

COMP4434 Big Data Analytics

Lecture 5 Clustering & Recommender Systems

HUANG Xiao xiaohuang@comp.polyu.edu.hk

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or *clustering*, *data segmentation*, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., *learning by* observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Given a cloud of data points we want to understand its structure.

Document Clustering

Noggle Knowledge Network V1.1										- 0 X
							0			<u> </u>
							• @	noggle	manage	share
Libraries All Uncheck	< Sort Rank 🔹 🎇 Map 🔳 Docs	s 🖭 E	Experts		🗌 Boost	:Newer >	View Map	• *	ClusterSearch	
	File	Туре	LastModified	OwnerContact	Size	Rank 🔺				
PERSONAL	Job Security (37)								Service Design	
V bosHiDrive Projekte [12989]	Access Control (36)					^		Managed Cliant	Chan	ge
Download & Deskton [1162]	GP-G-0013_Annex_05_L2_05-Physical	doc	5/27/2015 3	lvt	142.5	51%	Servic Level	e chent	Annag	SAP
I Larg has Projektarchiv 2013 [20	HP Exh 17 Att A _2010-12-09 FINAL[1]	docx	2/21/2011 9	lvt	2.4 MB	45%	Access		Data	AMS
	GP-G-0013_Annex_08_L2_08-Inf-Acqu	doc	5/27/2015 3	lvt	179.5	40%		Security	Charl	
Scan Ablage [5]	GP-G-0013_Annex_06_L2_06-Commu	doc	5/27/2015 3	lvt	312.5	36%	Security	Operations	Standa	
✓ Technology Research [846]	😕 HP Exh 22 Att C _2010-12-09 FINAL.pdf	pdf	2/21/2011 9	lvt	69.4 kB	36%	Requirements			Service
🗹 US Public Law [62]	😰 InfoPack1_MCC.pptx	pptx	2/24/2011 9	lvt	551.3	23%		S S	system	Provider
SHARED	GP-G-0013_Annex_07_L2_07-Access	doc	5/27/2015 3	lvt	219.5	22%	Risk	S	ecurity	Process
🗹 Arbeitskreise ett [3815]	GP19_EON_Information_Security_Tem	pdf	2/6/2015 8:	philipp.steffen	135.3	21%	Management	local		
BSI Grundschutz [1967]	😕 Bakk_Webdienste_Schleifer_pdf.pdf	pdf	2/9/2015 11	philipp.steffen	2.6 MB	20%				Project
▼ OWW [233]	spreadsheet policies and procedures-1.d	doc	3/16/2015 8	lvt	64.5 kB	19%			Heip	
Projekte DS 2011-14 [5543]	GRS Test Concept 2014-06-06 V 1.5	docx	1/5/2015 3:	philipp.steffen	1.6 MB	18%	Security Management	Netw	ork Desk	Data Silver
• Hojekte_Ho_2011 14 [5545]	🗟 EON_First Pass Result Mapping_2nd_Pa	×ls	4/27/2011 2	lvt	47.5 kB	16% ≡	κ	Secu	rity	SAP
	BON_First Pass Result Mapping_2nd_Pa	×ls	4/27/2011 2	lvt	41.0 kB	16%	AMS Trans	Risk		Team
	🖄 EON_First Pass Result Document_Benel	×ls	4/27/2011 2	lvt	41.0 kB	16%	Se	ecurity		
	EON_First Pass Results_consolidated_B	xlsx	4/20/2011 4	lvt	23.2 kB	16%	Systems		Management	
	😕 04 - Consoli.pdf	pdf	9/15/2015 7	Lars	299.6	15%		Data	Service	Security Management
	😕 SECOVAL2005.pdf	pdf	9/15/2015 6	Lars	150.7	14%	service Servic	Security		Somware
	😕 cps_securecomm.pdf	pdf	9/15/2015 5	Lars	166.7	13%	Continuity Suppo	, in the second s		
	😕 SystemOne_Leistungsbeschreibung_Tec	pdf	1/15/2015 9	tobias.lutter	96.3 kB	13%		\sim	Se	ecurity Level Support
	bps-RiskEvaluation_SAP_v3.xlsx	xlsx	2/9/2015 12	philipp.steffen	111.8	13%	Business		Application	Hr
	ditional Services 02_02_2012EAV_Ra	xlsx	1/5/2015 3:	philipp.steffen	84.4 kB	13%	Service	Information		Intrastructure
	Additional Services 31_01_2012NH.xlsx	×ls×	1/5/2015 3:	philipp.steffen	5.1 MB	13%		Security	Con	Management
	🕼 SAB Master List_V02A_PSv8.xlsx	xlsx	1/5/2015 3:	philipp.steffen	277.7	12%	Service Desk	Appl	Opera	ation
	🛍 🛛 SAB Master List_V02A_PSv2.xlsx	xlsx	1/5/2015 3:	philipp.steffen	277.4	12%	Configuration	Ma	nager	Dpensional Procedures
	🛍 🛛 SAB Master List_V02A_PSv7.xlsx	xlsx	1/5/2015 3:	philipp.steffen	272.5	12%		Security	Business	
	🛍 SAB Master List_V02A_PS_neuv1.xlsx	xlsx	1/5/2015 3:	philipp.steffen	283.5	12%	Ecsiness Continuity Management	Policies	Process	Management
	🛍 🛛 SAB Master List_V02A_PS_neu.xlsx	xlsx	1/5/2015 3:	philipp.steffen	283.4	12%	Suppo	rt Ser Deli	very Job	Noĝĝie
	SAB Master List_V02A_2012-03-13_ED	xlsx	1/5/2015 3:	philipp.steffen	233.7	12% 🔻			Security	
27615 Docs 1500 items for	und 1 (226 duplicates with same file remo	nved)							to	

