
COMP4434 Big Data Analytics

Lecture 5 Clustering &
Recommender Systems

HUANG Xiao
xiaohuang@comp.polyu.edu.hk



New Jersey Institute of Technology

§ Cluster: A collection of data objects
§ similar (or related) to one another within the same group
§ dissimilar (or unrelated) to the objects in other groups

§ Cluster analysis (or clustering, data segmentation, …)
§ Finding similarities between data according to the 

characteristics found in the data and grouping similar data 
objects into clusters

§ Unsupervised learning: no predefined classes (i.e., learning by 
observations vs. learning by examples: supervised)

§ Typical applications
§ As a stand-alone tool to get insight into data distribution 
§ As a preprocessing step for other algorithms

What is Cluster Analysis?

3COMP4434



New Jersey Institute of Technology

Given a cloud 
of data points 
we want to 
understand its 
structure.
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Document Clustering
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Clustering for Data Understanding & Applications

§ Customer Segmentation: Businesses use clustering to group 
customers with similar purchasing behavior. This helps in 
targeted marketing, personalized recommendations, and 
product/service customization

§ Image Segmentation: In computer vision, clustering is used to 
segment images into regions with similar features. This is useful 
in object detection, image recognition

§ Anomaly Detection: Clustering can help identify outliers or 
anomalies in datasets. This is crucial in fraud detection, network 
security, and quality control

§ Social Network Analysis: Clustering can group users with similar 
connections or behavior in social networks. This is used for 
community detection and influence analysis
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Clustering as a Preprocessing Tool (Utility)

§ Summarization: 
§ Preprocessing for regression, classification

§ Compression:
§ Image processing: vector quantization

§ Finding K-nearest Neighbors:
§ Localizing search to one or a small number of clusters

§ Outlier detection:
§ Outliers are often viewed as those “far away” from any 

cluster
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Problem definition of clustering

§ Given a set of points, with a notion of distance 
between points, group the points into some number 
of clusters, so that 
§ Members of a cluster are close/similar to each 

other
§ Members of different clusters are dissimilar

§ Usually: 
§ Points are in a high-dimensional space
§ Similarity is defined using a distance measure

§ Euclidean, Cosine, Jaccard, edit distance, …
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Clustering Problem: Galaxies

§ A catalog of 2 billion “sky objects” represents objects 
by their radiation in 7 dimensions (frequency bands)

§ Problem: Cluster into similar objects, e.g., galaxies, 
nearby stars, quasars, etc.

§ Sloan Digital Sky Survey
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Clustering is a hard problem!

§ Clustering in two dimensions looks easy
§ Clustering small amounts of data looks easy

§ Many applications involve not 2, but 10 or 10,000 
dimensions

§ High-dimensional spaces look different: 
Almost all pairs of points are at about the same 
distance
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Clustering Problem: Music

§ Intuitively: Music divides into categories, and 
customers prefer a few categories
§ But what are categories really?

§ Represent a song by a set of customers who like it
§ Similar songs have similar sets of customers, and 

vice-versa
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Clustering Problem: Music

Space of all songs:
§ Think of a space with one dimension for each customer

§ Values in a dimension may be 0 or 1 only
§ A song is a point in this space (x1, x2,…, xd), 

where xi = 1 iff the i th customer bought the CD
§ For Spotify:

§ Spotify lets you discover, organize, and share over 100 
million songs, over 5 million podcast titles and 350,000+ 
audiobooks

§ In 2023, Spotify has 551 million users and 220 million 
premium subscribers across 184 regions

§ Task: Find clusters of similar songs
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Finding topics:
§ Represent a document by a vector  (x1, x2,…, xd), where 

xi = 1 iff the i th word (in some order) appears in the 
document
§ It actually doesn’t matter if d is infinite; i.e., we 

don’t limit the set of words

§ Documents with similar sets of words may be about 
the same topic
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Clustering Problem: Documents
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Similarity is defined using a distance measure

§ Sets as vectors: 
§ Measure similarity by the cosine distance

cosine distance = 1 - cosine similarity
§ Measure similarity by Euclidean distance

