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Roadmap

Ø Network Embedding

Ø Heterogeneous Information

Ø Challenges: Heterogeneity and Large Scale

Ø Proposed Framework Heterogeneous Information
Learning in Large-Scale Networks (HILL)

2Embedding Heterogeneity Challenges HILL
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• Clustering
• Link Prediction
• Classification
• Visualization
•		⋯

Network Graph Theory Tasks

• Shortest path
•Maximum flow
• Graph partition
• Centrality
•		⋯

Traditional Network Analysis 
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• Classification
• Clustering
• Link Prediction
• Visualization
•		⋯𝑛-dimensional

Network Embedding

Ø To take advantage of machine learning, it learns a low-
dimensional vector representation for each node, to preserve
the geometrical structure 𝐆.

Ø Nodes with similar structure ⟶ similar vectors.

Ø 𝐇 benefits real-world applications.
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Examples of Node Attributes

Ø Examples: user content in social media, reviews in co-
purchasing networks, & paper abstracts in citation networks.

Ø Rich node attributes are available.



6

Attributed Networks

Ø Nodes are not just vertices.

Ø Node attributes: a rich set of data that describes the unique
features of each node.

Nodes Have
Different Attributes
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Heterogeneous Information

Ø Nodes are accompanied with other types of meaningful
information.
• Node attributes
• Second-order proximity
• Link directionality

Ø Incorporating it into network embedding is potentially helpful
in learning better vector representations.

Embedding Heterogeneity Challenges HILL
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Node Attributes Benefit Embedding

Ø Node attributes are informative.

Ø Network and node attributes influence each other and are
inherently correlated. (Homophily & social influence)
• High correlation of user posts and following relationships
• Strong association between paper topics and citations
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Attributes & Network are Correlated

Ø Hypothesis: there is no correlation between network
affinities and node attribute affinities.

Ø Real-world networks vs randomly-generated networks.
Mean and max results on synthetic networks as baselines
A significance level of 0.05

70:6 X. Huang et al.

Table 2. The Detailed Information of the Three Real-World Attributed Networks

Dataset Nodes (n) Edges ( |E |) Density Attribute Categories (m) Label (ℓ)
BlogCatalog 5,196 171,743 1.3e-002 8,189 6

Flickr 7,564 239,365 8.4e-003 12,047 9
Yelp 249,012 1,779,803 5.7e-005 20,000 11

Table 3. Correlation Between the Network Proximity and Node
Attribute Proximity w.r.t. the Three Metrics, with a Significance

Level of 0.05

Dataset Scenarios CorrCoef Intersect p-value

BlogCatalog
Real-world 3.69e-002 42 0.00e-016

RandomMean 3.14e-005 7.32 0.18
RandomMax 1.40e-003 13 4.42e-016

Flickr
Real-world 1.85e-002 25 0.00e-016

RandomMean 2.15e-005 3.56 0.49
RandomMax 5.48e-004 9 3.37e-003

and we first calculate their cosine similarities based on network structure W and set them as the
first group of variables x ∈ R1× (n

2 ) . Then, we compute the node affinities w.r.t. node attributes
A and set them as the second group y ∈ R1× (n

2 ) . We define the Pearson correlation coefficient of
pairwise affinities x and y as CorrCoef. The second metric Intersect is defined as the number of
common node pairs in the top 104 largest affinities in x and the top 104 largest affinities in y. The
third metric p-value is defined as the p-value of the null hypothesis as follows.

Hypothesis 1. There is no correlation between network affinities x and node attribute affinities y.

To validate the correlation between the topological structure and node attributes, we include a
randomly generated network as a baseline. This network has the same density as the real-world
network, with undirected edges distributed randomly. We measure the correlation between the
randomly generated network and real-world node attributes, and conduct 100 trials for each
dataset. We define the average mean as RandomMean and the best performance as RandomMax.
The results on BlogCatalog and Flickr are shown in Table 3. The result on Yelp is not available,
since it has too many pairwise affinities to be cached on a single machine. As we can see, on both
datasets, CorrCoef and Intersect of the real-world networks are much larger than the ones of the
randomly generated networks. The p-value of real-world network is 0.00e-016 on both datasets,
which demonstrates that there is a significant relationship between the network proximity and
node attribute proximity.

