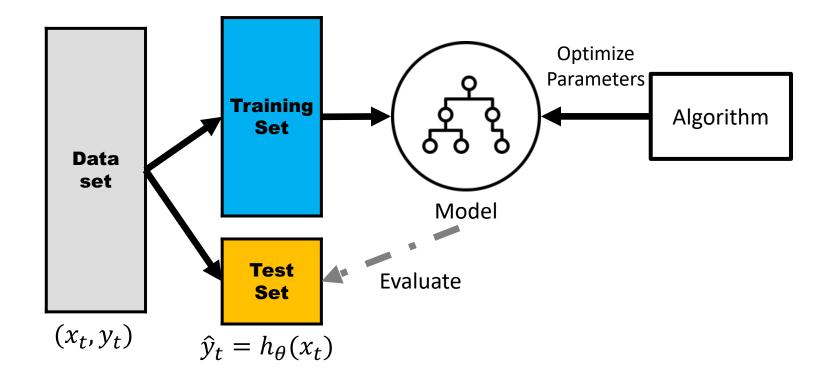


COMP4434 Big Data Analytics

Lecture 4 Overfitting & Support Vector Machines

HUANG Xiao xiaohuang@comp.polyu.edu.hk

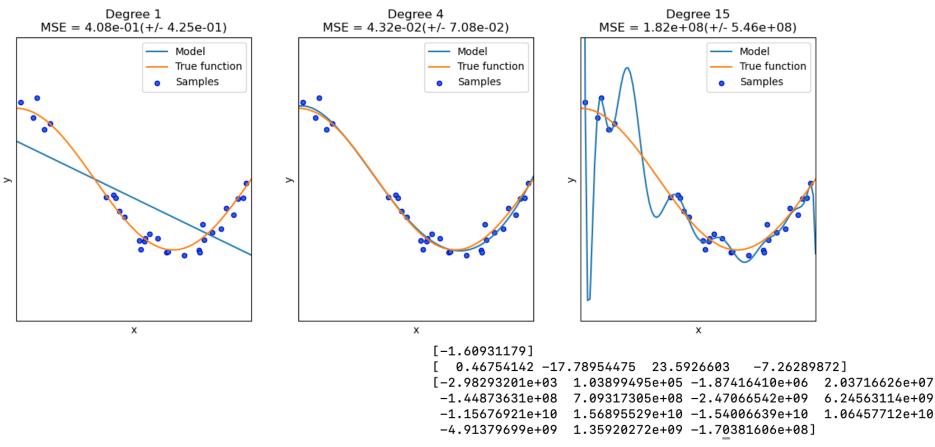
Model Evaluation



- When training the model, we can not use test set
- If we have several models, e.g., linear regression and quadratic regression, how could we evaluate them?

Underfitting and Overfitting

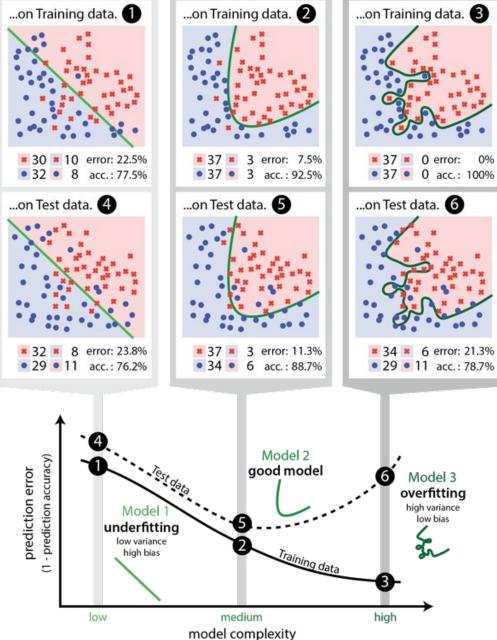
- Polynomial Regression with Degree = 4:
 - $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$



