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• Classification
• Clustering
• Link Prediction
• Visualization
•		⋯𝑛-dimensional

Network Application

What is Network Embedding

Ø Learn a low-dimensional vector representation for each node,
such that all the geometrical structure information is preserved.

Ø Similar nodes have similar representations, and the informative
latent space benefits real-world applications.
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What is Attributed Network

Ø In real-world information systems, nodes are not just vertices.

Ø Both node-to-node dependencies & node attribute information
are available.
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Why Attributes Benefit Embedding

Ø Node attributes are rich and informative.

Ø Homophily & social influence: network and node attributes
influence each other and are inherently correlated.

• High correlation of user posts
and following relationships.

• Strong association between
paper topics and citations.
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Major Challenges

Ø Hard to jointly assessing node proximity from heterogeneous
information.
• Node attribute information such as text is distinct from

network topological structure.

Ø Number of nodes and dimension of attributes could be large.
• Classical algorithms such as eigen-decomposition and

gradient descent cannot be applied.
• It might be expensive to store or manipulate the high-

dimensional matrices such as node attribute similarity.
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Define Attributed Network Embedding

Ø Given W and A, we aim to represent each node as a d-
dimensional row hi, such that H can preserve node proximity
both in network and node attributes.

Ø Nodes with similar topology or attributes would have similar
representations.
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Major Contributions

Ø Propose a scalable framework AANE to jointly learn node
proximity from network and node attributes.

Ø Present a distributed optimization algorithm to accelerate by
decomposing the task into low complexity sub-problems.

Ø Strategies for filling the gap:
I. Assimilate the two information in the similarity space to

tackle heterogeneity, but without calculating the network
similarity matrix.

II. Avoid high-dimensional matrix manipulation.
III. Make sub-problems independent to each other to allow

parallel computation.
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Framework AANE: Strategy I

Ø Based on the decomposition of attribute similarity and penalty
of embedding difference between connected nodes. 

• l2 norm alleviates the impacts from outliers and missing data.
• Fused lasso clusters the network without similarity matrix.
• 𝜆 adjusts the size of clustering group.

3 Accelerated Embedding Framework - AANE

A desirable embedding method for real-world attributed
networks satisfies three requirements as follows. First,
it needs to be able to handle arbitrary types of edges
(e.g., undirected or directed, unweighted or weighted)
and node attributes (e.g., discrete or continuous values).
Second, it needs to well preserve the node proximity
both in network and attribute space. Third, it is
important to be scalable since the number of nodes
n and dimension of attributes m could be large. We
develop an e↵ective and e�cient framework AANE that
satisfies all of the requirements. In this section, we
describe how AANE jointly models network structure
and attribute proximity in an e↵ective way. Figure 1
illustrates the basic idea. Given a network with n = 6
nodes, it first decomposes attribute a�nity S into the
product of H and H>. Meanwhile, it imposes an
edge-based penalty into this decomposition such that
connected nodes are close to each other in H, and the
closeness is controlled by the edge weights in W. The
goal is to make more similar nodes in the network space
to be closer in H. To accelerate the optimization,
a distributed algorithm is proposed to separate the
original problem into 2n = 12 sub-problems with low
complexity. The first n = 6 sub-problems are designed
to be independent of each other, and the same as
the last six. So all sub-problems can be assigned to
t = 3 workers. In the final output, node 1 and node
3 are represented by similar vectors [0.54, 0.27] and
[0.55, 0.28], which indicates that they are similar to each
other in the original network and feature joint space.

3.1 Network Structure Modeling In order to ren-
der the joint embedding representation H well-posed,
AANE should well preserve the node proximity both in
network structure and node attribute space.