§ Sets as sets: 
§ Measure similarity by the Jaccard distance
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Jaccard similarity
§ The Jaccard similarity of two sets is the size of their 

intersection divided by the size of their union:
sim(C1, C2) = |C1ÇC2|/|C1ÈC2|

§ Jaccard distance: d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|

§ Document D1 is a set of its ! words
§ Equivalently, each document is a 0/1 vector in the space of k 

words
§ Each unique word is a dimension
§ Vectors are very sparse

3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8
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k-means Clustering Algorithm

17COMP4434

§ Partitioning method: Partitioning n objects into a set of k clusters, such that 
the sum of squared distances is minimized (where ci is the centroid or 
clustroid of cluster Ci)

§ Given k, find a partition of k clusters that optimizes the chosen partitioning 
criterion
§ Global optimal: exhaustively enumerate all partitions
§ Heuristic methods: k-means and k-medoids algorithms
§ k-means (MacQueen’67, Lloyd’57/’82): Each cluster is represented by 

the center of the cluster
§ k-medoids or PAM (Partition around medoids) (Kaufman & 

Rousseeuw’87): Each cluster is represented by one of the objects in the 
cluster  
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k-means Clustering Algorithm

§ Assumes Euclidean space/distance

§ Start by picking k, the number of clusters

§ Initialize clusters by picking one point per cluster
§ Example: Pick one point at random, then  k-1 other 

points, each as far away as possible from the 
previous points
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Populating Clusters

§ 1) For each point, place it in the cluster whose current 
centroid it is nearest

§ 2) After all points are assigned, update the locations 
of centroids of the k clusters

§ 3) Reassign all points to their closest centroid
§ Sometimes moves points between clusters

§ Repeat 2 and 3 until convergence
§ Convergence: Points don’t move between clusters 

and centroids stabilize
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Initialization of k-means

§ The way to initialize the centroids 
was not specified. One popular 
way to start is to randomly choose 
k of the examples

§ The results produced depend on 
the initial values for the centroids, 
and it frequently happens that 
suboptimal partitions are found. 
The standard solution is to try a 
number of different starting 
points
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Centroid & Clustroid

§ Centroid is the avg. of all (data)points in the cluster. This means 
centroid is an “artificial” point

§ Clustroid is an existing (data)point that is “closest” to all other 
points in the cluster
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x (1.5,1.5)

x (4.5,0.5)
x (1,1)

x (4.7,1.3)
Data:
o … data point
x … centroid

o (1,2)

o (2,1)

o (0,0)
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§ Euclidean case: each cluster has a centroid
§ centroid = average of its (data) points
§ use the node that is “closest” to the centroid as a clustroid

§ What about the non-Euclidean case?

o (5,0)

o (4,1)

o (5,3)

Clustroid
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Clustroid (non-Euclidean Case)

§ Non-Euclidean: The only “locations” we can talk 
about are the points themselves, i.e., there is no 
“average” of two points

§ clustroid  = point “closest” to other points
§ Possible meanings of “closest”:

§ Smallest average distance to other points
§ Smallest sum of squares of distances to other points, 

e.g., for distance metric d clustroid c of cluster C is:

§ Smallest maximum distance to other points

å
ÎCxc

cxd 2),(min
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Pros & Cons
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§ Simple iterative method
§ User provides “K”

§ Often too simple ----> bad results
§ Difficult to guess the correct “K”

§ We may not know the number of clusters before 
we want to find clusters

§ No guarantee of optimal solution
§ Complexity is O( n * K * I * d )

§ n = number of points, K = number of clusters, 
I = number of iterations, d = number of attributes
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Limitations: when clusters are of differing sizes
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Original Points K-means (3 Clusters)
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Limitations: when clusters are of differing densities
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Original Points K-means (3 Clusters)
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Limitations: when non-globular shapes
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Original Points K-means (2 Clusters)
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Overcoming K-means Limitations
§ One solution is to find many clusters

§ each of them represents a part of a natural cluster
§ small clusters need to be put together in a post-processing 

step
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Original Points    K-means Clusters
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Recommender System Examples

§ Amazon, YouTube, Netflix, …
§ How to improve users’ 

satisfaction?
§ What item for what people?