https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

COMP4434

Underfitting and Overfitting



Two classes separated by an elliptical arc

Underfitting

a model does not fit the data well enough

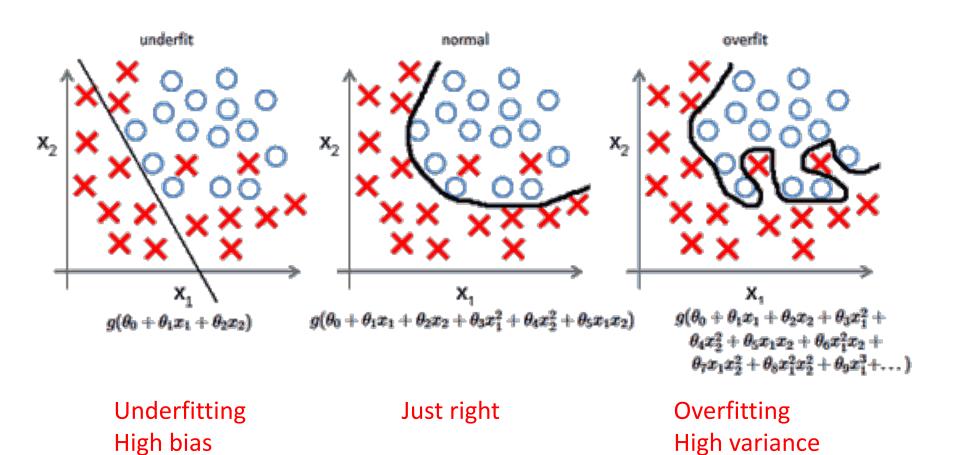
Overfitting

a model is too closely fit to a limited set of data and lose generalization ability

Overfitting

- If we have too many features, the hypothesis may fit the training set very well, but fail to generalize to new examples (high variance)
- More broadly, variance also represents how similar the results from a model will be, if it were fed different data from the same process
- The bias error is from erroneous assumptions in the learning algorithm
- The variance error is from sensitivity to small fluctuations in the training set

Example in Logistic Regression



Address Overfitting

- Feature Reduction
 - Manual selecting which features to keep (by domain knowledge)
 - Okay esp. when some features are really useless
- Regularization
 - Keep all features, but reduce their influence by giving smaller values to the parameter θ_i
 - Okay when many features, each of which contributes a bit to predicting y

Regularized Linear Regression

Linear Regression

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n$$
$$J(\theta_0, \theta_1, \dots) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Regularized Linear Regression

$$J(\theta_0, \theta_1, \dots) = \frac{1}{2m} \left[\sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^n \theta_j^2 \right]$$

 The value of the cost function is NOT equivalent to prediction error. Our goal is to make prediction errors on test data small

Understanding

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

- Penalized term: penalize large parameter values
 $\theta_j, 1 \leq j \leq n$
- Parameter λ : control the tradeoff
 - Too small: degenerate to linear regression (overfitting)
 - Too large: penalize all features except θ_0 , resulting in $h_{\theta}(x) = \theta_0$ (a horizontal line! underfitting)

Regularized Gradient Descent

$$h_{\theta}(x) = \theta_{0}x_{0} + \theta_{1}x_{1} + \dots + \theta_{n}x_{n}$$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$\frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{1}{m} \left(\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} + \lambda \theta_{j} \right)$$
Repeat until convergence {
$$\theta_{j} = \theta_{j} \left(1 - \lambda \frac{\alpha}{m} \right) - \frac{\alpha}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$
}

Types of Regularization Regression

• $\|\theta\|_2$: Ridge Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

• $\|\theta\|_1$: LASSO Regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} |\theta_j| \right]$$

LASSO regression results in sparse solutions – vector with more zero coordinates. Good for high-dimensional problems – don't have to store all coordinates! Supplement Material: Visual for Ridge Vs. LASSO Regression https://www.youtube.com/watch?v=Xm2C_gTAl8c

Regularized Logistic Regression

Logistic Regression

$$h_{\theta}(x) = g(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n)$$
$$J(\theta) = -\frac{1}{m} \sum_{i=1}^m \left[y^{(i)} \log\left(h_{\theta}(x^{(i)})\right) + \left(1 - y^{(i)}\right) \log\left(1 - h_{\theta}(x^{(i)})\right) \right]$$