To preserve the node proximity in G, the proposed
framework is based on two hypotheses [11, 39]. First,
a graph-based mapping is assumed to be smooth across
edges, especially for the regions of high density [7]. This
is in line with the cluster hypothesis [25]. Second, nodes
with more similar topological structures or connected
by higher weights are more likely to have similar vector
representations. To achieve these goals, we propose
the following loss function to minimize the embedding
di↵erences between connected nodes,

(3.1) JG =
X

(i,j)2E

wijkhi � hjk2,

where rows hi and hj are vector representations of node
i and node j, and wij is the edge weight between the
two. The key idea is that in order to minimize the
penalty wijkhi � hjk2, a larger weight wij is more

likely to enforce the di↵erence of hi and hj to be
smaller. We employ `2-norm as the di↵erence metric
to alleviate the negative impacts resulted from outliers
and missing data. The proposed network structure
modeling enjoys several nice properties as follows. First,
it is in line with the fused lasso [37] and network
lasso [9], which could induce sparsity in the di↵erences
of vector representations of similar nodes, and perform
continuous edges selection similar to the continuous
variable selection in lasso [36]. It is in compliance
with the cluster hypothesis in graphs. Second, it is
general to di↵erent types of networks. It could handle
both undirected and directed networks with weighted
or unweighted edges. Hence, it can be easily applied to
many real-world applications.

3.2 Attribute Proximity Modeling As indicated
by social science theories like homophily and social
influences [23, 38], attribute information of nodes is
tightly hinged with network topological structure. Node
proximity in network space should be consistent with
the one in node attribute space. Thus, we investigate
how to make the embedding representation H also well
preserve the node attribute proximity. Motivated by
the symmetric matrix factorization [17], we propose
to approximate attribute a�nity matrix S with the
product of H and H>. The basic idea is to enforce
the dot product of vector representations hi and hj to
be the same as corresponding attribute similarity sij .
Mathematically, the loss function is defined as

(3.2) JA = kS�HH
>k2F =

nX

i=1

nX

j=1

(sij � hih
>
j )

2,

where a�nity matrix S could be calculated by a repre-
sentative similarity measure. Specifically, we use cosine
similarity in this paper.

3.3 Joint Embedding Representation Learning
We have implemented two loss functions JG and JA to
model the node proximity in network topological struc-
ture and node attributes. To make them complement
each other towards a unified robust and informative
space, we jointly model the two types of information
in the following optimization problem,

(3.3) min
H

J = kS�HH
>k2F + �

X

(i,j)2E

wijkhi � hjk2.

Scalar � serves as an overall parameter that defines a
trade-o↵ between the contributions of network and at-
tribute information. It is also a regularization parame-
ter that balances number of clusters [9, 22]. An intuitive
explanation is that when � is close to 0, the network
topology cannot a↵ect the final result H, so each node
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Framework AANE: Strategy II

Ø Make a copy of H and reformulate into a linearly constrained
problem.

• Given fixed H, all the row zi could be calculated independently.
• Each sub-problem only needs row si, not the entire S.
• Time complexity of updating hi is , with

space complexity .
• Alternating Direction Method of Multipliers (ADMM)

converges to a modest accuracy in a few iterations.

can be an isolated cluster. When � is su�ciently large,
the optimal solution will end up with same representa-
tions for all nodes, which forms a single cluster. This
allows us to tune the number of clusters continuously.
This number is not specified in network embedding, and
tunability of � is beneficial in this scenario.

3.4 Accelerated and Distributed Algorithm
The proposed objective function not only jointly mod-
els network proximity and node attribute a�nity, but
also has a specially designed structure that enables it
to be optimized in an e�cient and distributed manner,
i.e., J is separable for hi and can be reformulated as a
bi-convex optimization problem. Next, we propose an
e�cient algorithm to solve it.

If we add a copy Z = H, then the first term in
Eq. (3.3) can be rewritten as
(3.4)

kS�HZ
>k2F =

nX

i=1

ksi � hiZ
>k22 =

nX

i=1

ks>i �Hz
>
i k22.

We can further reformulate Eq. (3.3) into a linearly
constrained problem as follows,
(3.5)

min
H

nX

i=1

ksi�hiZ
>k22 + �

X

(i,j)2E

wijkhi � zjk2,

subject to hi = zi, i = 1, . . . , n.

This indicates that J is separable for both hi and zi.
Since `2-norm is convex, it is easy to verify that Eq. (3.5)
is also bi-convex, i.e., convex w.r.t. hi when zi is fixed
and convex w.r.t. zi when hi is fixed. Thus, we are
able to split the original complex embedding problem
into 2n small convex optimization sub-problems.

