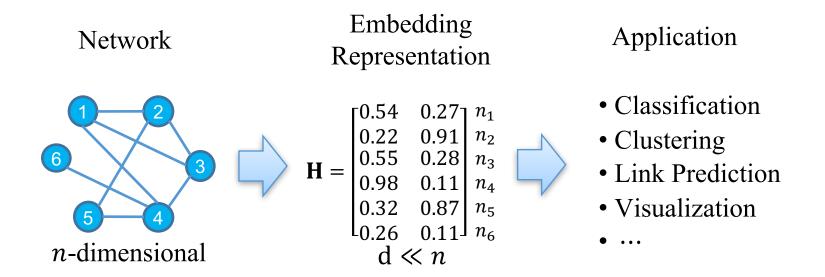


Accelerated Attributed Network Embedding

Xiao Huang, [†] Jundong Li, [‡] and Xia (Ben) Hu [†]

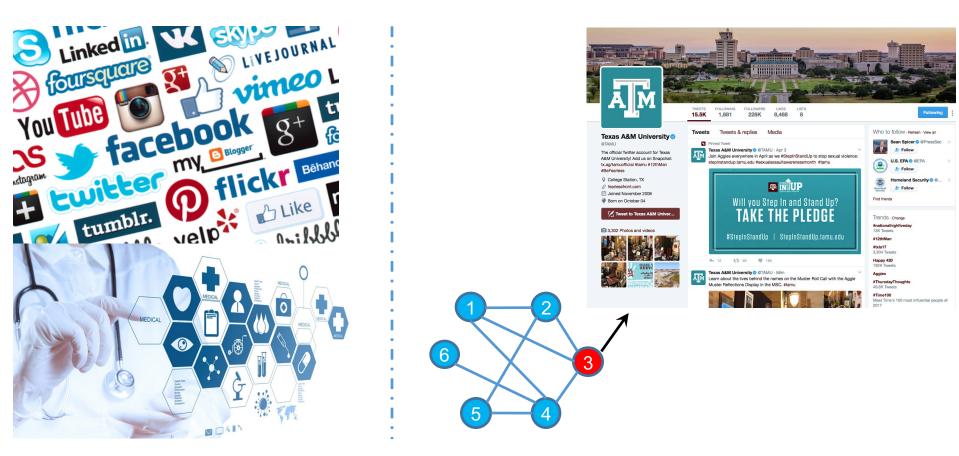
[†]Computer Science & Engineering, Texas A&M University, College Station, TX, USA [‡]Computer Science & Engineering, Arizona State University, Tempe, AZ, USA Emails: {xhuang,xiahu}@tamu.edu, jundongl@asu.edu

What is Network Embedding



- Learn a low-dimensional vector representation for each node, such that all the geometrical structure information is preserved.
- Similar nodes have similar representations, and the informative latent space benefits real-world applications.

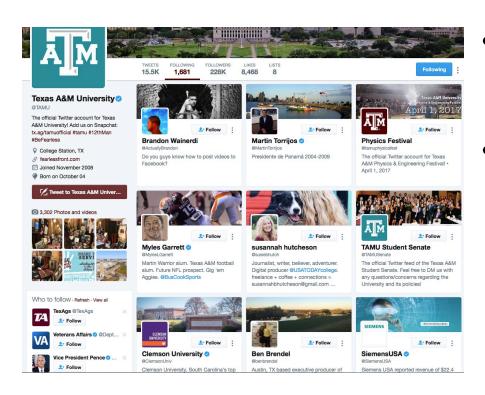
What is Attributed Network



- In real-world information systems, nodes are not just vertices.
- ➤ Both node-to-node dependencies & node attribute information are available.

Why Attributes Benefit Embedding

- Node attributes are rich and informative.
- ➤ Homophily & social influence: network and node attributes influence each other and are inherently correlated.