Regularized Logistic Regression

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Regularized Gradient Descent

$$h_{\theta}(x) = g(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n) = \frac{1}{1 + e^{-(\theta_0 x_0 + \theta_1 x_1 + \dots + \theta_n x_n)}}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

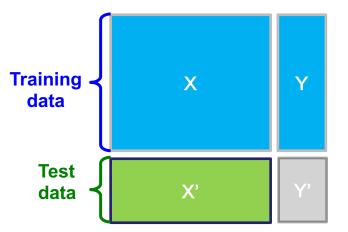
$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \left(\sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)} + \lambda \theta_j \right)$$

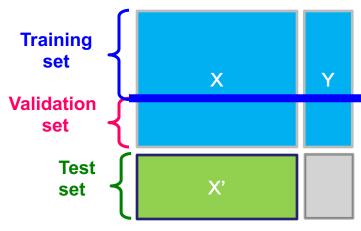
Repeat until convergence {

$$\theta_{j} = \theta_{j} \left(1 - \lambda \frac{\alpha}{m}\right) - \frac{\alpha}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right) x_{j}^{(i)}$$
}

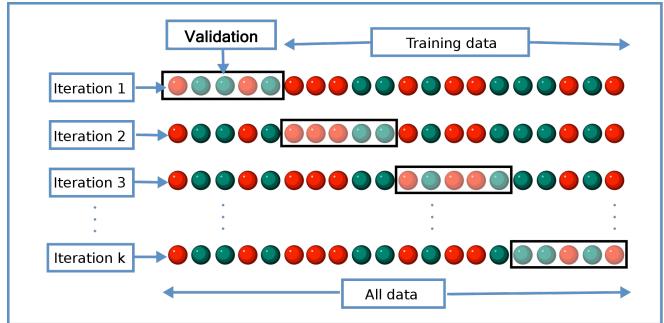
Validation set

- Task: Given data (X,Y) build a model f() to predict Y' based on X'
 - Strategy: Estimate y = f(x) on (X, Y)Hope that the same f(x) also works to predict unknown Y'
 - The "hope" is called generalization
 - Overfitting: If f(x) predicts well Y but is unable to predict Y'
 - We want to build a model that generalizes well to unseen data
 - Solution: k-fold Cross-validation



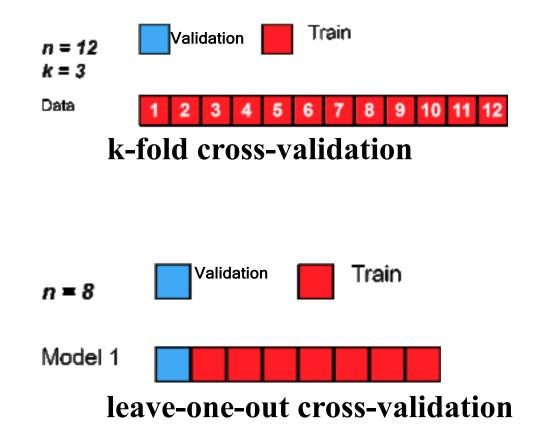


k-fold Cross-validation



- The original sample is randomly partitioned into k equal sized subsamples
- Of the k subsamples, a single subsample is retained as the validation data for testing the model
- The remaining k 1 subsamples are used as training data
- The cross-validation process is then repeated k times, with each of the k subsamples used exactly once as the validation data
- The k results can then be averaged to produce a single estimation COMP4434

Leave-one-out Cross-validation



 When k = n (the number of observations), k-fold cross-validation is equivalent to leave-one-out cross-validation

