HILL Attri 0.841 0.878 0.913 0.932|0.740 0.811 0.854 0.885
HILL Stream | 0.770 0.822 0.887 0.914 | 0.568 0.726 0.816 0.859

» HILL Net uses network only. It employs the second-order

proximity of network as the heterogeneous information.
» HILL Attri embeds attributed network.

» For HILL Stream, test nodes come one by one.



Running Time (s)
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» HILL takes much less running time than the attributed network
representation learning methods even with single-thread.
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Efficiency Evaluation

BlogCatalog (sec) Flickr (sec) Yelp-sub (sec)
c =1 26.301 33.751 1065.033
= 2 14.233 (—45.9%) 17.510 (—48.1%) 581.544 (—45.4%)
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» Running time of HILL w.r.t. the number of workers c on a
dual-core processor.

» One of the reasons HILL is efficient: it converges rapidly.



Conclusions

» Nodes are accompanied with other types of meaningful
information.

* Node attributes
* Second-order proximity

* Link directionality
» Challenges: Heterogeneity and Large Scale.

» HILL learns low-dimensional vectors to represent all nodes,
such that the original network structure and the meaningful
heterogeneous information are well preserved.
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