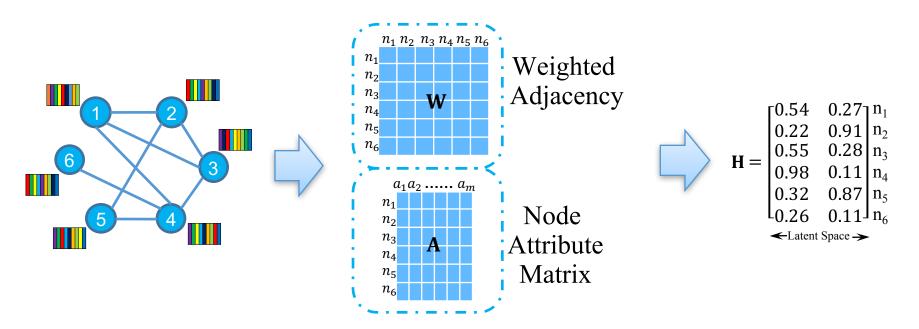
- High correlation of user posts and following relationships.
 - Strong association between paper topics and citations.

Major Challenges

- ➤ Hard to jointly assessing node proximity from heterogeneous information.
 - Node attribute information such as text is distinct from network topological structure.

- Number of nodes and dimension of attributes could be large.
 - Classical algorithms such as eigen-decomposition and gradient descent cannot be applied.
 - It might be expensive to store or manipulate the highdimensional matrices such as node attribute similarity.

Define Attributed Network Embedding

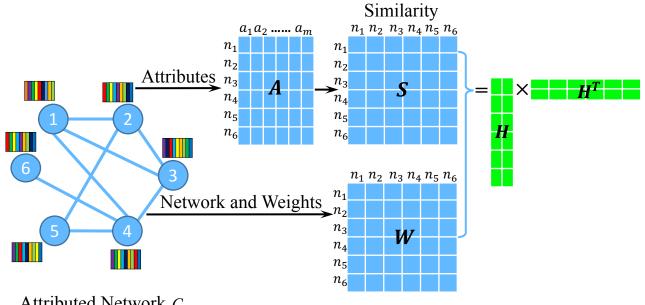


- Figure 6 Given W and A, we aim to represent each node as a d-dimensional row h_i, such that H can preserve node proximity both in network and node attributes.
- Nodes with similar topology or attributes would have similar representations.

Major Contributions

- ➤ Propose a scalable framework AANE to jointly learn node proximity from network and node attributes.
- ➤ Present a distributed optimization algorithm to accelerate by decomposing the task into low complexity sub-problems.
- Strategies for filling the gap:
 - I. Assimilate the two information in the similarity space to tackle heterogeneity, but without calculating the network similarity matrix.
 - II. Avoid high-dimensional matrix manipulation.
 - III. Make sub-problems independent to each other to allow parallel computation.

Framework AANE: Strategy I



Attributed Network G

> Based on the decomposition of attribute similarity and penalty of embedding difference between connected nodes.

$$\min_{\mathbf{H}} \ \mathcal{J} = \|\mathbf{S} - \mathbf{H}\mathbf{H}^{\top}\|_{\mathrm{F}}^{2} + \lambda \sum_{(i,j) \in \mathcal{E}} w_{ij} \|\mathbf{h}_{i} - \mathbf{h}_{j}\|_{2}$$

- ℓ_2 norm alleviates the impacts from outliers and missing data.
- Fused lasso clusters the network without similarity matrix.
- λ adjusts the size of clustering group.

Framework AANE: Strategy II

Make a copy of **H** and reformulate into a linearly constrained problem.

$$\min_{\mathbf{H}} \sum_{i=1}^{n} \|\mathbf{s}_{i} - \mathbf{h}_{i} \mathbf{Z}^{\top}\|_{2}^{2} + \lambda \sum_{(i,j) \in \mathcal{E}} w_{ij} \|\mathbf{h}_{i} - \mathbf{z}_{j}\|_{2},$$
subject to
$$\mathbf{h}_{i} = \mathbf{z}_{i}, \ i = 1, \dots, n.$$

- Given fixed \mathbf{H} , all the row \mathbf{z}_i could be calculated independently.
- Each sub-problem only needs row s_i , not the entire S.
- Time complexity of updating \mathbf{h}_i is $\mathcal{O}(d^3 + dn + d|N(i)|)$, with space complexity $\mathcal{O}(n)$.
- Alternating Direction Method of Multipliers (ADMM) converges to a modest accuracy in a few iterations.