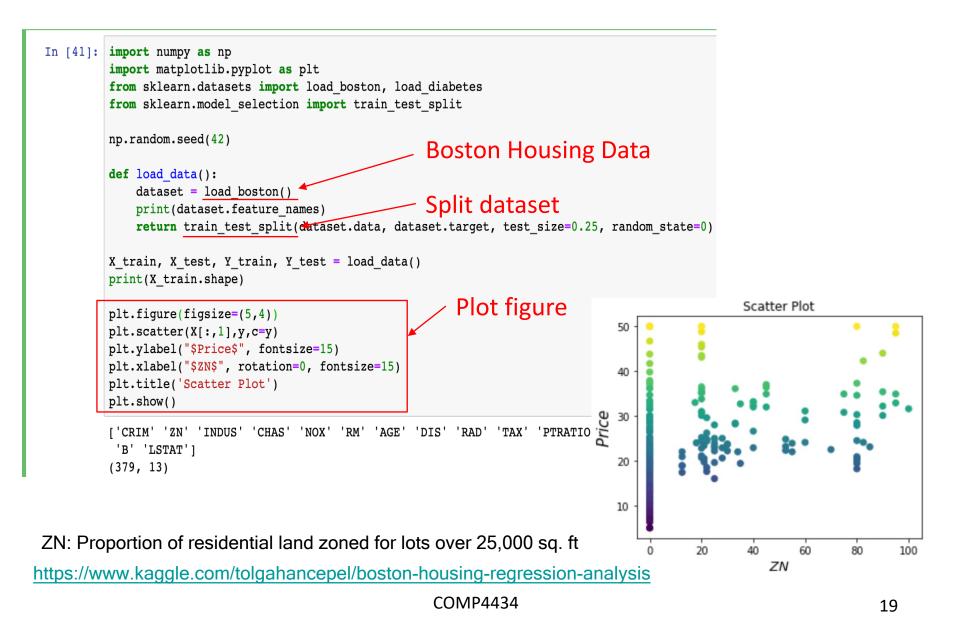
Boston Housing (has an ethical problem)

The Boston Housing Dataset consists of price of houses in various places in Boston. The Boston Housing Dataset has 506 cases. There are **13** Features in each case of the dataset. Alongside with price, the dataset also provide information such as Crime (CRIM), areas of non-retail business in the town (INDUS), the age of people who own the house (AGE), and there are many other attributes.

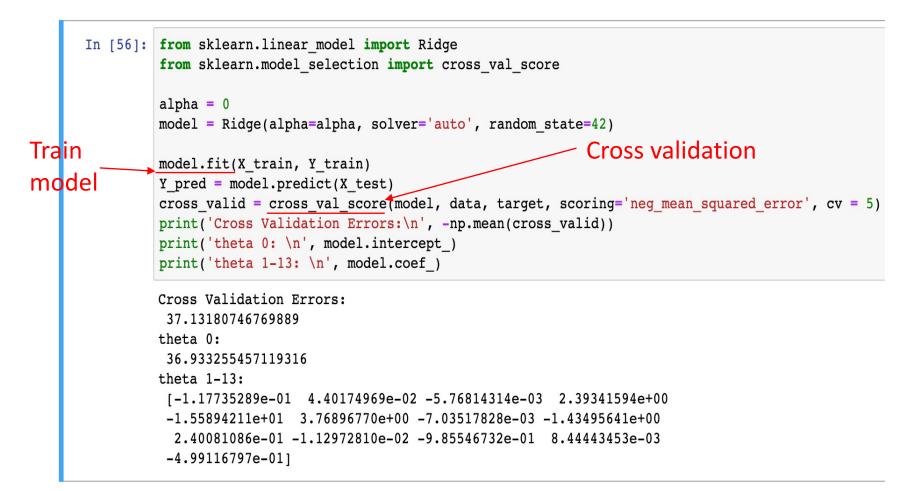
```
from sklearn.datasets import load_boston
boston_dataset = load_boston()
```

CRI M	ZN	IND US	CHA S	NOX	RM	AGE	DIS	RAD	ТАХ	PTR ATI O	В	LST ST	Price
0.006	18.0	2.31	0.0	0.538	6.575	65.2	4.090	1.0	296.0	15.3	396.9	4.98	24.0
0.027	0	7.07	0.0	0.469	6.421	78.9	4.967	2.0	242.0	17.8	396.9	9.14	21.6