It is infeasible to obtain closed-form solutions for
these 2n sub-problems. Motivated by the distributed
convex optimization technique - Alternating Direction
Method of Multipliers (ADMM) [2, 9], we accelerate the
optimization by converting it into 2n updating steps and
one matrix updating step. The proposed solution enjoys
several nice properties. First, it enables the n updating
steps of hi (or zi) independent of each other. Thus
in each iteration, the global coordination can assign
tasks to workers and collect the solutions from them
without a fixed order. Second, all updating steps have
low complexity. Third, it converges to a modest solution
fast [2]. We now introduce the details.

To solve the problem, we first formulate the aug-
mented Lagrangian [10] of Eq. (3.5) as follows,

(3.6)

L =
nX

i=1

ksi � hiZ
>k22 + �

X

(i,j)2E

wijkhi � zjk2

+
⇢
2

nX

i=1

(khi � zi + uik22 � kuik22),

where rows u1, . . . ,un 2 Rd are the scaled dual vari-
ables, and ⇢ > 0 is the penalty parameter. The mini-
mizer of Eq. (3.5) is then converted to the saddle point
of L, which can be found by finding optimal H, Z, and
U iteratively. The corresponding optimization problems
in terms of each node i at iteration k+1 are written as
(3.7)

h
k+1
i = argmin

hi

(ksi � hiZ
k>k22 + �

X

j2N(i)

wijkhi � z
k
j k2

+
⇢
2
khi � z

k
i + u

k
i k22),

(3.8)

z
k+1
i = argmin

zi

(ks>i �H
k+1

z
>
i k22 + �

X

j2N(i)

wjikzi � h
k+1
j k2

+
⇢
2
kzi � h

k+1
i � u

k
i k22), and

U
k+1 = U

k + (Hk+1 � Z
k+1).(3.9)

Here we need to find all of the hk+1
i , for i = 1, . . . , n,

before calculating zk+1
i . However, the order of solving

hk+1
i is not fixed, since they are independent to each

other. If the machine capacity is limited, si can also
be calculated separately via equation si = (aiA>) · ( 1

qiq
),

where q is the dot product of each node attribute vector,
i.e., q = [

p
a1 · a1, . . . ,

p
an · an ]. By taking the derivative

of Eq. (3.7) w.r.t. hi, and setting it to zero, we get an
updating rule to approach optimal hi as follows,

(3.10) h
k+1
i =

2siZ
k + �

P
j2N(i)

wijz
k
j

khk
i �z

k
j k2

+ ⇢(zki � u
k
i )

2Zk>
Zk + (�

P
j2N(i)

wij

khk
i �z

k
j k2

+ ⇢)I
.

Here we use hk
i to estimate the distance khk

i � zkj k2.
The monotonically decreasing property of this updating
rule is proved by the work of Nie et al. [26]. Since the
problem in Eq. (3.7) is convex, hi should be optimum
if and only if hk

i = hk+1
i . We stop the updating as they

are closed enough. We obtain a similar rule for zi,
(3.11)

z
k+1
i =

2siH
k+1

+ �
P

j2N(i)

wijh
k+1
j

kzki �h
k+1
j k2

+ ⇢(hk+1
i + u

k
i )

2Hk+1>Hk+1 + (�
P

j2N(i)
wij

kzki �h
k+1
j k2

+ ⇢)I
.

The distributed algorithm for optimizing the prob-
lem in Eq. (3.3) is described in Algorithm 1. Since
Eq. (3.5) is bi-convex, it is guaranteed to converge to
a local optimal point [2]. To have an appropriate ini-
tialization, we set H as the left singular vectors of A0

in the first iteration. A0 is a matrix that collects the
first 2d columns of A. The optimization is split into 2n
sub-problems, and we solve them iteratively. In each
iteration, the n updating steps of hi (or zi) can be as-
signed to t workers in a distributed way as illustrated in
Figure 1. The termination criterion is that primal resid-
ual r and dual residual s should be su�ciently small.