§ E.g., Recommend movies 
based on the predictions 
of user’s movie ratings
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More Recommender System Examples
§ News feed
§ Music feed
§ Twitter feed
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Recommender System Types

§ Content Based (CB): recommendations are 
based on the assumption that if in the past a 
user liked a set of items with particular features, 
she/he will likely go for the items with similar 
characteristics.

§ Collaborative Filtering (CF): recommendations 
are based on the assumption that users having 
similar history are more likely to have similar 
tastes/needs.
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Recommender System Types
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Content-based Recommender Systems

§ Give recommendations to a user based on 
items with “similar” content in user’s profile

§ Recommendation is only dependent on 
particular user’s historical data

§ Besides user-item interactions (i.e., ratings), we 
also have the item feature vectors as the inputs
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Plan of Action

likes
Items have profiles

Red
Circles
Triangles

User profile

match

recommend
build
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Example

?  not rated yet

Movie Alice Bob Carol Dave X1 
(Romance)

X2 
(KungFu)

Love letter 5 5 0 0 0.9 0

Romancer 5 ? ? 0 1 0

Stay with me ? 4 0 ? 0.89 0

KungFu Panda 0 0 5 4 0.2 0.9

FightFightFight 0 0 5 ? 0.1 1

37COMP4434

§ For each item, create an item profile (a set of features)
§ E.g., each movie has genre, author, title, actor, director,…
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Symbols: Table

Movie Alice Bob Carol Dave X1 
(Romance)

X2 
(KungFu)

Love letter 5 5 0 0 0.9 0

Romancer 5 ? ? 0 1 0

Stay with me ? 4 0 ? 0.89 0

KungFu Panda 0 0 5 4 0.2 0.9

FightFightFight 0 0 5 ? 0.1 1
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" = 2: number of 
movie features

"! = 4: number of users
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Symbols: Rating

' (, * = 1 if user *	has rated movie (;	- #,%  is the raeng

Movie Alice Bob Carol Dave

Love letter 5 5 0 0

Romancer 5 ? ? 0

Stay with me ? 4 0 ?

KungFu Panda 0 0 5 4

FightFightFight 0 0 5 ?

39COMP4434

' 1,2 = 1, - &,' = 5

' 3,4 = 0

0 % : number of rated movies rated by user *

0 & = 4
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RMSE

§ Compare predictions with known ratings
§ My system predicted you would rate

§ The Shawshank Redemption as 4.3 stars
§ In reality, you gave it 5 stars

§ The Matrix with 3.9 stars
§ In reality, you gave it 4 stars

§ RMSE = sqrt( 1/2 * (4.3 - 5)^2 + (3.9 - 4)^2))
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How to solve the problem for Alice?

41

Movie Alice Bob Carol Dave X1 
(Romance)

X2 
(KungFu)

Love letter 5 5 0 0 0.9 0

Romancer 5 ? ? 0 1 0

Stay with me ? 4 0 ? 0.89 0

KungFu Panda 0 0 5 4 0.2 0.9

FightFightFight 0 0 5 ? 0.1 1
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Hypothesis For Alice

42COMP4434

§ Learn parameter ! ! = [!"! !!! !#! ]$ by solving a Linear 
Regression problem

§ Hypothesis function

       ℎ% ! & = 	1 & (2 = !"! &" + !!! &! +!#! &#

§ Cost Function

       ! "(") = "
$%(")∑&:( &," *" 	" " +& & − ( &,"

$
+ ,
$%(")∑-*". "-"

$

                     = "
$%(")∑&:( &," *" ∑-*/. "-" &-& − ( &," $

+ ,
$%(")∑-*". "-"

$
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Iteration …
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Gradient descent update
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Alice’s Model