Generate Training Data

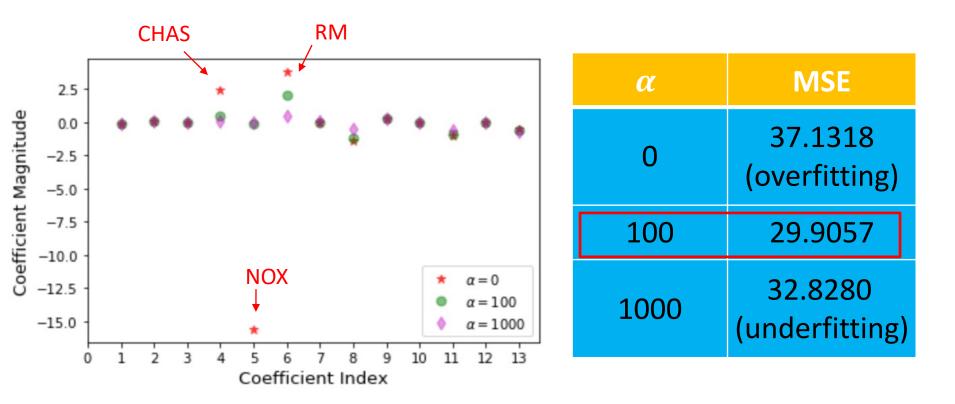


Build Model



```
h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_{13} x_{13}
```

Regularization



The magnitudes of coefficient indices 4,5,6 are considerably reduced after regularization with α = 100, resulting in lower mean square error

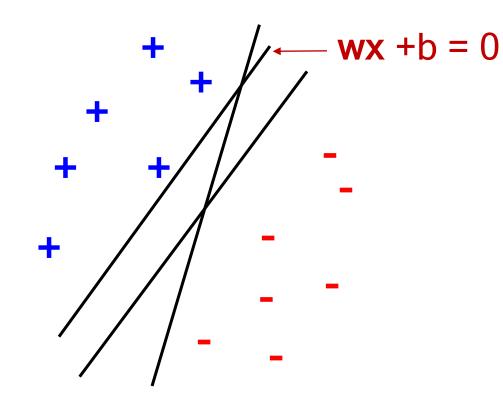
History of Support Vector Machines

- SVM was first introduced in 1992 [1]
- SVM becomes popular because of its success in handwritten digit recognition
 - 1.1% test error rate for SVM. This is the same as the error rates of a carefully constructed neural network, LeNet 4.
 - See Section 5.11 in [2] or the discussion in [3] for details

- [1] B.E. Boser *et al.* A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory 5 144-152, Pittsburgh, 1992.
- [2] L. Bottou *et al.* Comparison of classifier methods: a case study in handwritten digit recognition. Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 2, pp. 77-82.
- [3] V. Vapnik. The Nature of Statistical Learning Theory. 2nd edition, Springer, 1999.

Support Vector Machines

Want to separate "+" from "-" using a line



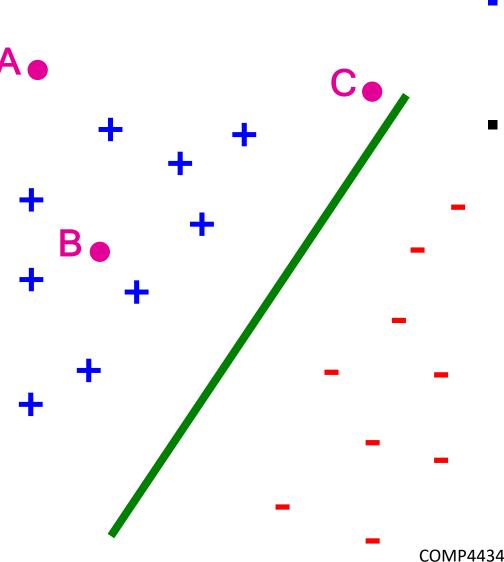
Data:

- Training examples:
 - $(x^{(1)}, y_1) \dots (x^{(m)}, y_m)$
- Each example *i*:
 - $\mathbf{x}^{(i)} = (\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_d^{(i)})$
 - $x_j^{(i)}$ is real valued
 - $y_i \in \{-1, +1\}$

Which is best linear separator (defined by w)?