Algorithm 1: Accelerated Attributed Network
Embedding

Input: W, A, d, ✏.
Output: Embedding representation H.
1 A0  First 2d columns of A;
2 Set k = 0, and Hk

 Left singular vectors of A0;
3 Set Uk = 0, Zk = Hk, and calculate S;
4 repeat

5 Calculate Zk>Zk;
/* Assign these n tasks to t workers: */

6 for i = 1 : n do
7 Update hk+1

i based on Eq. (3.10);

8 Calculate Hk+1>Hk+1;
/* Assign these n tasks to t workers: */

9 for i = 1 : n do
10 Update zk+1

i based on Eq. (3.11);

11 Uk+1
 Uk + (Hk+1

� Zk+1);
12 k  k + 1;
13 until krkk2  ✏pri and kskk2  ✏dual;
14 return H.

3.5 Complexity Analysis As it is typical for
ADMM [2], Algorithm 1 tends to converge to a modest
accuracy in a few iterations. In the initialization, the
time complexity for calculating singular vectors of an n
by d matrix A0 is O(d2n), and we denote the number
of operations required to obtain the attribute a�nity
matrix S as TS. In each subtask, the updating time for
hi should be O(d3+dn+d|N(i)|) since we only need to

compute Zk>Zk once per iteration. Since d⌧ n, it can
be reduced to O(n). It is easy to check that the space
complexity of each subtask is also O(n). Therefore, the

total time complexity of AANE should be O(nNA+ n2

t ),
where NA is the number of nonzero in A.

4 Experiments

In this section, we empirically evaluate the e↵ectiveness
and e�ciency of the proposed framework AANE. We
aim at answering three questions as follows. (1) What
are the impacts of node attributes on network embed-
ding? (2) How e↵ective is the embedding representation
learned by AANE compared with other learning meth-
ods on real-world attributed networks? (3) How e�cient
is AANE compared with the state-of-the-art methods?
We first introduce the datasets used in the experiments.

4.1 Datasets Three real-world attributed networks
BlogCatalog, Flickr and Yelp are used in this work. All
of them are publicly available and the first two also have
been used in previous work [14, 20]. Statistics of the
datasets are summarized in Table 2.

Dataset BlogCatalog Flickr Yelp
Nodes (|V|) 5,196 7,564 249,012
Edges (|E|) 171,743 239,365 1,779,803

Attribute (m) 8,189 12,047 20,000
Label (`) 6 9 11

Table 2: Detailed information of the three datasets.

BlogCatalog is a blogger community, where users in-
teract with each other and form a network. Users are
allowed to generate keywords as a short description of
their blogs. These keywords are severed as node at-
tributes. Users also register their blogs under predefined
categories, and we set them as labels. The user with no
follower or predefined category has been removed.
Flickr is an online community that people can share
photos. Photographers can follow each other and form
a network. We employ the tags specified on their
images as attribute information. We set the groups that
photographers joined as labels.
Yelp2 is a social networking service, where crowd-
sourced reviews about local businesses are shared. We
employ users’ friend relationships to form the network.
Bag-of-words model is used to represent users’ reviews
as attribute information. All local businesses are sepa-
rated into eleven primary categories, such as Active Life,
Fast Food and Services. A user may have reviewed one
or several businesses. We use the categories of these
businesses as the user’s labels.

4.2 Baseline Methods AANE is compared with
two categories of baseline methods. To evaluate the con-
tribution of incorporating node attributes, two scalable
network embedding methods and a classical method
for modeling attributes are used for comparison, i.e.,
DeepWalk, LINE and PCA. To investigate the e↵ec-
tiveness and e�ciency of AANE, we compare it with
two state-of-the-art attributed network learning meth-
ods, i.e., LCMF and MultiSpec. The detailed descrip-
tions of these methods are listed as follows.

• DeepWalk [29]: It involves language modeling tech-
niques to analyze the truncated random walks on a
graph. It embeds the walking tracks as sentences,
and each vertex corresponds to a unique word.