4 A GENERAL EMBEDDING FRAMEWORK – HILL
To investigate the problem of heterogeneous information learning with joint network embedding,
we propose a general, effective, and distributed framework named HILL. In this section, we de-
scribe how HILL jointly models the topological structure and heterogeneous information proxim-
ity in an efficient way. HILL satisfies three nice properties as follows. First, it is capable of handling
various types of edges (e.g., undirected or directed, unweighted or weighted) and an arbitrary type
of heterogeneous information (e.g., node attributes or second-order proximity). Second, it could
well preserve the node proximity in both network and heterogeneous information space. Third, it

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 70. Publication date: October 2018.
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𝐇Network
Embedding

Heterogeneous Information,
e.g., Node Attributes

How to Incorporate the Heterogeneous Information?



11

What if We Have a Large Network?



Real-world Attributed Network are Large
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Real-world Node Attributes are High-dimensional

https://euobserver.com/institutional/141025

. (MEP: European Parliament)
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Challenges

Ø Hard to jointly assessing node proximity from heterogeneous
information.
• Node attribute information such as paper abstracts and user 

posts is distinct from network topological structure
• Data could be sparse, incomplete and noisy

Ø Number of nodes and dimension of attributes could be large.
• Classical algorithms such as eigen-decomposition and

gradient descent cannot be applied
• It could be expensive to store or manipulate the high-

dimensional matrices such as node attribute similarity

Embedding Heterogeneity Challenges HILL
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Heterogeneous Information Learning with Joint Network
Embedding

Ø Given 𝐆 and 𝐀, we aim to represent each node as a d-
dimensional row 𝐡=, such that 𝐇 can preserve node proximity
both in network and the heterogeneous information.

Ø Examples of 𝐀: node attributes, second-order proximity, link
directionality.
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Framework HILL

Ø A General Embedding Framework for Heterogeneous
Information Learning in Large-Scale Networks, TKDD 2018.

Ø HILL accelerates the optimization by decomposing it into low
complexity sub-problems.
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Strategies of HILL

1) Assimilate the two info in the similarity space to tackle
heterogeneity, but without calculating network similarity matrix.

2) Avoid high-dimensional matrix manipulation.

3) Make sub-problems independent to each other to allow parallel
computation.
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Strategy 1. Incorporating Node Similarities

Ø Based on the decomposition of attribute similarity and penalty
of embedding difference between connected nodes. 

• l2 norm alleviates the impacts from outliers and missing data.
• Fused lasso clusters the network without similarity matrix.
• 𝜆 adjusts the size of clustering group.

3 Accelerated Embedding Framework - AANE

A desirable embedding method for real-world attributed
networks satisfies three requirements as follows. First,
it needs to be able to handle arbitrary types of edges
(e.g., undirected or directed, unweighted or weighted)
and node attributes (e.g., discrete or continuous values).
Second, it needs to well preserve the node proximity
both in network and attribute space. Third, it is
important to be scalable since the number of nodes
n and dimension of attributes m could be large. We
develop an e↵ective and e�cient framework AANE that
satisfies all of the requirements. In this section, we
describe how AANE jointly models network structure
and attribute proximity in an e↵ective way. Figure 1
illustrates the basic idea. Given a network with n = 6
nodes, it first decomposes attribute a�nity S into the
product of H and H>. Meanwhile, it imposes an
edge-based penalty into this decomposition such that
connected nodes are close to each other in H, and the
closeness is controlled by the edge weights in W. The
goal is to make more similar nodes in the network space
to be closer in H. To accelerate the optimization,
a distributed algorithm is proposed to separate the
original problem into 2n = 12 sub-problems with low
complexity. The first n = 6 sub-problems are designed
to be independent of each other, and the same as
the last six. So all sub-problems can be assigned to
t = 3 workers. In the final output, node 1 and node
3 are represented by similar vectors [0.54, 0.27] and
[0.55, 0.28], which indicates that they are similar to each
other in the original network and feature joint space.

3.1 Network Structure Modeling In order to ren-
der the joint embedding representation H well-posed,
AANE should well preserve the node proximity both in
network structure and node attribute space.

To preserve the node proximity in G, the proposed
framework is based on two hypotheses [11, 39]. First,
a graph-based mapping is assumed to be smooth across
edges, especially for the regions of high density [7]. This
is in line with the cluster hypothesis [25]. Second, nodes
with more similar topological structures or connected
by higher weights are more likely to have similar vector
representations. To achieve these goals, we propose
the following loss function to minimize the embedding
di↵erences between connected nodes,

(3.1) JG =
X

(i,j)2E

wijkhi � hjk2,

where rows hi and hj are vector representations of node
i and node j, and wij is the edge weight between the
two. The key idea is that in order to minimize the
penalty wijkhi � hjk2, a larger weight wij is more

likely to enforce the di↵erence of hi and hj to be
smaller. We employ `2-norm as the di↵erence metric
to alleviate the negative impacts resulted from outliers
and missing data. The proposed network structure
modeling enjoys several nice properties as follows. First,
it is in line with the fused lasso [37] and network
lasso [9], which could induce sparsity in the di↵erences
of vector representations of similar nodes, and perform
continuous edges selection similar to the continuous
variable selection in lasso [36]. It is in compliance
with the cluster hypothesis in graphs. Second, it is
general to di↵erent types of networks. It could handle
both undirected and directed networks with weighted
or unweighted edges. Hence, it can be easily applied to
many real-world applications.