COMP4434

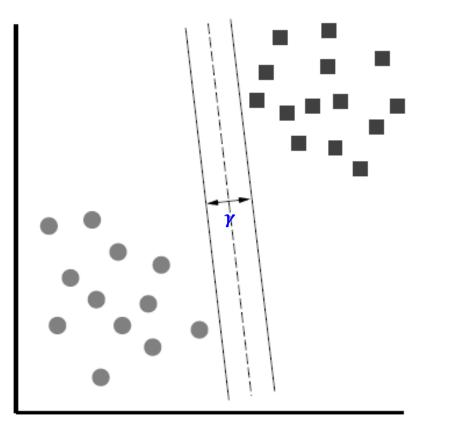
Largest Margin

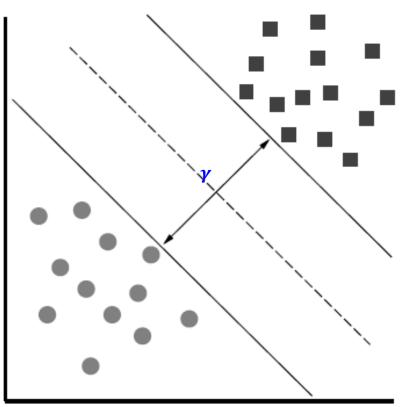


- Distance from the separating hyperplane corresponds to the "confidence" of prediction
- Example:
 - We are more confident about the class of A and B than of C

Largest Margin

Margin γ (gamma): Distance of closest example from the decision line/hyperplane

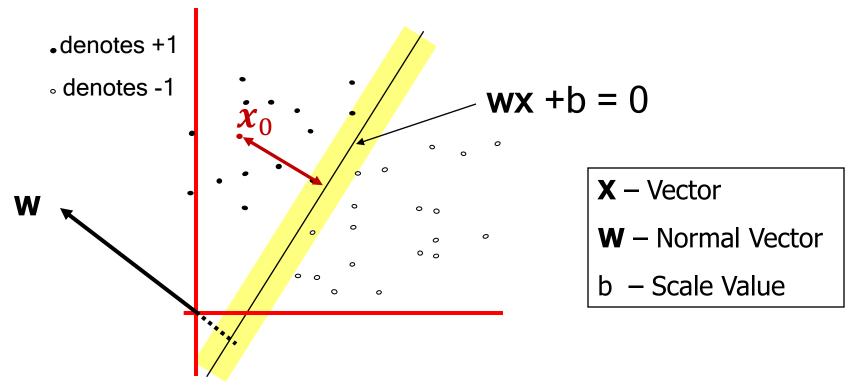




The reason we define margin this way is due to theoretical convenience and existence of generalization error bounds that depend on the value of margin.

COMP4434

Distance from a point to a line

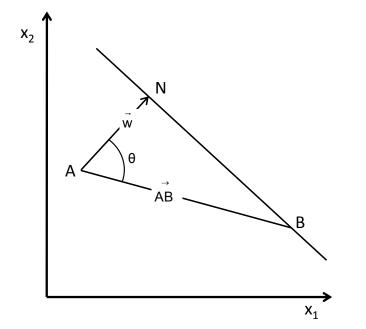


What is the distance expression for a point x₀ to a line wx+b= 0?

$$d(\mathbf{x}_0) = \frac{|\mathbf{x}_0 \cdot \mathbf{w} + b|}{\sqrt{||\mathbf{w}||_2^2}} = \frac{|\mathbf{x}_0 \cdot \mathbf{w} + b|}{\sqrt{\sum_{i=1}^d w_i^2}}$$