Clustering for Data Understanding & Applications

- Customer Segmentation: Businesses use clustering to group customers with similar purchasing behavior. This helps in targeted marketing, personalized recommendations, and product/service customization
- Image Segmentation: In computer vision, clustering is used to segment images into regions with similar features. This is useful in object detection, image recognition
- Anomaly Detection: Clustering can help identify outliers or anomalies in datasets. This is crucial in fraud detection, network security, and quality control
- Social Network Analysis: Clustering can group users with similar connections or behavior in social networks. This is used for community detection and influence analysis

Clustering as a Preprocessing Tool (Utility)

- Summarization:
 - Preprocessing for regression, classification
- Compression:
 - Image processing: vector quantization
- Finding K-nearest Neighbors:
 - Localizing search to one or a small number of clusters
- Outlier detection:
 - Outliers are often viewed as those "far away" from any cluster

Example: Clusters & Outliers

Problem definition of clustering

- Given a set of points, with a notion of distance between points, group the points into some number of clusters, so that
 - Members of a cluster are close/similar to each other
 - Members of different clusters are dissimilar

Usually:

- Points are in a high-dimensional space
- Similarity is defined using a distance measure
 - Euclidean, Cosine, Jaccard, edit distance, ...

Clustering Problem: Galaxies

- A catalog of 2 billion "sky objects" represents objects by their radiation in 7 dimensions (frequency bands)
- Problem: Cluster into similar objects, e.g., galaxies, nearby stars, quasars, etc.
- Sloan Digital Sky Survey

Clustering is a hard problem!

- Clustering in two dimensions looks easy
- Clustering small amounts of data looks easy
- Many applications involve not 2, but 10 or 10,000 dimensions
- High-dimensional spaces look different: Almost all pairs of points are at about the same distance

Clustering Problem: Music

- Intuitively: Music divides into categories, and customers prefer a few categories
 - But what are categories really?
- Represent a song by a set of customers who like it
- Similar songs have similar sets of customers, and vice-versa

Clustering Problem: Music

Space of all songs:

- Think of a space with one dimension for each customer
 - Values in a dimension may be 0 or 1 only
 - A song is a point in this space (x₁, x₂,..., x_d), where x_i = 1 iff the *i*th customer bought the CD
- For Spotify:
 - Spotify lets you discover, organize, and share over 100 million songs, over 5 million podcast titles and 350,000+ audiobooks
 - In 2023, Spotify has 551 million users and 220 million premium subscribers across 184 regions
- Task: Find clusters of similar songs

Clustering Problem: Documents

Finding topics:

- Represent a document by a vector (x₁, x₂,..., x_d), where x_i = 1 iff the *i*th word (in some order) appears in the document
 - It actually doesn't matter if d is infinite; i.e., we don't limit the set of words
- Documents with similar sets of words may be about the same topic

Similarity is defined using a distance measure

Sets as vectors:

Measure similarity by the cosine distance

 $ext{cosine similarity} = S_C(A,B) := \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$

cosine distance = 1 - cosine similarity

Measure similarity by Euclidean distance

$$d(\mathbf{A}, \mathbf{B}) = \sqrt{\sum_{i=1}^{n} (B_i - A_i)^2}$$

Sets as sets:

Measure similarity by the Jaccard distance

Jaccard similarity

- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
 sim(C₁, C₂) = |C₁∩C₂|/|C₁∪C₂|
- Jaccard distance: $d(C_1, C_2) = 1 |C_1 \cap C_2| / |C_1 \cup C_2|$

3 in intersection 8 in union Jaccard similarity= 3/8 Jaccard distance = 5/8

- Document D₁ is a set of its b words
- Equivalently, each document is a 0/1 vector in the space of k words
 - Each unique word is a dimension
 - Vectors are very sparse

k-means Clustering Algorithm

 <u>Partitioning method</u>: Partitioning *n* objects into a set of *k* clusters, such that the sum of squared distances is minimized (where c_i is the centroid or clustroid of cluster C_i)

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (p - c_i)^2$$

- Given k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - <u>k-means</u> (MacQueen'67, Lloyd'57/'82): Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids) (Kaufman & Rousseeuw'87): Each cluster is represented by one of the objects in the cluster

k-means Clustering Algorithm

- Assumes Euclidean space/distance
- Start by picking k, the number of clusters
- Initialize clusters by picking one point per cluster
 - Example: Pick one point at random, then k-1 other points, each as far away as possible from the previous points

Demo

Populating Clusters

- 1) For each point, place it in the cluster whose current centroid it is nearest
- 2) After all points are assigned, update the locations of centroids of the k clusters
- 3) Reassign all points to their closest centroid
 - Sometimes moves points between clusters
- Repeat 2 and 3 until convergence
 - Convergence: Points don't move between clusters and centroids stabilize

Initialization of k-means

- The way to initialize the centroids was not specified. One popular way to start is to randomly choose k of the examples
- The results produced depend on the initial values for the centroids, and it frequently happens that suboptimal partitions are found. The standard solution is to try a number of different starting points

Centroid & Clustroid

- Centroid is the avg. of all (data)points in the cluster. This means centroid is an "artificial" point
- Clustroid is an existing (data)point that is "closest" to all other points in the cluster

Clustroid

- Euclidean case: each cluster has a centroid
 - *centroid* = average of its (data) points
 - use the node that is "closest" to the centroid as a clustroid

What about the non-Euclidean case?

Clustroid (non-Euclidean Case)

- Non-Euclidean: The only "locations" we can talk about are the points themselves, i.e., there is no "average" of two points
- clustroid = point "<u>closest</u>" to other points
- Possible meanings of "closest":
 - Smallest average distance to other points
 - Smallest sum of squares of distances to other points, e.g., for distance metric *d* clustroid *c* of cluster *C* is:

$$\min_{c} \sum_{x \in C} d(x, c)^2$$

Smallest maximum distance to other points

Pros & Cons

- Simple iterative method
- User provides "K"
- Often too simple ----> bad results
- Difficult to guess the correct "K"
 - We may not know the number of clusters before we want to find clusters
- No guarantee of optimal solution
- Complexity is O(n * K * I * d)
 - n = number of points, K = number of clusters,
 I = number of iterations, d = number of attributes