3.2 Attribute Proximity Modeling As indicated
by social science theories like homophily and social
influences [23, 38], attribute information of nodes is
tightly hinged with network topological structure. Node
proximity in network space should be consistent with
the one in node attribute space. Thus, we investigate
how to make the embedding representation H also well
preserve the node attribute proximity. Motivated by
the symmetric matrix factorization [17], we propose
to approximate attribute a�nity matrix S with the
product of H and H>. The basic idea is to enforce
the dot product of vector representations hi and hj to
be the same as corresponding attribute similarity sij .
Mathematically, the loss function is defined as

(3.2) JA = kS�HH
>k2F =

nX

i=1

nX

j=1

(sij � hih
>
j )

2,

where a�nity matrix S could be calculated by a repre-
sentative similarity measure. Specifically, we use cosine
similarity in this paper.

3.3 Joint Embedding Representation Learning
We have implemented two loss functions JG and JA to
model the node proximity in network topological struc-
ture and node attributes. To make them complement
each other towards a unified robust and informative
space, we jointly model the two types of information
in the following optimization problem,

(3.3) min
H

J = kS�HH
>k2F + �

X

(i,j)2E

wijkhi � hjk2.

Scalar � serves as an overall parameter that defines a
trade-o↵ between the contributions of network and at-
tribute information. It is also a regularization parame-
ter that balances number of clusters [9, 22]. An intuitive
explanation is that when � is close to 0, the network
topology cannot a↵ect the final result H, so each node
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Strategy 2. Avoid High-dimensional Matrix Manipulation

Ø Make a copy of 𝐇 and reformulate into a linearly constrained
problem.

• Given fixed 𝐇, all the row 𝐳= could be calculated independently.
• Each sub-problem only needs row 𝐬=, not the entire 𝐒.
• Time complexity of updating 𝐡= is , with

space complexity .
• Alternating Direction Method of Multipliers (ADMM)

converges to a modest accuracy in a few iterations.

can be an isolated cluster. When � is su�ciently large,
the optimal solution will end up with same representa-
tions for all nodes, which forms a single cluster. This
allows us to tune the number of clusters continuously.
This number is not specified in network embedding, and
tunability of � is beneficial in this scenario.

3.4 Accelerated and Distributed Algorithm
The proposed objective function not only jointly mod-
els network proximity and node attribute a�nity, but
also has a specially designed structure that enables it
to be optimized in an e�cient and distributed manner,
i.e., J is separable for hi and can be reformulated as a
bi-convex optimization problem. Next, we propose an
e�cient algorithm to solve it.

If we add a copy Z = H, then the first term in
Eq. (3.3) can be rewritten as
(3.4)

kS�HZ
>k2F =

nX

i=1

ksi � hiZ
>k22 =

nX

i=1

ks>i �Hz
>
i k22.

We can further reformulate Eq. (3.3) into a linearly
constrained problem as follows,
(3.5)

min
H

nX

i=1

ksi�hiZ
>k22 + �

X

(i,j)2E

wijkhi � zjk2,

subject to hi = zi, i = 1, . . . , n.

This indicates that J is separable for both hi and zi.
Since `2-norm is convex, it is easy to verify that Eq. (3.5)
is also bi-convex, i.e., convex w.r.t. hi when zi is fixed
and convex w.r.t. zi when hi is fixed. Thus, we are
able to split the original complex embedding problem
into 2n small convex optimization sub-problems.

It is infeasible to obtain closed-form solutions for
these 2n sub-problems. Motivated by the distributed
convex optimization technique - Alternating Direction
Method of Multipliers (ADMM) [2, 9], we accelerate the
optimization by converting it into 2n updating steps and
one matrix updating step. The proposed solution enjoys
several nice properties. First, it enables the n updating
steps of hi (or zi) independent of each other. Thus
in each iteration, the global coordination can assign
tasks to workers and collect the solutions from them
without a fixed order. Second, all updating steps have
low complexity. Third, it converges to a modest solution
fast [2]. We now introduce the details.