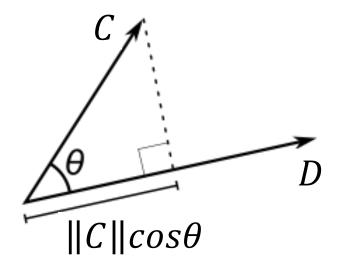
http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

Distance from a point to a line (method 2)



$$\left\|\overrightarrow{AN}\right\| = \left\|\overrightarrow{AB}\right\|\cos \theta = \left\|\overrightarrow{AB}\right\| \left\|\overrightarrow{AB}\right\| \left\|\overrightarrow{W}\right\| = \frac{\overrightarrow{AB}}{\left\|\overrightarrow{AB}\right\|} = \frac{\overrightarrow{AB}}{\left\|w\right\|}$$

$$=\frac{(x_{B1} - x_{A1}, x_{B2} - x_{A2})^{\top} (-w_{1}, -w_{2})}{\|w\|}$$
$$=\frac{w^{\mathsf{T}} \mathbf{x}_{\mathsf{A}} - w^{\mathsf{T}} \mathbf{x}_{\mathsf{B}}}{\|w\|} = \frac{w^{\mathsf{T}} \mathbf{x}_{\mathsf{A}} + \mathsf{b}}{\|w\|}$$



$C \cdot D = \|C\| \cdot \|D\| \cdot \cos \theta$

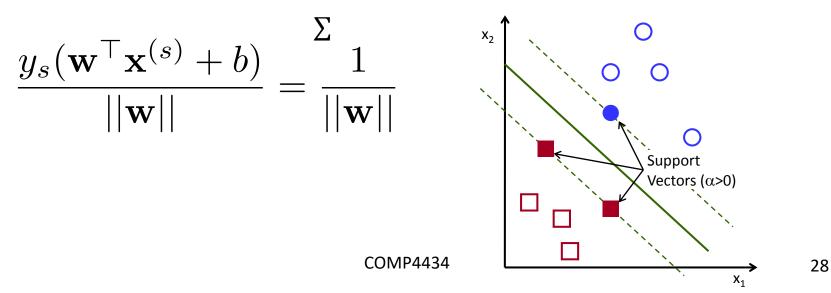
Linear SVM Mathematically

Let training set $\{(\mathbf{x}^{(i)}, y_i)\}_{i=1..n}, \mathbf{x}^{(i)} \in \mathbb{R}^d, y_i \in \{-1, 1\}$ be separated by a hyperplane with margin γ . Then for each training example $(\mathbf{x}^{(i)}, y_i)$:

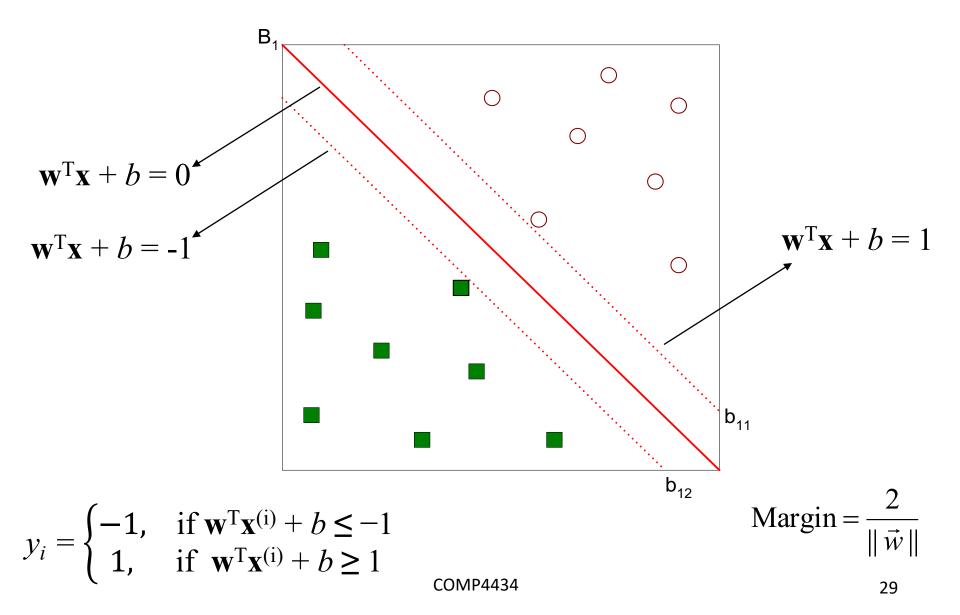
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b \leq -\gamma/2 \quad \text{if } y_i = -1$$

