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Smaller Network?

§ From this fully connected model, do we really need all the 
edges? 

§ Can some of these be shared?

COMP4434 3



New Jersey Institute of Technology

Consider learning an image:
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§ Some patterns are much smaller than the whole image

“beak” detector

Can represent a small region with fewer parameters
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Same pattern appears in different places
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“upper-left 
beak” detector

“middle beak”
detector

They can be compressed
 to the same parameters.

§ They can be compressed!
What about training a lot of such “small” detectors
and each detector must “move around”.
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MLP vs convolutional neural network

A CNN arranges its neurons in three dimensions (width, height, depth). Every layer 
of a CNN transforms the 3D input volume to a 3D output volume. In this example, 
the red input layer holds the image, so its width and height would be the 
dimensions of the image, and the depth would be 3 (Red, Green, Blue channels)
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A regular 3-layer Neural Network.
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A convolutional layer

A filter

A CNN is a neural network with some convolutional layers 
(and some other layers).  A convolutional layer has a number 
of filters that does convolutional operation. 

Beak detector
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Convolution
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These are the network 
parameters to be learned.

Each filter detects a 
small pattern (3 x 3) 
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Convolution
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Convolution
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Convolution
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Convolution
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Repeat this for each filter
stride=1

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Feature
Map
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Convolution vs Fully Connected
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fewer parameters!
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Even fewer parameters
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The whole CNN
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Fully Connected 
Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can 
repeat 
many 
times
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Max Pooling
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Max Pooling
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Each filter 
is a channel

New image 
but smaller

Conv
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Pooling
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Why Pooling
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§ Subsampling pixels will not change the object

Subsampling

bird
bird

We can subsample the pixels to make image smaller
fewer parameters to characterize the image
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Convolutional kernel

§ A convolutional layer has 
a number of filters that 
does convolutional 
operation

§ This image show the 
convolutional operation 
for one filter

§ Each filter detects a 
small pattern and learns 
its parameter
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The whole CNN
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Convolution

Max Pooling

Convolution

Max Pooling

Can 
repeat 
many 
times

A new image

The number of channels 
is the number of filters

Smaller than the original 
image
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The whole CNN

Fully Connected 
Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

A new image

A new image
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Fully Connected 
Feedforward network



New Jersey Institute of Technology

A CNN compresses a fully connected network

§ Reducing number of connections
§ Shared weights on the edges
§ Max pooling further reduces the complexity
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Convolutional Neural Networks in 1998

§ LeNet: a layered model composed of convolution and 
subsampling operations followed by a holistic 
representation and ultimately a classifier for handwritten 
digits

§ CPU
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Color image: RGB 3 channels

26

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

-1 1 -1

-1 1 -1

-1 1 -1
Filter 2

1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1
Color image

Each image can store discrete pixels with conventional brightness 
intensities between 0 and 255



New Jersey Institute of Technology

3 channels -> depth of filters = 3
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§ A filter must always have the same number of channels as the 
input, often referred to as “depth”

§ Weighted sum from 3 channels

stride=1
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Convolutional Neural Networks in 2012

§ Input 227*227*3. GPU.
§ AlexNet: a layered model composed of convolution, subsampling, and 

further operations followed by a holistic representation and all-in-all a 
landmark classifier on ImageNet Large Scale Visual Recognition 
Challenge 2012

§ + data; + gpu; + non-saturating nonlinearity; + regularization 28
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Padding
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Exercise

§ Suppose your input size is 64x64x16. You use a convolutional 
layer with 32 filters that are each 6x6, and a stride of 2 and 
padding of 1. What is the output size of this convolutional layer?

§ (64 + 2 ∗ 1 − 6)/2 + 1 = 31
§ The output size is 31x31x32
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The popular CNNs

§ LeNet, 1998
§ AlexNet, 2012
§ VGGNet, 2014
§ ResNet, 2015 31COMP4434
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• Input: 32*32*1
• 7  layers 
• 2 conv and 4 fully connected 

layers for classification
• 60 thousand parameters
• Only two complete 

convolutional layers (Conv, 
nonlinearities, and pooling as 
one complete layer)

• 224*224*3
• 8  layers
• 5 conv and 3 fully classification
• 5 convolutional layers, and 3,4,5 stacked on top 

of each other
• Three complete conv layers

• 60 million parameters, insufficient data
• Data augmentation: 

– Patches (224 from 256 input), translations, 
reflections

– PCA, simulate changes in intensity and colors

LeNet vs AlexNet
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VGGNet

§ 16 layers
§ Only 3*3 convolutions
§ 138 million parameters
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ResNet

§ 152 layers
§ skip connections
§ ResNet50
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Computational complexity

§ The memory bottleneck
§ GPU, a few GB
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CNN Application 1: AlphaGo
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Neural
Network

(19 x 19 
positions)

Next move

19 x 19 matrix

Black: 1
white: -1
none: 0

Fully-connected feedforward 
network can be used

But CNN performs much better
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AlphaGo’s policy network
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Note: AlphaGo does not use Max Pooling.

The following is quotation from their Nature article:
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CNN application 2: Semantic segmentation

38



New Jersey Institute of Technology
39COMP4434