To solve the problem, we first formulate the aug-
mented Lagrangian [10] of Eq. (3.5) as follows,

(3.6)

L =
nX

i=1

ksi � hiZ
>k22 + �

X

(i,j)2E

wijkhi � zjk2

+
⇢
2

nX

i=1

(khi � zi + uik22 � kuik22),

where rows u1, . . . ,un 2 Rd are the scaled dual vari-
ables, and ⇢ > 0 is the penalty parameter. The mini-
mizer of Eq. (3.5) is then converted to the saddle point
of L, which can be found by finding optimal H, Z, and
U iteratively. The corresponding optimization problems
in terms of each node i at iteration k+1 are written as
(3.7)

h
k+1
i = argmin

hi

(ksi � hiZ
k>k22 + �

X

j2N(i)

wijkhi � z
k
j k2

+
⇢
2
khi � z

k
i + u

k
i k22),

(3.8)

z
k+1
i = argmin

zi

(ks>i �H
k+1

z
>
i k22 + �

X

j2N(i)

wjikzi � h
k+1
j k2

+
⇢
2
kzi � h

k+1
i � u

k
i k22), and

U
k+1 = U

k + (Hk+1 � Z
k+1).(3.9)

Here we need to find all of the hk+1
i , for i = 1, . . . , n,

before calculating zk+1
i . However, the order of solving

hk+1
i is not fixed, since they are independent to each

other. If the machine capacity is limited, si can also
be calculated separately via equation si = (aiA>) · ( 1

qiq
),

where q is the dot product of each node attribute vector,
i.e., q = [

p
a1 · a1, . . . ,

p
an · an ]. By taking the derivative

of Eq. (3.7) w.r.t. hi, and setting it to zero, we get an
updating rule to approach optimal hi as follows,

(3.10) h
k+1
i =

2siZ
k + �

P
j2N(i)

wijz
k
j

khk
i �z

k
j k2

+ ⇢(zki � u
k
i )

2Zk>
Zk + (�

P
j2N(i)

wij

khk
i �z

k
j k2

+ ⇢)I
.

Here we use hk
i to estimate the distance khk

i � zkj k2.
The monotonically decreasing property of this updating
rule is proved by the work of Nie et al. [26]. Since the
problem in Eq. (3.7) is convex, hi should be optimum
if and only if hk

i = hk+1
i . We stop the updating as they

are closed enough. We obtain a similar rule for zi,
(3.11)

z
k+1
i =

2siH
k+1

+ �
P

j2N(i)

wijh
k+1
j

kzki �h
k+1
j k2

+ ⇢(hk+1
i + u

k
i )

2Hk+1>Hk+1 + (�
P

j2N(i)
wij

kzki �h
k+1
j k2

+ ⇢)I
.

The distributed algorithm for optimizing the prob-
lem in Eq. (3.3) is described in Algorithm 1. Since
Eq. (3.5) is bi-convex, it is guaranteed to converge to
a local optimal point [2]. To have an appropriate ini-
tialization, we set H as the left singular vectors of A0

in the first iteration. A0 is a matrix that collects the
first 2d columns of A. The optimization is split into 2n
sub-problems, and we solve them iteratively. In each
iteration, the n updating steps of hi (or zi) can be as-
signed to t workers in a distributed way as illustrated in
Figure 1. The termination criterion is that primal resid-
ual r and dual residual s should be su�ciently small.

Algorithm 1: Accelerated Attributed Network
Embedding

Input: W, A, d, ✏.
Output: Embedding representation H.
1 A0  First 2d columns of A;
2 Set k = 0, and Hk

 Left singular vectors of A0;
3 Set Uk = 0, Zk = Hk, and calculate S;
4 repeat

5 Calculate Zk>Zk;
/* Assign these n tasks to t workers: */

6 for i = 1 : n do
7 Update hk+1

i based on Eq. (3.10);

8 Calculate Hk+1>Hk+1;
/* Assign these n tasks to t workers: */

9 for i = 1 : n do
10 Update zk+1

i based on Eq. (3.11);

11 Uk+1
 Uk + (Hk+1

� Zk+1);
12 k  k + 1;
13 until krkk2  ✏pri and kskk2  ✏dual;
14 return H.

3.5 Complexity Analysis As it is typical for
ADMM [2], Algorithm 1 tends to converge to a modest
accuracy in a few iterations. In the initialization, the
time complexity for calculating singular vectors of an n
by d matrix A0 is O(d2n), and we denote the number
of operations required to obtain the attribute a�nity
matrix S as TS. In each subtask, the updating time for
hi should be O(d3+dn+d|N(i)|) since we only need to

compute Zk>Zk once per iteration. Since d⌧ n, it can
be reduced to O(n). It is easy to check that the space
complexity of each subtask is also O(n). Therefore, the

total time complexity of AANE should be O(nNA+ n2

t ),
where NA is the number of nonzero in A.