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b \geq \gamma/2 \quad \text{if } y_i = 1 \qquad \Longleftrightarrow \qquad y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b) \geq \gamma/2$$

For every support vector x^(s) the above inequality is an equality.
 After rescaling w and b by γ/2 in the equality, we obtain that distance between each x^(s) and the hyperplane is



Linear Support Vector Machine (SVM)

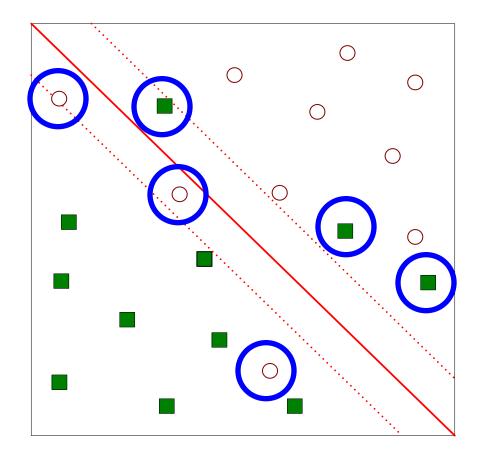


Linear SVM Mathematically (cont.)

- Then the margin can be expressed through (rescaled) w and b as: New margin $\gamma' = \frac{2}{\|\mathbf{w}\|}$
- Then we can formulate the *quadratic optimization problem:* Find w and b such that $\mathbf{y}' = \frac{2}{\|\mathbf{w}\|}$ is maximized and for all $(\mathbf{x}^{(i)}, y_i), i = 1 \dots m : y_i(\mathbf{w}^T \mathbf{x}^{(i)} + b) \ge 1$
- Which can be reformulated as:

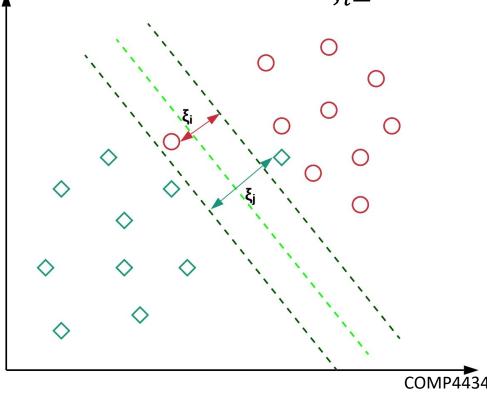
Find w and b such that $\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^{\mathrm{T}}\mathbf{w} \text{ is minimized}$ and for all $(\mathbf{x}^{(i)}, y_i), i=1 \dots m : y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b) \ge 1$

What if the problem is not linearly separable



SVM with soft margin

- Need to minimize: $\frac{1}{2} ||\mathbf{w}||^2 + C\left(\sum_{i=1}^m \xi_i^2\right)$
- subject to: $\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b \leq -1 + \xi_{i}$ if $y_{i} = -1$ $\mathbf{w}^{\mathrm{T}}\mathbf{x}^{(i)} + b \geq 1 \xi_{i}$ if $y_{i} = 1$ $\xi_{i} \geq 0$



Characteristics of SVM

- The learning problem is formulated as a convex optimization problem
- Efficient algorithms are available to find the global minima
- High computational complexity for building the model
- Robust to noise
- Overfitting is handled by maximizing the margin of the decision boundary
- SVM can handle irrelevant and redundant attributes better than many other techniques
- The user needs to provide the type of kernel function & cost function (for nonlinear SVM)
- Difficult to handle missing values