Limitations: when clusters are of differing sizes

Original Points

K-means (3 Clusters)

Limitations: when clusters are of differing densities

Original Points

K-means (3 Clusters)

Limitations: when non-globular shapes

Original Points

K-means (2 Clusters)

Overcoming K-means Limitations

- One solution is to find many clusters
 - each of them represents a part of a natural cluster
 - small clusters need to be put together in a post-processing step

Recommender System Examples

- Amazon, YouTube, Netflix, ...
- How to improve users' satisfaction?
- What item for what people?
 - E.g., Recommend movies based on the predictions of user's movie ratings

Recommended for You Based on Kindle Paperwhite, 6" High Resolution Display w... Page 1 of 5

MoKo Case for Kindle Paperwhite, Premium Thinnest and Lightest Leather Cover with... The table and the set of the set of

Swees Ultra Slim Leather Case Cover for Amazon All-New Kindle Paperwhite (Both 2012... 文言文言文 273 \$3.99 *√Prime*

Finite SmartShell Case for Kindle Paperwhite - The Thinnest and Lightest Leather Cover for...

Kindle Paperwhite, 6" High Resolution Display (212 ppi) with Built-in Light, Free 3G... \$159.99 \Prime

COMP4434

More Recommender System Examples

- News feed
- Music feed
- Twitter feed

171

Becca @CleverWordplayr · 15m

A list of flavored sparkling waters

don't, but should, exist: Onion Zes

0

Refreshing Raisin, Totally Thyme, and

Ω

C 25

M

1

- Pin your Latest timeline The latest Tweets from people you follow will be one swipe away from Home.
- View content preferences

Cancel

Recommender System Types

- Content Based (CB): recommendations are based on the assumption that if in the past a user liked a set of items with particular features, she/he will likely go for the items with similar characteristics.
- Collaborative Filtering (CF): recommendations are based on the assumption that users having similar history are more likely to have similar tastes/needs.

Recommender System Types

Content-based Recommender Systems

- Give recommendations to a user based on items with "similar" content in user's profile
- Recommendation is only dependent on particular user's historical data
- Besides user-item interactions (i.e., ratings), we also have the item feature vectors as the inputs

Plan of Action

Example

Movie	Alice	Bob	Carol	Dave	X1 (Romance)	X2 (KungFu)
Love letter	5	5	0	0	0.9	0
Romancer	5	?	?	0	1	0
Stay with me	?	4	0	?	0.89	0
KungFu Panda	0	0	5	4	0.2	0.9
FightFightFight	0	0	5	?	0.1	1

? not rated yet

- For each item, create an item profile (a set of features)
 - E.g., each movie has genre, author, title, actor, director,...

Symbols: Table

ovies	Movie	Alice	Bob	Carol	Dave	X1 (Romance)	X2 (KungFu)
of m	Love letter	5	5	0	0	0.9	0
er o	Romancer	5	?	?	0	1	0
qur	Stay with me	?	4	0	?	0.89	0
: nu	KungFu Panda	0	0	5	4	0.2	0.9
	FightFightFight	0	0	5	?	0.1	1
u^{m}				γ		<u> </u>	J
		$n_u = 1$	4: num	nber of	users	n = 2: nt	umber of

movie features

Symbols: Rating

r(i,j) = 1 if user j has rated movie i; $y^{(i,j)}$ is the rating $m^{(j)}$: number of rated movies rated by user j

RMSE

- Compare predictions with known ratings
- My system predicted you would rate
 - The Shawshank Redemption as 4.3 stars
 - In reality, you gave it 5 stars
 - The Matrix with 3.9 stars
 - In reality, you gave it 4 stars
- RMSE = sqrt(1/2 * (4.3 5)^2 + (3.9 4)^2))

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

How to solve the problem for Alice?