4 Experiments

In this section, we empirically evaluate the e↵ectiveness
and e�ciency of the proposed framework AANE. We
aim at answering three questions as follows. (1) What
are the impacts of node attributes on network embed-
ding? (2) How e↵ective is the embedding representation
learned by AANE compared with other learning meth-
ods on real-world attributed networks? (3) How e�cient
is AANE compared with the state-of-the-art methods?
We first introduce the datasets used in the experiments.

4.1 Datasets Three real-world attributed networks
BlogCatalog, Flickr and Yelp are used in this work. All
of them are publicly available and the first two also have
been used in previous work [14, 20]. Statistics of the
datasets are summarized in Table 2.

Dataset BlogCatalog Flickr Yelp
Nodes (|V|) 5,196 7,564 249,012
Edges (|E|) 171,743 239,365 1,779,803

Attribute (m) 8,189 12,047 20,000
Label (`) 6 9 11

Table 2: Detailed information of the three datasets.

BlogCatalog is a blogger community, where users in-
teract with each other and form a network. Users are
allowed to generate keywords as a short description of
their blogs. These keywords are severed as node at-
tributes. Users also register their blogs under predefined
categories, and we set them as labels. The user with no
follower or predefined category has been removed.
Flickr is an online community that people can share
photos. Photographers can follow each other and form
a network. We employ the tags specified on their
images as attribute information. We set the groups that
photographers joined as labels.
Yelp2 is a social networking service, where crowd-
sourced reviews about local businesses are shared. We
employ users’ friend relationships to form the network.
Bag-of-words model is used to represent users’ reviews
as attribute information. All local businesses are sepa-
rated into eleven primary categories, such as Active Life,
Fast Food and Services. A user may have reviewed one
or several businesses. We use the categories of these
businesses as the user’s labels.

4.2 Baseline Methods AANE is compared with
two categories of baseline methods. To evaluate the con-
tribution of incorporating node attributes, two scalable
network embedding methods and a classical method
for modeling attributes are used for comparison, i.e.,
DeepWalk, LINE and PCA. To investigate the e↵ec-
tiveness and e�ciency of AANE, we compare it with
two state-of-the-art attributed network learning meth-
ods, i.e., LCMF and MultiSpec. The detailed descrip-
tions of these methods are listed as follows.

• DeepWalk [29]: It involves language modeling tech-
niques to analyze the truncated random walks on a
graph. It embeds the walking tracks as sentences,
and each vertex corresponds to a unique word.

• LINE [34]: It embeds the network into a latent
space by sampling both one-hop and two-hop neigh-
bors of each node. It is one of the state-of-the-art
scalable network embedding methods.

• PCA [16]: It is a classical dimensionality reduction
technique. It takes the top d principal components
of attribute matrixA as the learned representation.

2https://www.yelp.com/dataset_challenge/dataset
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Experimental Settings

Ø Classification on three real-world network.
• BlogCatalog (5,196 nodes)
• Flickr (7,564 nodes)
• Yelp (249,012 nodes, 1,779,803 edges, 20,000 attribute 

categories, 47,216,356 entities)

Ø Three types of baselines.
• Scalable network embedding: DeepWalk & LINE.
• Node attribute modeling based on PCA.
• Attributed network representation learning: MultiSpec &

LCMF.

Codes and datasets are available at http://people.tamu.edu/~xhuang/Code.html



Ø HILL outperforms the state-of-the-art embedding algorithms
with different latent dimension 𝑑.
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Fig. 6. The performance of all methods on BlogCatalog and Flickr w.r.t. different embedding dimension d .

Macro-average as a function of λ and ρ on BlogCatalog and Flickr. We omit the results on Yelp
since they are similar.

From Figure 5, we have two observations. First, when λ is close to 0, network information has
no impact as if all nodes are isolated. As λ increases, HILL starts to cluster nodes according to the
topological structure, so the performance keeps improving. As shown in Figure 5, performance on
BlogCatalog and Flickr achieves optimal when λ is close to 0.1. The performance decreases when
λ is too large, since large λ tends to drive all nodes to have the same vector representation. Second,
the penalty parameter ρ has a limited impact on the performance of our framework HILL.

To study the impact of embedding dimension d , we vary it from 20 to 180 on BlogCatalog and
Flickr. The classification performance of all methods in terms of Micro-average w.r.t. d is shown
in Figure 6. We omit the results on Yelp since they are similar. From the results, we observe that
conclusions made above hold undeviatingly as d varies. DeepWalk and LINE are always inferior
to HILL_Attri and the two heterogeneous information joint learning methods. HILL_Attri consis-
tently outperforms all baselines. By increasing d , the performance of all methods first increases
and then keeps stable. This shows that the learned low-dimensional representations perform well
in capturing most of the meaningful information.