1(&) =
0
0
0
=

0.025
0.0375
0

= ⋯ =
1.95
3.17
−2.52

ℎ+ ! 2 = 	1 & (2 = 1.95 + 3.172& − 2.522'
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X1 
(Romance)

X2 
(KungFu)

0.9 0

1 0

0.89 0

0.2 0.9

0.1 1

Alice
- #,,

5

5

4.77

0

0

Movie

Love letter            & "

Romancer             & $

Stay with me        & 0

KungFu Panda      & 1

FightFightFight     & 2

Rating Prediction for Alice

§ Predict user * rating movie ( with 	1 % (2 #

§ E.g., 	1 & (2 - = 1.95 3.17 −2.52
1
0.89
0

= 4.77
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General Problem

§ For each user *, learn parameter 1 % ∈ <./&

46

Movie Alice
" 3

Bob
" 4

Carol
" 5

Dave
" 6

X1 
(Romance)

X2 
(KungFu)

Love letter         & " 5 5 0 0 0.9 0

Romancer          & $ 5 ? ? 0 1 0

Stay with me     & 0 ? 4 0 ? 0.89 0

KungFu Panda   & 1 0 0 5 4 0.2 0.9

FightFightFight  & 2 0 0 5 ? 0.1 1
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Problem Formulation

§ ! ", $ = 1 if user $	has rated movie "
§ ! ", $ = 0 if user $	has not rated movie "
§ ) *,, : rating by user $	on movie " if ! ", $ = 1 
§ * : number of features of a movie
§ + , ∈ --./: parameter vector for user $	
§ . * ∈ --./: feature vector for movie "	
§/ ,  : number of rated movies rated by user $ 
§ *0 : number of users
§ *1  : number of movies
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CB Optimization Objective

§ Given 2 & , 2 ' , ⋯, 2 ." , to learn 1 % : 

min
	+ #

1
20 % @

#:2 #,% 3&
	1 % (2 # − - #,%

'
+ A
20 % @

43&

.
14%

'
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Movie &"&  
(Romance)

&$&  
(KungFu)

Love letter & " 0.9 0
Romancer & $ 1 0

Stay with me & 0 0.89 0
KungFu Panda & 1 0.2 0.9
FightFightFight & 2 0.1 1

User j
( &,7

5
5
?
0
0

"(7) =
"/(7)

""(7)

"$(7)
=?
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5(#) =
1
0.9
0
	
1
1
0
	
1

0.89
0
	
1
0.2
0.9

	
1
0.1
1

1 % ∈ <./&;	2 # ∈ <./&, 2=# = 1



New Jersey Institute of Technology

Optimization Objectives

§ To learn 1 %  (parameter for user *	): 
min
	% %

1
2 -
':) ',+ ,!

	! + $& ' − 0 ',+
#
+ 12--,!

.
!-+

#

§ To learn 1 & , 1 ' , ⋯, 1 .$

min
% ! ,% & , ⋯, % '(

1
2-+,!

.(
-

':) ',+ ,!
	! + $& ' − 0 ',+

#
+ 12-+,!

.(
-
-,!

.
!-+

#
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CB Gradient Decent Update

50

!-+ = !-+ − 2 -
':) ',+ ,!

	! + $& ' − 0 ',+ &-'

§ B = 0

§ B ≠ 0

!-+ = !-+ − 2 -
':) ',+ ,!

	! + $& ' − 0 ',+ &-' + 1!-+
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Pros: Content-based Approach

§ +: No need for data on other users
§ +: Able to recommend to users with unique tastes
§ +: Able to recommend new & unpopular items

§ No cold-start item problems
§ +: Able to provide explanations

§ Can provide explanations of recommended items by listing 
content-features that caused an item to be recommended
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Cons: Content-based Approach

§ –: Finding the appropriate features is hard
§ E.g., images, movies, music

§ –: Recommendations for new users
§ How to build a user profile?

§ –: Overspecialization
§ Never recommends items outside user’s 

content profile
§ People might have multiple interests
§ Unable to exploit quality judgments of other users
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