• LINE [34]: It embeds the network into a latent
space by sampling both one-hop and two-hop neigh-
bors of each node. It is one of the state-of-the-art
scalable network embedding methods.

• PCA [16]: It is a classical dimensionality reduction
technique. It takes the top d principal components
of attribute matrixA as the learned representation.

2https://www.yelp.com/dataset_challenge/dataset

O(n)
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Framework AANE: Strategy III
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Experimental Setup

Ø Classification on three real-world network:
• BlogCatalog
• Flickr
• Yelp

Ø Three types of baselines:
• Scalable network embedding, DeepWalk & LINE.
• Node attribute modeling based on PCA.
• Attributed network representation learning, multispec &

LCMF.
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Effectiveness Evaluation
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Figure 2: Running time of LCMF, MultiSpec and AANE w.r.t. the number of input nodes on the three datasets.

becomes impracticable as the number of nodes increases
to 29,881, due to the high computational and memory
requirement of eigen-decomposition.

We further vary the percentage of the training group
that is used for training. As shown in Tables 3 and 4,
similar observations are made. LCMF, MultiSpec and
AANE outperform the two pure network embedding
methods. AANE consistently achieves better perfor-
mance than all baseline methods. We also find that
MultiSpec may perform worse than PCA. For instance,
on Yelp 1, PCA achieves a gain of 20.6% over MultiSpec
when training percentage is 10%. One-tailed t-test re-
sults show that AANE is statistically significantly better
(with p-value ⌧ 0.01) than all other methods.

4.5 E�ciency Evaluation To study the e�ciency
of AANE, we compare it with the two attributed
network learning methods. The computation time in
logarithmic scale as a function of the number of input
nodes on three datasets are shown in Figure 2. The blue,
red, and yellow dash-dot curves show the performance
of LCMF, MultiSpec, and AANE respectively.

Empirical results show that a near optimal solution
of J is enough to guarantee H to be an informative
embedding representation. Therefore, in practice, only
a few iterations is required for AANE. From the results
in Figure 2, we observe that our method AANE takes
much less running time than LCMF and MultiSpec
consistently. As the number of input nodes increases,
the performance di↵erence also raises up. The third
figure shows that LCMF and MultiSpec have larger
growth rates than AANE. They become infeasible when
the number of nodes is greater than 49,802 and 29,881
respectively. Furthermore, while the three methods are
running in single-thread for a fair comparison, AANE
could be implemented in multi-thread as illustrated
in Figure 1. This strategy could further reduce the
computation time of AANE. In summary, all these
observations demonstrate the e�ciency and scalability
of our proposed framework.
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Figure 3: Impact of regularization parameter � on the
proposed framework AANE.
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Figure 4: Classification performance on Flickr dataset
w.r.t. the embedding dimension d.

4.6 Parameter Analysis We study the impacts of
two important parameters, � and d, in this subsection.
As discussed in Section 3.3, � in AANE balances the
contributions of network and node attributes. To
investigate the impact of �, we vary it from 10�6 to 103.
Figure 3 shows the classification performance in terms of
Micro-average as a function of �. When � = 0, network
information has no impact as if all nodes are isolated.
As � increases, AANE starts to cluster nodes according
to the topological structure, so the performance keeps
improving. As shown in Figure 3, performance on
BlogCatalog and Flickr achieves optimal when � is close
to 0.1. The performance decreases when � is too large,
since large � tends to drive all nodes to have the same
vector representation.

BlogCatalog Flickr Yelp 1
Training Percentage 10% 25% 50% 100% 10% 25% 50% 100% 10% 25% 50% 100%

# nodes for embedding 1,455 2,079 3,118 5,196 2,118 3,026 4,538 7,564 13,945 19,921 29,881 49,802

Macro-
average

DeepWalk 0.489 0.548 0.606 0.665 0.310 0.371 0.462 0.530 0.139 0.159 0.215 0.275
LINE 0.425 0.542 0.620 0.681 0.256 0.331 0.418 0.512 0.165 0.173 0.193 0.227
PCA 0.691 0.780 0.821 0.855 0.510 0.612 0.671 0.696 0.591 0.599 0.605 N.A.
LCMF 0.776 0.847 0.886 0.900 0.585 0.683 0.729 0.751 0.589 0.605 0.612 N.A.