7.7 Effectiveness Evaluation on Streaming Networks
Our framework could also be applied to streaming networks. In the experiments, we make the
nodes in the test group come one by one, and denote HILL on such streaming attributed net-
work embedding as HILL_Stream. Its performance regards to different training set percentages
is shown in Table 4. From the results, we observe that HILL_Stream achieves a comparable per-
formance with the batch mode, i.e., HILL_Attri, on all the three datasets. For example, on Flickr,
HILL_Stream performs only 2.8% worse than HILL_Attri when the training set percentage is 100%.
The performance of HILL_Stream on Yelp-sub is worse than PCA since HILL relies on the topo-
logical structure to infer the vector representations of new nodes, while the network information
of Yelp-sub is noisy.

8 RELATED WORK
Our work is related to three research topics, i.e., large-scale network embedding, attributed net-
work embedding, and network lasso, with detailed descriptions as follows.

First, large-scale network embedding has become an efficient tool to deal with real-world net-
works. The main question is how to efficiently learn low-dimensional representations for all

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 70. Publication date: October 2018.
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BlogCatalog Flickr Yelp-sub

Training Set Percentage 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%
# nodes for embedding 1,455 2,079 3,118 5,196 2,118 3,026 4,538 7,564 13,945 19,921 29,881 49,802

Micro-
average

DeepWalk 0.491 0.551 0.611 0.672 0.312 0.373 0.465 0.535 0.302 0.310 0.318 0.350
LINE 0.433 0.545 0.624 0.684 0.259 0.332 0.421 0.516 0.230 0.243 0.264 0.294

HILL_Net 0.556 0.628 0.690 0.747 0.315 0.397 0.496 0.626 0.369 0.373 0.274 0.247
PCA 0.695 0.782 0.823 0.857 0.508 0.606 0.666 0.692 0.667 0.674 0.681 N.A.

Spectral 0.717 0.791 0.841 0.869 0.698 0.771 0.813 0.846 0.670 0.683 N.A. N.A.
LCMF 0.778 0.849 0.888 0.902 0.576 0.676 0.725 0.749 0.668 0.680 0.686 N.A.

MultiSpec 0.678 0.788 0.849 0.896 0.589 0.720 0.800 0.859 0.654 0.667 N.A. N.A.
HILL_Attri 0.841 0.878 0.913 0.932 0.740 0.811 0.854 0.885 0.679 0.694 0.703 0.711
HILL_Stream 0.770 0.822 0.887 0.914 0.568 0.726 0.816 0.859 0.554 0.577 0.665 0.691

Macro-
average

DeepWalk 0.489 0.548 0.606 0.665 0.310 0.371 0.462 0.530 0.139 0.159 0.215 0.275
LINE 0.425 0.542 0.620 0.681 0.256 0.331 0.418 0.512 0.165 0.173 0.193 0.227

HILL_Net 0.550 0.622 0.685 0.741 0.313 0.396 0.495 0.624 0.287 0.272 0.156 0.141
PCA 0.691 0.780 0.821 0.855 0.510 0.612 0.671 0.696 0.591 0.599 0.605 N.A.

Spectral 0.714 0.788 0.838 0.867 0.695 0.767 0.810 0.843 0.610 0.626 N.A. N.A.
LCMF 0.776 0.847 0.886 0.900 0.585 0.683 0.729 0.751 0.589 0.605 0.612 N.A.

MultiSpec 0.677 0.787 0.847 0.895 0.589 0.722 0.802 0.859 0.578 0.589 N.A. N.A.
HILL_Attri 0.836 0.875 0.912 0.930 0.743 0.814 0.852 0.883 0.630 0.645 0.656 0.663
HILL_Stream 0.770 0.815 0.884 0.912 0.567 0.727 0.815 0.858 0.503 0.538 0.613 0.646

Table 4. The classification performance of di�erent methods on di�erent datasets with d = 100. Training Set
Percentage indicates the percentage of nodes in training group that are used for embedding. # nodes for
embedding denotes the total number of nodes in the test group and nodes in the training group that are used.