Framework AANE: Strategy III



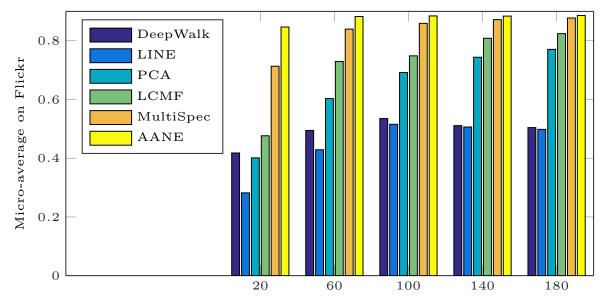
Experimental Setup

- Classification on three real-world network:
 - BlogCatalog
 - Flickr
 - Yelp
- > Three types of baselines:
 - Scalable network embedding, DeepWalk & LINE.
 - Node attribute modeling based on PCA.
 - Attributed network representation learning, multispec & LCMF.

Effectiveness Evaluation

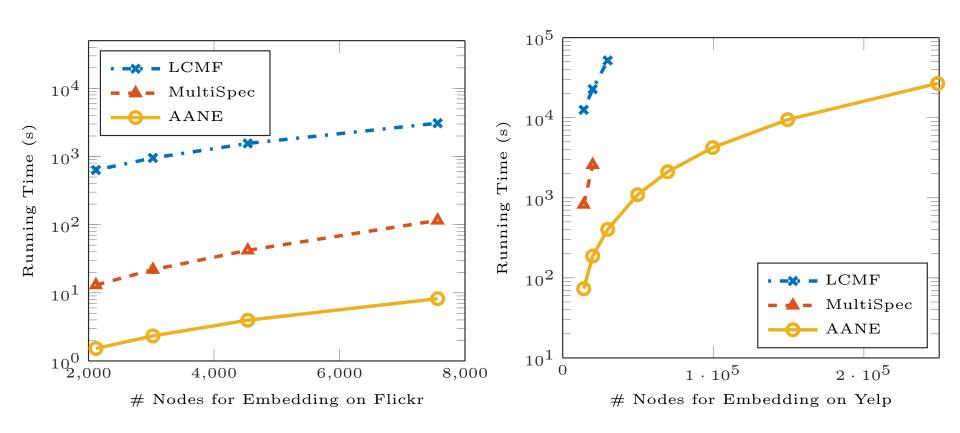
AANE achieves higher performance than the state-of-the-art embedding algorithms with different training percentage and latent dimension d.

		BlogCatalog			
Training Percentage		10%	25%	50%	100%
# nodes for embedding		1,455	2,079	3,118	5,196
	DeepWalk	0.489	0.548	0.606	0.665
	LINE	0.425	0.542	0.620	0.681
Macro-	PCA	0.691	0.780	0.821	0.855
average	LCMF	0.776	0.847	0.886	0.900
_	MultiSpec	0.677	0.787	0.847	0.895
	AANE	0.836	0.875	0.912	0.930

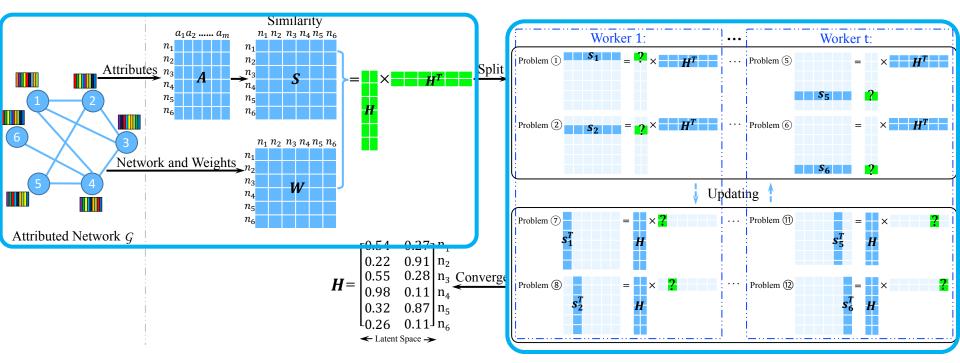


Efficiency Evaluation

AANE takes much less running time than the attributed network representation learning methods even with single-thread.



Conclusions



- The proposed accelerated attributed network embedding (AANE) framework is scalable, efficient, and effective.
- Future work:
 - Embedding of large-scale and dynamic attributed networks.
 - Semi-supervised attributed network embedding.

Acknowledgement

DATA Lab and collaborators

Data Analytics at Texas A&M (DATA Lab)

- Funding agencies
 - National Science Foundation
 - Defense Advanced Research Projects Agency

Everyone attending the talk

SDM 2017, Houston, USA