MultiSpec 0.677 0.787 0.847 0.895 0.589 0.722 0.802 0.859 0.461 0.460 N.A. N.A.
AANE 0.836 0.875 0.912 0.930 0.743 0.814 0.852 0.883 0.630 0.645 0.656 0.663

Micro-
average

DeepWalk 0.491 0.551 0.611 0.672 0.312 0.373 0.465 0.535 0.302 0.310 0.318 0.350
LINE 0.433 0.545 0.624 0.684 0.259 0.332 0.421 0.516 0.230 0.243 0.264 0.294
PCA 0.695 0.782 0.823 0.857 0.508 0.606 0.666 0.692 0.667 0.674 0.681 N.A.
LCMF 0.778 0.849 0.888 0.902 0.576 0.676 0.725 0.749 0.668 0.680 0.686 N.A.

MultiSpec 0.678 0.788 0.849 0.896 0.589 0.720 0.800 0.859 0.553 0.571 N.A. N.A.
AANE 0.841 0.878 0.913 0.932 0.740 0.811 0.854 0.885 0.679 0.694 0.703 0.711

Table 3: Classification performance of di↵erent methods on di↵erent datasets with d = 100.

Training Percentage 10% 25% 50% 100%
# nodes for embedding 69,723 99,605 149,407 249,012

Macro-
average

DeepWalk 0.239 0.254 0.266 0.260
LINE 0.216 0.236 0.259 0.279
AANE 0.649 0.659 0.660 0.665

Micro-
average

DeepWalk 0.324 0.345 0.366 0.368
LINE 0.295 0.313 0.336 0.354
AANE 0.698 0.709 0.711 0.714

Table 4: Performance of di↵erent methods on Yelp with
d = 100. PCA, LCMF and MultiSpec are infeasible.

• LCMF [43]: It learns a low-dimensional representa-
tion from linkage and content information by car-
rying out a joint matrix factorization on them.

• MultiSpec [18]: It treats network structure and
node attributes as two views, and embeds them
jointly by co-regularizing spectral clustering hy-
potheses across two views.

4.3 Experimental Setup Following the widely
adopted way of validating network embedding [29, 34],
we evaluate AANE and baseline methods on node clas-
sification [32, 43]. The task is to predict which category
or categories a new node belongs to based on its vector
representation and learned classifier. We now introduce
the experimental settings in detail.

We employ 5-fold cross validation, i.e., randomly
separate the entire nodes into a training group (Wtrain,
Atrain, Ytrain) and a test group (Wtest, Atest, Ytest),
where Y denotes the labels. All edges between training
group and test group have been removed. To investigate
the performance of a method, we apply it to both groups
and learn vector representations H for all nodes. Since
there are multiple label categories, we build a binary
SVM classifier for each category based on Htrain and
Ytrain. At last, we perform the classification based on
Htest and the learned SVM classifiers. Labels in Ytest

serve as ground truth.
The classification performance is measured via two

commonly used evaluation criteria, macro-average and
micro-average [15]. F-measure is a widely used metric

for binary classification. Macro-average is defined as an
arithmetic average of F-measure of all ` label categories,
and Micro-average is the harmonic mean of average
precision and average recall.

We follow the suggestions of the original papers to
set the parameters of baseline methods. The embedding
dimension d is set to be 100. All experimental results
are the arithmetic average of 10 test runs. We ran the
experiments on a Dell OptiPlex 9030 i7-16GB desktop.

4.4 E↵ectiveness Evaluation To investigate the
impacts of attribute information and how much it can
improve the embedding representation, we compare
AANE with all baseline methods. We also vary the
nodes used for training as {10%, 25%, 50%, 100%} of
the entire training group to evaluate the e↵ect brought
by di↵erent sizes of training data. The classification
performance w.r.t. training percentage is presented in
Table 3. Since neither of existing attributed network
learning methods is practicable on the Yelp dataset, we
randomly select 20% of it and set as a new dataset,
i.e., Yelp 1, such that we are able to compare the
e↵ectiveness of di↵erent method on it. Results of AANE
on original Yelp dataset are shown in Table 4.