Training Set Percentage 10% 25% 50% 100%
# nodes for embedding 69,723 99,605 149,407 249,012

Micro-
average

DeepWalk 0.324 0.345 0.366 0.368
LINE 0.295 0.313 0.336 0.354

HILL_Attri 0.698 0.709 0.711 0.714

Macro-
average

DeepWalk 0.239 0.254 0.266 0.260
LINE 0.216 0.236 0.259 0.279

HILL_Attri 0.649 0.659 0.660 0.665

Table 5. The classification performance of di�erent scalable embedding methods on Yelp with d = 100, where
baseline methods PCA, LCMF, and MultiSpec are infeasible.

achieves a gain of 17.0% over DeepWalk. HILL_Net does not perform well on Yelp-sub since its
network information is too noisy.
We also vary the number of nodes that is used for training as {10%, 25%, 50%, 100%} of the

entire training group to evaluate the e�ect brought by di�erent sizes of training data. The results
are shown in Tables 4. From the results, similar observations are made. HILL_Attri consistently
achieves better performance than all baselines on all datasets. For example, on Flickr, when training
set percentage is 50%, HILL_Attri achieves 5.0% of improvements than Spectral.

7.4 E�ectiveness Evaluation
To answer the second question asked at the beginning of this section, two types of comparisons
are conducted. First, to study the performance of our framework on the node attribute learning, we
compare HILL_Attri with the two heterogeneous information joint learning methods, i.e., LCMF and

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: July 2018.

Ø HILL_Net uses network only. It employs the second-order
proximity of network as the heterogeneous information.

Ø HILL_Attri embeds attributed network.
Ø For HILL_Stream, test nodes come one by one.
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Efficiency Evaluation

Ø HILL takes much less running time than the attributed network
representation learning methods even with single-thread.

A General Embedding Framework for Heterogeneous Information Learning 70:19

Fig. 4. Running time of LCMF, MultiSpec and HILL w.r.t. the number of input nodes within a single thread.

Table 6. The Running Time of HILL_Attri w.r.t. the Number
of Workers c on a Dual-core Processor

BlogCatalog (sec) Flickr (sec) Yelp-sub (sec)
c = 1 26.301 33.751 1065.033
c = 2 14.233 (−45.9%) 17.510 (−48.1%) 581.544 (−45.4%)

Fig. 5. Impacts of regularization parameter λ and penalty parameter ρ on the proposed framework HILL.

computation time of HILL_Attri is reduced by almost 50% when c is increased from 1 to 2. When
c = 1, the running time on BlogCatalog and Flickr in Table 6 is larger than the one in Figure 4. It
is because it takes extra time for the multi-thread version of HILL to set up the coordinator and
workers. When n is large enough, e.g., on Yelp-sub, the running time with c = 1 in Table 6 is the
same as the one in Figure 4. In summary, all these observations demonstrate the efficiency and
scalability of HILL.

7.6 Parameter Analysis
We now answer the third proposed question, i.e., what are the impacts of parameters λ, ρ, and
d . As discussed in Section 4.3, regularization parameter λ in HILL balances the contributions of
network information and heterogeneous information proximity. Penalty parameter ρ determines
the amount of penalty from the linear constraint H = Z. To investigate the impacts of λ and ρ,
we vary λ from 10−6 to 104 and ρ from 0.1 to 20. Figure 5 shows the performance in terms of

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 6, Article 70. Publication date: October 2018.



Efficiency Evaluation

Ø Running time of HILL w.r.t. the number of workers c on a
dual-core processor.

Ø One of the reasons HILL is efficient: it converges rapidly.

1:18 X. Huang et al.
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Fig. 4. Running time of LCMF, MultiSpec and HILL w.r.t. the number of input nodes within a single thread.

BlogCatalog (sec) Flickr (sec) Yelp-sub (sec)

c = 1 26.301 33.751 1065.033
c = 2 14.233 (�45.9%) 17.510 (�48.1%) 581.544 (�45.4%)

Table 6. The running time of HILL_A�ri w.r.t. the number of workers c on a dual-core processor.

the performance di�erence raises up. The third sub�gure shows that LCMF and MultiSpec have
larger growth rates than HILL_Attri. They become infeasible when the number of nodes is greater
than 49,802 and 29,881 respectively, due to the high computational cost and memory requirement of
matrix factorization and eigen-decomposition. Furthermore, while the three methods are running
within a single thread for a fair comparison, HILL_Attri could be implemented in multi-thread
way as illustrated in Figure 2. This strategy could further improve the e�ciency of HILL_Attri. We
demonstrate the running time of HILL_Attri w.r.t. di�erent numbers of workers c on a dual-core
processor in Table 6. As we can see, on all the three datasets, the computation time of HILL_Attri
is reduced by almost 50% when c is increased from 1 to 2. When c = 1, the running time on
BlogCatalog and Flickr in Table 6 is larger than the one in Figure 4. It is because it takes extra
time for the multi-thread version of HILL to set up the coordinator and workers. When n is large
enough, e.g., on Yelp-sub, the running time with c = 1 in Table 6 is the same as the one in Figure 4.
In summary, all these observations demonstrate the e�ciency and scalability of HILL.

