

Heterogeneous Information Learning in Large-Scale Network

Xiao Huang, [†] Jundong Li, [‡] Na Zou, [†] and Xia (Ben) Hu [†]

[†]Texas A&M University, College Station, TX, USA

[‡]Arizona State University, Tempe, AZ, USA

Emails: {xhuang, nzou1, xiahu}@tamu.edu, jundongl@asu.edu

Roadmap

Network Embedding

➤ Heterogeneous Information

> Challenges: Heterogeneity and Large Scale

➤ Proposed Framework *Heterogeneous Information*Learning in Large-Scale Networks (HILL)

Traditional Network Analysis

Network

Graph Theory

Tasks

- Shortest path
- Maximum flow
- Graph partition
- Centrality
- ...

 $Cut = \{ (S,B), (B,A), (A,C) \}$

- Clustering
- Link Prediction
- Classification
- Visualization

• ...

Network Embedding

- To take advantage of machine learning, it learns a low-dimensional vector representation for each node, to preserve the geometrical structure **G**.
- \triangleright Nodes with similar structure \rightarrow similar vectors.
- ➤ **H** benefits real-world applications.

Examples of Node Attributes

- Examples: user content in social media, reviews in copurchasing networks, & paper abstracts in citation networks.
- > Rich node attributes are available.

Attributed Networks

- Nodes are not just vertices.
- Node attributes: a rich set of data that describes the unique features of each node.

Heterogeneous Information

- ➤ Nodes are accompanied with other types of meaningful information.
 - Node attributes

Embedding

- Second-order proximity
- Link directionality
- Incorporating it into network embedding is potentially helpful in learning better vector representations.

HILL

Node Attributes Benefit Embedding

- > Node attributes are informative.
- Network and node attributes influence each other and are inherently correlated. (Homophily & social influence)
 - High correlation of user posts and following relationships
 - Strong association between paper topics and citations

Attributes & Network are Correlated

Dataset	Scenarios	CorrCoef	Intersect	p-value	
	Real-world	3.69e-002	42	0.00e-016	
BlogCatalog	RandomMean	3.14e-005	7.32	0.18	
	RandomMax	1.40e-003	13	4.42e-016	
	Real-world	1.85e-002	25	0.00e-016	
Flickr	RandomMean	2.15e-005	3.56	0.49	
	RandomMax	5.48e-004	9	3.37e-003	

- > Hypothesis: there is no correlation between network affinities and node attribute affinities.
- Real-world networks vs randomly-generated networks. Mean and max results on synthetic networks as baselines A significance level of 0.05

How to Incorporate the Heterogeneous Information?

What if We Have a Large Network?

Real-world Attributed Network are Large

Source Facebook

© Statista 2018

Additional Information:

Worldwide; Facebook; Q3 2008 to Q3 2018

Real-world Node Attributes are High-dimensional

Number of tweets posted by all current MEP per day. (MEP: European Parliament)

The dotted line presents the final day of the latest European Parliament elections

https://euobserver.com/institutional/141025

*Calculated on a 31 days rolling average for clarity

Challenges

- > Hard to jointly assessing node proximity from heterogeneous information.
 - Node attribute information such as paper abstracts and user posts is distinct from network topological structure
 - Data could be sparse, incomplete and noisy
- Number of nodes and dimension of attributes could be large.
 - Classical algorithms such as eigen-decomposition and gradient descent cannot be applied
 - It could be expensive to store or manipulate the highdimensional matrices such as node attribute similarity

HILL

Heterogeneous Information Learning with Joint Network Embedding

- Fiven **G** and **A**, we aim to represent each node as a d-dimensional row \mathbf{h}_i , such that **H** can preserve node proximity both in network and the heterogeneous information.
- Examples of A: node attributes, second-order proximity, link directionality.

Framework HILL

- > A General Embedding Framework for Heterogeneous Information Learning in Large-Scale Networks, TKDD 2018.
- HILL accelerates the optimization by decomposing it into low complexity sub-problems.

16

HILL

Strategies of HILL

- 1) Assimilate the two info in the similarity space to tackle heterogeneity, but without calculating network similarity matrix.
- 2) Avoid high-dimensional matrix manipulation.
- 3) Make sub-problems independent to each other to allow parallel computation.