From the results, we have three observations as fol-
lows. First, by taking advantage of node attributes,
LCMF, MultiSpec, and AANE all achieve significantly
better performance than network embedding methods
on all datasets. For example, in BlogCatalog results, we
can discover that incorporating attribute information
allows AANE to achieve 38.7% gain over DeepWalk and
36.3% gain over LINE in terms of Micro-average score.
Second, with the proposed formulation, AANE consis-
tently outperforms LCMF and MultiSpec. For instance,
on Flickr, AANE achieves 18.2% of improvements than
LCMF, which can be explained by the fact that latent
features learned by decomposing network matrix and
attribute matrix are heterogeneous, and it is challeng-
ing to combine them. Third, LCMF and MultiSpec are
infeasible on the datasets Yelp. For instance, MultiSpec

• AANE achieves higher
performance than the
state-of-the-art
embedding algorithms
with different training
percentage and latent
dimension d.
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Efficiency Evaluation

Ø AANE takes much less running time than the attributed network
representation learning methods even with single-thread.
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Figure 2: Running time of LCMF, MultiSpec and AANE w.r.t. the number of input nodes on the three datasets.

becomes impracticable as the number of nodes increases
to 29,881, due to the high computational and memory
requirement of eigen-decomposition.

We further vary the percentage of the training group
that is used for training. As shown in Tables 3 and 4,
similar observations are made. LCMF, MultiSpec and
AANE outperform the two pure network embedding
methods. AANE consistently achieves better perfor-
mance than all baseline methods. We also find that
MultiSpec may perform worse than PCA. For instance,
on Yelp 1, PCA achieves a gain of 20.6% over MultiSpec
when training percentage is 10%. One-tailed t-test re-
sults show that AANE is statistically significantly better
(with p-value ⌧ 0.01) than all other methods.

4.5 E�ciency Evaluation To study the e�ciency
of AANE, we compare it with the two attributed
network learning methods. The computation time in
logarithmic scale as a function of the number of input
nodes on three datasets are shown in Figure 2. The blue,
red, and yellow dash-dot curves show the performance
of LCMF, MultiSpec, and AANE respectively.

Empirical results show that a near optimal solution
of J is enough to guarantee H to be an informative
embedding representation. Therefore, in practice, only
a few iterations is required for AANE. From the results
in Figure 2, we observe that our method AANE takes
much less running time than LCMF and MultiSpec
consistently. As the number of input nodes increases,
the performance di↵erence also raises up. The third
figure shows that LCMF and MultiSpec have larger
growth rates than AANE. They become infeasible when
the number of nodes is greater than 49,802 and 29,881
respectively. Furthermore, while the three methods are
running in single-thread for a fair comparison, AANE
could be implemented in multi-thread as illustrated
in Figure 1. This strategy could further reduce the
computation time of AANE. In summary, all these
observations demonstrate the e�ciency and scalability
of our proposed framework.
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Figure 3: Impact of regularization parameter � on the
proposed framework AANE.
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Figure 4: Classification performance on Flickr dataset
w.r.t. the embedding dimension d.

4.6 Parameter Analysis We study the impacts of
two important parameters, � and d, in this subsection.
As discussed in Section 3.3, � in AANE balances the
contributions of network and node attributes. To
investigate the impact of �, we vary it from 10�6 to 103.
Figure 3 shows the classification performance in terms of
Micro-average as a function of �. When � = 0, network
information has no impact as if all nodes are isolated.
As � increases, AANE starts to cluster nodes according
to the topological structure, so the performance keeps
improving. As shown in Figure 3, performance on
BlogCatalog and Flickr achieves optimal when � is close
to 0.1. The performance decreases when � is too large,
since large � tends to drive all nodes to have the same
vector representation.
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Conclusions

Ø The proposed accelerated attributed network embedding
(AANE) framework is scalable, efficient, and effective.

Ø Future work:
• Embedding of large-scale and dynamic attributed networks.
• Semi-supervised attributed network embedding.
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