Movie	Alice	Bob	Carol	Dave	X1 (Romance)	X2 (KungFu)
Love letter	5	5	0	0	0.9	0
Romancer	5	?	?	0	1	0
Stay with me	?	4	0	?	0.89	0
KungFu Panda	0	0	5	4	0.2	0.9
FightFightFight	0	0	5	?	0.1	1

Hypothesis For Alice

- Learn parameter $\theta^{(1)} = [\theta_0^{(1)} \theta_1^{(1)} \theta_2^{(1)}]^T$ by solving a Linear Regression problem
- Hypothesis function

$$h_{\theta^{(1)}}(x) = \left(\theta^{(1)}\right)^T x = \theta_0^{(1)} x_0 + \theta_1^{(1)} x_1 + \theta_2^{(1)} x_2$$

Cost Function

$$J(\theta^{(1)}) = \frac{1}{2m^{(1)}} \sum_{i:r(i,1)=1} \left(\left(\theta^{(1)} \right)^T x^{(i)} - y^{(i,1)} \right)^2 + \frac{\lambda}{2m^{(1)}} \sum_{k=1}^n \left(\theta^{(1)}_k \right)^2$$
$$= \frac{1}{2m^{(1)}} \sum_{i:r(i,1)=1} \left(\sum_{k=0}^n \left(\theta^{(1)}_k x^{(i)}_k \right) - y^{(i,1)} \right)^2 + \frac{\lambda}{2m^{(1)}} \sum_{k=1}^n \left(\theta^{(1)}_k \right)^2$$

Iteration ...

```
class RegularizedLinearRegressionUsingGD:
   def init (self, eta=0.01, r= 0.009, n iterations=10000):
       self.eta = eta
       self.r = r
       self.n iterations = n iterations
   def fit(self, x, y):
       self.cost = []
       self.w_ = np.array([0.0,0.0,0.0])
       m = x.shape[0]
                                                                           Gradient descent update
       for in range(self.n iterations):
           y pred = np.dot(x, self.w )
           residuals = y_pred - y
           gradient vector w 0 = np.sum(residuals) / m * self.eta
           gradient vector w 1 = (np.dot(x[:,1], residuals) + self.r * self.w [1]) / m * self.eta
           gradient vector w 2 = (np.dot(x[:,2], residuals) + self.r * self.w [2]) / m * self.eta
           self.w [0] -= gradient vector w 0
           self.w [1] -= gradient vector w 1
           self.w [2] -= gradient vector w 2
           cost = np.sum((residuals ** 2)) / (2 * m) + self.r * ((self.w [1] ** 2) + (self.w [2] ** 2)) / (2 * m)
           self.cost .append(cost)
       print('iter {}: w = {} \t cost ={}'.format(_, self.w_, cost))
       return self
   def predict(self, x):
       return np.dot(x, self.w )
```

Alice's Model

iter 9999: w = [1.95158962 3.16948852 -2.52109055] cost =0.045574863024676435
predicted response: [4.80412929 5.12107814 0.31650583 -0.25255208]
Root mean squared error: 0.05424593597454509
R2 score: 0.9913206502440728

$$\theta^{(1)} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0.025\\0.0375\\0 \end{bmatrix} = \dots = \begin{bmatrix} 1.95\\3.17\\-2.52 \end{bmatrix}$$

 $h_{\theta^{(1)}}(x) = (\theta^{(1)})^T x = 1.95 + 3.17x_1 - 2.52x_2$

Rating Prediction for Alice

Movie		X1 (Romance)	X2 (KungFu)	Alice $y^{(i,1)}$
Love letter	<i>x</i> ⁽¹⁾	0.9	0	5
Romancer	<i>x</i> ⁽²⁾	1	0	5
Stay with me	<i>x</i> ⁽³⁾	0.89	0	4.77
KungFu Panda	<i>x</i> ⁽⁴⁾	0.2	0.9	0
FightFightFight	<i>x</i> ⁽⁵⁾	0.1	1	0

