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What is Network Embedding
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» Learn a low-dimensional vector representation for each node,
such that all the geometrical structure information 1s preserved.

» Similar nodes have similar representations, and the informative
latent space benefits real-world applications.



What 1s Attributed Network
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» In real-world information systems, nodes are not just vertices.

» Both node-to-node dependencies & node attribute information
are available.



Why Attributes Benefit Embedding

> Node attributes are rich and informative.

» Homophily & social influence: network and node attributes
influence each other and are inherently correlated.
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Major Challenges

» Hard to jointly assessing node proximity from heterogeneous
information.

 Node attribute information such as text is distinct from
network topological structure.

» Number of nodes and dimension of attributes could be large.

* C(lassical algorithms such as eigen-decomposition and
gradient descent cannot be applied.

* It might be expensive to store or manipulate the high-
dimensional matrices such as node attribute similarity.



Define Attributed Network Embedding
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» Given W and A, we aim to represent each node as a d-
dimensional row h;, such that H can preserve node proximity
both in network and node attributes.

» Nodes with similar topology or attributes would have similar
representations.



Major Contributions

Propose a scalable framework AANE to jointly learn node
proximity from network and node attributes.

Present a distributed optimization algorithm to accelerate by
decomposing the task into low complexity sub-problems.

Strategies for filling the gap:

|.  Assimilate the two information in the similarity space to
tackle heterogeneity, but without calculating the network
similarity matrix.

Il.  Avoid high-dimensional matrix manipulation.

lll. Make sub-problems independent to each other to allow
parallel computation.



Framework AANE: Strategy I
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» Based on the decomposition of attribute similarity and penalty
of embedding difference between connected nodes.
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* {, norm alleviates the impacts from outliers and missing data.

* Fused lasso clusters the network without similarity matrix.
* A adjusts the size of clustering group.



Framework AANE: Strategy II

Make a copy of H and reformulate into a linearly constrained
problem.
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subject to h, =2z, 1=1,...,n

Given fixed H, all the row z; could be calculated independently.
Each sub-problem only needs row s;, not the entire S.

Time complexity of updating h;is O(d? + dn +d|N(i)|), with
space complexity O(n).

Alternating Direction Method of Multipliers (ADMM)
converges to a modest accuracy in a few iterations.



Framework AANE: Strategy III
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Experimental Setup

» Classification on three real-world network:
* BlogCatalog
* Flickr
* Yelp

» Three types of baselines:
* Scalable network embedding, DeepWalk & LINE.
* Node attribute modeling based on PCA.

* Attributed network representation learning, multispec &
LCMF.



Effectiveness Evaluation

AANE achieves higher

performance than the _# nodes for embedding

state-of-the-art
embedding algorithms
with different training
percentage and latent
dimension d.

Micro-average on Flickr

BlogCatalog
Training Percentage 10% 25% 50% 100%
1,455 2,079 3,118 5,196
DeepWalk 0.489 0.548 0.606 0.665
LINE 0.425 0.542 0.620 0.681
Macro- PCA 0.691 0.780 0.821 0.855
average LCMF 0.776 0.847 0.886 0.900
MultiSpec 0.677 | 0.787 | 0.847 | 0.895
AANE 0.836 | 0.875 | 0.912 | 0.930
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Efficiency Evaluation

» AANE takes much less running time than the attributed network
representation learning methods even with single-thread.

Running Time (8)
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Conclusions
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» The proposed accelerated attributed network embedding
(AANE) framework is scalable, efficient, and effective.
» Future work:

* Embedding of large-scale and dynamic attributed networks.

* Semi-supervised attributed network embedding.
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