7.6 Parameter Analysis
We now answer the third proposed question, i.e., what are the impacts of parameters �, �, and d . As
discussed in Section 4.3, regularization parameter � in HILL balances the contributions of network
information and heterogeneous information proximity. Penalty parameter � determines the amount
of penalty from the linear constraint H = Z. To investigate the impacts of � and �, we vary � from
10�6 to 104 and � from 0.1 to 20. Figure 5 shows the performance in terms of Macro-average as a
function of � and � on BlogCatalog and Flickr. We omit the results on Yelp since they are similar.
From Figure 5, we have two observations. First, when � is close to 0, network information has

no impact as if all nodes are isolated. As � increases, HILL starts to cluster nodes according to the
topological structure, so the performance keeps improving. As shown in Figure 5, performance on
BlogCatalog and Flickr achieves optimal when � is close to 0.1. The performance decreases when �
is too large, since large � tends to drive all nodes to have the same vector representation. Second,
the penalty parameter � has a limited impact on the performance of our framework HILL.
To study the impact of embedding dimension d , we vary it from 20 to 180 on BlogCatalog and

Flickr. The classi�cation performance of all methods in terms of Micro-average w.r.t. d is shown
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Fig. 3. The augmented Lagrangian L in HILL_A�ri w.r.t. the iteration number on all the three datasets.

MultiSpec. Second, to evaluate the performance of our framework on the second-order proximity
learning, we compare HILL_Net with LINE, which learns a uni�ed low-dimensional representation
by concatenating the latent representations of �rst-order and second-order proximities straightfor-
wardly. The classi�cation results w.r.t. di�erent training set percentages are shown in Table 4. From
the results, we have two major observations as follows. First, in terms of node attribute learning,
HILL_Attri consistently outperforms LCMF and MultiSpec w.r.t. all training set percentages. For
instance, on Flickr, HILL_Attri achieves 18.2% of improvements than LCMF when training set per-
centage is 100%, which could be explained by the fact that latent features learned by decomposing
the network matrix and node attribute information matrix are heterogeneous. It is challenging
to combine them. We also �nd that MultiSpec might perform worse than PCA. For instance, on
Yelp-sub, PCA achieves a gain of 1.0% over MultiSpec when training set percentage is 25%. It is
because the network information is too noisy. MultiSpec treats the networks and node attributes
as two views, and incorporates them without considering their distinct data structures. Second,
in terms of second-order proximity learning, HILL_Net consistently achieves better performance
than LINE on BlogCatalog and Flickr. For instance, on BlogCatalog, HILL_Net achieves a gain
of 9.0% over LINE, which could be explained by the fact that LINE combines the �rst-order and
second-order proximities via simple concatenation, while HILL_Net jointly embeds them with a
carefully designed structure.
One-tailed t-test results show that HILL_Attri is statistically signi�cantly better (with p-value
⌧ 0.01) than all the baselines on all datasets. The p-value on BlogCatalog and Flickr are smaller
than 9.5 ⇥ 10�14 and 1.6 ⇥ 10�12 respectively.

7.5 E�iciency Evaluation
To study the e�ciency of the proposed framework, we compare HILL_Attri with the two heteroge-
neous information joint learning methods. Empirical results show that a near optimal solution of
J is enough to guarantee H to be an informative embedding representation. Figure 3 shows the
objective function J in HILL_Attri as a function of the iteration number on all the three datasets.
As we can see, J decreases rapidly in the �rst two iterations. Therefore, in practice, only a few
iterations are required for our framework HILL. If it is not speci�ed, in the experiments, we stop
the iteration at the stopping points shown in Figure 3. It should be noted that J might not decrease
monotonically because of the non-di�erentiable points at hi = ztj in Eq. (8).

The computation time in logarithmic scale as a function of the number of input nodes on the three
datasets are shown in Figure 4. The blue, red, and yellow dash-dot curves show the performance of
LCMF, MultiSpec, and HILL_Attri respectively. From the results, we observe that HILL_Attri takes
much less running time than LCMF and MultiSpec consistently. As the number of nodes increases,

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: July 2018.



Conclusions

Ø Nodes are accompanied with other types of meaningful
information.
• Node attributes
• Second-order proximity
• Link directionality

Ø Challenges: Heterogeneity and Large Scale.

Ø HILL learns low-dimensional vectors to represent all nodes,
such that the original network structure and the meaningful
heterogeneous information are well preserved.
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