Strategy 1. Incorporating Node Similarities

Attributed Network *G*

➤ Based on the decomposition of attribute similarity and penalty of embedding difference between connected nodes.

$$\min_{\mathbf{H}} \ \mathcal{J} = \|\mathbf{S} - \mathbf{H}\mathbf{H}^{\top}\|_{\mathrm{F}}^{2} + \lambda \sum_{(i,j) \in \mathcal{E}} w_{ij} \|\mathbf{h}_{i} - \mathbf{h}_{j}\|_{2}$$

- ℓ_2 norm alleviates the impacts from outliers and missing data.
- Fused lasso clusters the network without similarity matrix.
- λ adjusts the size of clustering group.

Strategy 2. Avoid High-dimensional Matrix Manipulation

Make a copy of **H** and reformulate into a linearly constrained problem.

$$\min_{\mathbf{H}} \sum_{i=1}^{n} \|\mathbf{s}_i - \mathbf{h}_i \mathbf{Z}^{\top}\|_2^2 + \lambda \sum_{(i,j) \in \mathcal{E}} w_{ij} \|\mathbf{h}_i - \mathbf{z}_j\|_2,$$
subject to
$$\mathbf{h}_i = \mathbf{z}_i, \ i = 1, \dots, n.$$

- Given fixed **H**, all the row \mathbf{z}_i could be calculated independently.
- Each sub-problem only needs row s_i , not the entire S.
- Time complexity of updating \mathbf{h}_i is $\mathcal{O}(d^3 + dn + d|N(i)|)$, with space complexity $\mathcal{O}(n)$.
- Alternating Direction Method of Multipliers (ADMM) converges to a modest accuracy in a few iterations.

Strategy 3. Enabling Parallel Computation

Experimental Settings

- Classification on three real-world network.
 - BlogCatalog (5,196 nodes)
 - Flickr (7,564 nodes)
 - Yelp (249,012 nodes, 1,779,803 edges, 20,000 attribute categories, 47,216,356 entities)
- Three types of baselines.
 - Scalable network embedding: DeepWalk & LINE.
 - Node attribute modeling based on PCA.
 - Attributed network representation learning: MultiSpec & LCMF.

Effectiveness Evaluation

 \triangleright HILL outperforms the state-of-the-art embedding algorithms with different latent dimension d.

Effectiveness Evaluation

		BlogCatalog			Flickr				
Training Set Percentage # nodes for embedding		10% 1,455	25% 2,079	50% 3,118	100% 5,196	10% 2,118	25% 3,026	50% 4,538	100% 7,564
	DeepWalk	0.491	0.551	0.611	0.672	0.312	0.373	0.465	0.535
	LINE	0.433	0.545	0.624	0.684	0.259	0.332	0.421	0.516
	HILL_Net	0.556	0.628	0.690	0.747	0.315	0.397	0.496	0.626
Micro-	PCA	0.695	0.782	0.823	0.857	0.508	0.606	0.666	0.692
average	Spectral	0.717	0.791	0.841	0.869	0.698	0.771	0.813	0.846
	LCMF	0.778	0.849	0.888	0.902	0.576	0.676	0.725	0.749
	MultiSpec	0.678	0.788	0.849	0.896	0.589	0.720	0.800	0.859
	HILL_Attri	0.841	0.878	0.913	0.932	0.740	0.811	0.854	0.885
	HILL_Stream	0.770	0.822	0.887	0.914	0.568	0.726	0.816	0.859

- ➤ HILL_Net uses network only. It employs the second-order proximity of network as the heterogeneous information.
- > HILL Attri embeds attributed network.
- > For HILL Stream, test nodes come one by one.

Efficiency Evaluation

➤ HILL takes much less running time than the attributed network representation learning methods even with single-thread.

Efficiency Evaluation

	BlogCatalog (sec)	Flickr (sec)	Yelp-sub (sec)
c = 1	26.301	33.751	1065.033
c = 2	14.233 (-45.9%)	17.510 (-48.1%)	581.544 (-45.4%)

- Running time of HILL w.r.t. the number of workers c on a dual-core processor.
- One of the reasons HILL is efficient: it converges rapidly.

Conclusions

- ➤ Nodes are accompanied with other types of meaningful information.
 - Node attributes
 - Second-order proximity
 - Link directionality
- Challenges: Heterogeneity and Large Scale.
- ➤ HILL learns low-dimensional vectors to represent all nodes, such that the original network structure and the meaningful heterogeneous information are well preserved.

Acknowledgement

DATA Lab and collaborators

Data Analytics at Texas A&M (DATA Lab)

- Funding agencies
 - National Science Foundation
 - Defense Advanced Research Projects Agency

Everyone attending the talk

TKDD, 2018 27