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Random Walks in Network Analysis

• Label Propagation
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Real-world Systems are Attributed Networks

Nodes have 
different attributes 



Node Attributes Benefit Random Walks

• Node attributes contain plentiful information that 
complements the network.

• Bring opportunities to the random-walk-based analysis.



Challenges: Complication & Heterogeneity

?
• How to develop random walks for attributed networks 

towards an effective joint information extraction?

Attributed NetworksRandom Walks

• Attributes make node interactions more complicated.
• Attributes are heterogeneous with topological structures.



Random-walk-based Deep Attributed 
Network Embedding

Random Walks on 
Attributed Networks
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Deep Network Embedding

Apply random walks on attributed networks to boost deep 
node representation learning.

boost



Graph Recurrent Networks with Attributed 
Random Walks
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Node Attributes As Weighted Edges
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AttriWalk: Attributed Random Walks
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Component I. AttriWalk Component II. 
Graph Recurrent 
Networks (GRN)



Joint Walking Mechanism: AttriWalk
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Node Attributes As Weighted Edges

• Consider node attributes as a bipartite network.

Attributed Network G
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Joint Walking Mechanism: AttriWalk
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Node Attributes As Weighted Edges

• Consider node attributes as a bipartite network.
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• Use it to propel the walking more diverse and mitigate 
tendency of converging to nodes with high centralities.

Attributed Network G

!" !#!$ !"

!%

!%!"

!"

!#
4

1 2

36

5



Graph Recurrent Networks

• Empower node representations to interact in the same 
way as nodes interact in the original attributed network.

• Advance graph convolution nets to graph recurrent nets.
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Figure 1: Overview of our model architecture using depth-2 convolutions (best viewed in color). Left: A small example input
graph. Right: The 2-layer neural network that computes the embedding h(2)A of nodeA using the previous-layer representation,
h(1)A , of node A and that of its neighborhood N(A) (nodes B,C,D). (However, the notion of neighborhood is general and not all
neighbors need to be included (Section 3.2).) Bottom: The neural networks that compute embeddings of each node of the input
graph. While neural networks di�er from node to node they all share the same set of parameters (i.e., the parameters of the
��������(1) and ��������(2) functions; Algorithm 1). Boxes with the same shading patterns share parameters; � denotes an
importance pooling function; and thin rectangular boxes denote densely-connected multi-layer neural networks.

• On-the-�y convolutions: Traditional GCN algorithms per-
form graph convolutions by multiplying feature matrices by
powers of the full graph Laplacian. In contrast, our PinSage algo-
rithm performs e�cient, localized convolutions by sampling the
neighborhood around a node and dynamically constructing a
computation graph from this sampled neighborhood. These dy-
namically constructed computation graphs (Fig. 1) specify how
to perform a localized convolution around a particular node, and
alleviate the need to operate on the entire graph during training.

• Producer-consumer minibatch construction: We develop a
producer-consumer architecture for constructing minibatches
that ensures maximal GPU utilization during model training. A
large-memory, CPU-bound producer e�ciently samples node
network neighborhoods and fetches the necessary features to
de�ne local convolutions, while a GPU-bound TensorFlowmodel
consumes these pre-de�ned computation graphs to e�ciently
run stochastic gradient decent.

• E�cient MapReduce inference: Given a fully-trained GCN
model, we design an e�cient MapReduce pipeline that can dis-
tribute the trained model to generate embeddings for billions of
nodes, while minimizing repeated computations.

In addition to these fundamental advancements in scalability, we
also introduce new training techniques and algorithmic innova-
tions. These innovations improve the quality of the representations
learned by PinSage, leading signi�cant performance gains in down-
stream recommender system tasks:

• Constructing convolutions via random walks: Taking full
neighborhoods of nodes to perform convolutions (Fig. 1) would
result in huge computation graphs, so we resort to sampling.
However, random sampling is suboptimal, and we develop a new
technique using short random walks to sample the computa-
tion graph. An additional bene�t is that each node now has an
importance score, which we use in the pooling/aggregation step.

• Importance pooling: A core component of graph convolutions
is the aggregation of feature information from local neighbor-
hoods in the graph. We introduce a method to weigh the impor-
tance of node features in this aggregation based upon random-
walk similarity measures, leading to a 46% performance gain in
o�ine evaluation metrics.

• Curriculum training:We design a curriculum training scheme,
where the algorithm is fed harder-and-harder examples during
training, resulting in a 12% performance gain.
We have deployed PinSage for a variety of recommendation

tasks at Pinterest, a popular content discovery and curation appli-
cation where users interact with pins, which are visual bookmarks
to online content (e.g., recipes they want to cook, or clothes they
want to purchase). Users organize these pins into boards, which con-
tain collections of similar pins. Altogether, Pinterest is the world’s
largest user-curated graph of images, with over 2 billion unique
pins collected into over 1 billion boards.

Through extensive o�ine metrics, controlled user studies, and
A/B tests, we show that our approach achieves state-of-the-art

Graph Convolution 
Networks



Graph Recurrent Networks with Attributed 
Random Walks
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• Convert the complex attributed node interactions into a 
series of informative node sequences based on AttriWalk.

• Encode them into unified vector representations via 
graph recurrent networks.