• Predict user *j* rating movie *i* with $\left(\theta^{(j)}\right)^T x^{(i)}$

• E.g.,
$$\left(\theta^{(1)}\right)^T x^{(3)} = \begin{bmatrix} 1.95 & 3.17 & -2.52 \end{bmatrix} \begin{bmatrix} 1 \\ 0.89 \\ 0 \end{bmatrix} = 4.77$$

General Problem

Movie		Alice $\theta^{(1)}$	${ { { $	$\frac{\text{Carol}}{\theta^{(3)}}$	Dave $\theta^{(4)}$	X1 (Romance)	X2 (KungFu)
Love letter	<i>x</i> ⁽¹⁾	5	5	0	0	0.9	0
Romancer	<i>x</i> ⁽²⁾	5	?	?	0	1	0
Stay with me	<i>x</i> ⁽³⁾	?	4	0	?	0.89	0
KungFu Panda	<i>x</i> ⁽⁴⁾	0	0	5	4	0.2	0.9
FightFightFight	$x^{(5)}$	0	0	5	?	0.1	1

• For each user j, learn parameter $\theta^{(j)} \in \mathbb{R}^{n+1}$

Problem Formulation

- r(i,j) = 1 if user j has rated movie i
- r(i,j) = 0 if user j has not rated movie i
- $y^{(i,j)}$: rating by user j on movie i if r(i,j) = 1
- n : number of features of a movie
- $\theta^{(j)} \in \mathbb{R}^{n+1}$: parameter vector for user j
- $x^{(i)} \in \mathbb{R}^{n+1}$: feature vector for movie *i*
- $m^{(j)}$: number of rated movies rated by user j
- n_u : number of users
- n_m : number of movies

CB Optimization Objective

• Given
$$x^{(1)}, x^{(2)}, \dots, x^{(n_m)}$$
, to learn $\theta^{(j)}$:

$$\min_{\theta^{(j)}} \frac{1}{2m^{(j)}} \sum_{i:r(i,j)=1} \left(\left(\frac{\theta^{(j)}}{2m^{(j)}} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2m^{(j)}} \sum_{k=1}^n \left(\frac{\theta^{(j)}_k}{2m^{(j)}} \right)^2$$

Movie	$x_1^{(i)}$	$x_2^{(i)}$	User j
	(Romance)	(KungFu)	$\mathcal{Y}^{(i,j)}$
Love letter $x^{(1)}$	0.9	0	5
Romancer $x^{(2)}$	1	0	5
Stay with me $x^{(3)}$	0.89	0	?
KungFu Panda $x^{(4)}$	0.2	0.9	0
FightFightFight $x^{(5)}$	0.1	1	0

$$x^{(i)} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0.9 & 1 & 0.89 & 0.2 & 0.1 \\ 0 & 0 & 0 & 0.9 & 1 \end{bmatrix}$$

$$\theta^{(j)} = \begin{bmatrix} \theta_0^{(j)} \\ \theta_1^{(j)} \\ \theta_2^{(j)} \end{bmatrix} = ?$$

$$\theta^{(j)} \in \mathbb{R}^{n+1}; x^{(i)} \in \mathbb{R}^{n+1}, x_0^{(i)} = 1$$

Optimization Objectives

• To learn
$$\theta^{(j)}$$
 (parameter for user j):

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n \left(\theta_k^{(j)} \right)^2$$

• To learn
$$\theta^{(1)}, \theta^{(2)}, \cdots, \theta^{(n_u)}$$

$$\min_{\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1}^{n_u} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n \left(\theta^{(j)}_k \right)^2$$

CB Gradient Decent Update

•
$$k = 0$$

$$\theta_k^{(j)} = \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^T x^{(i)} - y^{(i,j)} \right) x_k^{(i)}$$

■ *k* ≠ 0

$$\theta_{k}^{(j)} = \theta_{k}^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} \left(\left(\theta^{(j)} \right)^{T} x^{(i)} - y^{(i,j)} \right) x_{k}^{(i)} + \lambda \theta_{k}^{(j)} \right)$$

Pros: Content-based Approach

- +: No need for data on other users
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No cold-start item problems
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

-: Finding the appropriate features is hard

- E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users