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Definition of Machine Learning

§ H. Simon
Learning denotes changes in the system that are adaptive in 
the sense that they enable the system to do the task or tasks 
drawn from the same population more efficiently and more 
effectively the next time.

§ T. Mitchell: Well posed machine learning – 
Improving performance via experience

Formally, a computer program is said to learn from 
experience E with respect to some class of tasks T and 
performance measure P, if its performance at tasks in T as 
measured by P improves with experience E.
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Machine Learning Algorithms

§ Supervised Learning
§ Training data includes 

desired outputs

§ Unsupervised Learning
§ Training data does not 

include desired outputs
§ Find hidden structure in data

COMP4434 4

§ Semi-supervised Learning
§ Reinforcement Learning
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Supervised Learning Workflow
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Supervised Learning Task - Regression

§ Regression
§ Learning to predict a continuous/real value
§ Ex: housing price, gold price, stock price
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Supervised Learning Task - Classification 

§ Classification
§ Learning to predict a discrete value from a predefined 

set of values
§ Ex. weather prediction, spam email filtering, product 

categorization, object detection, medical diagnose
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Unsupervised Learning Task - Clustering

§ Clustering
§ Determine the intrinsic 

grouping in a set of unlabeled 
data

§ Ex. clustering in networking, 
image clustering
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Supervised vs Unsupervised
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Supervised Unsupervised

• Labeled Data
• Direct Feedback
• Predict Output

• Non-labeled Data
• No Feedback
• Find Hidden Structure in Data
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Supervised learning tasks

§ Classification
§ predicts categorical class labels
§ classifies data (constructs a model) based on the 

training set and the values (class labels) and uses the 
trained model to classify new data

§ return a discrete-value (label) as output, e.g., classifying 
Hang Seng Index (HSI)’s trend as Up, Down, Level

§ Regression
§ models continuous-valued functions, i.e., predicts 

unknown or missing values
§ Return a real-value as output, e.g., predicting HSI’s 

future values
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Two-Step Process

1. Model Construction: describing a set of samples
§ Each sample is associate with a label attribute
§ The set of samples used for model construction: training set
§ The model is represented as mathematical formulae

2. Model Usage: for future or unknown objects
§ The known label of test sample is compared with the result from the model
§ Test set is independent of training set
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Structured Data: Tabular Data
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Sepal Petal
Length Width Length Width
4.9 3.0 1.4 0.2
4.7 3.2 1.3 0.2
4.6 3.1 1.5 0.2
5.0 3.6 1.4 0.2
5.8 4.0 1.2 0.2
5.6 3.0 4.5 1.5
5.8 2.7 4.1 1.0
6.2 2.2 4.5 1.5
5.6 2.5 3.9 1.1
5.9 3.2 4.8 1.8
7.1 3.0 5.9 2.1
6.3 2.9 5.6 1.8
6.5 3.0 5.8 2.2
7.6 3.0 6.6 2.1

Instance/tuple

attribute/feature
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Tabular Data with Labels

§ Attributes of a table 
!!, !", … , !#
§ We also call “attribute” 

as “feature”
§ Number of features 
!	represents the 
dimensionality

§ A data object # is 
represented as 
(#!, #", … , ##)

§ In some datasets, each 
data object has a label
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Sepal Petal Class LabelLength Width Length Width
4.9 3.0 1.4 0.2 Setosa
4.7 3.2 1.3 0.2 Setosa
4.6 3.1 1.5 0.2 Setosa
5.0 3.6 1.4 0.2 Setosa
5.8 4.0 1.2 0.2 Setosa
5.6 3.0 4.5 1.5 Versicolor
5.8 2.7 4.1 1.0 Versicolor
6.2 2.2 4.5 1.5 Versicolor
5.6 2.5 3.9 1.1 Versicolor
5.9 3.2 4.8 1.8 Versicolor
7.1 3.0 5.9 2.1 Virginica
6.3 2.9 5.6 1.8 Virginica
6.5 3.0 5.8 2.2 Virginica
7.6 3.0 6.6 2.1 Virginica
4.9 2.5 4.5 1.7 Virginica
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Classification (Binary vs Multi-class)
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§ Binary Classification
§ Email: Spam / Not Spam
§ Tumor: Malignant / Benign
§ Covid-19: Positive / Negative 
§ & ∈ {0,1}	

§ Multi-class Classification
§ Email auto-tagging: Spam / Work / Personal
§ Credit Rating: Poor / Okay / Trust
§ Handwriting number: 0, 1, 2, 3, 4, ...
§ & ∈ {0,1,2, … }
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Classification by Linear Regression

§ Training Examples
§ both are supervised learning (", $)	
§ Linear Regression: $ is a real-value, 

e.g., salary
§ What we need is discrete label:

§ 0: malignant; 1: benign
§ Can we use Linear Regression Model to 

do classification? Any disadvantages?
§ Yes, we can, but not good 
§ ℎ$ " = )% +)!"
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Classification by Linear Regression - Example

§ A linear regression model 
classifies tumors as malignant (1) 
or benign(0) given their size

§ The linear regression model 
minimizes the distances between 
the points and the hyperplane 
(line for single feature)

§ The threshold is set as 0.5
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Classification by Linear Regression - Example

§ After introducing a few more 
malignant tumor cases, the 
regression line shifts and a 
threshold of 0.5 no longer 
separates the classes

§ Conclusion:  Linear regression is 
sensitive to imbalance data for 
classification problem.

17COMP4434



New Jersey Institute of Technology

Logistic Regression

§ New model outputs 
probabilities

§ It works better in both 
cases using 0.5 as a 
threshold

§ The inclusion of 
additional points does 
not affect the 
estimated curve too 
much 
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Hypothesis Model

§ Linear Regression:  −∞ < ℎ$ ( < +∞
       ℎ$ # = /%#% + /!#! +⋯+ /&#& = /'#

§ Logistic Regression: 0 < ℎ$ ( < 1
§ ℎ$ # = 2(/'#)
§ logistic/sigmoid function 2 5 = !

!()!"

§ ℎ$ # = !
!()!#$%

§ https://www.wolframalpha.com/
y = 1/(1+e^-x), x from -6 to 6

✓ =

2

6664

✓0
✓1
...
✓n

3

7775
x =

2

6664

x0

x1
...
xn

3

7775
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https://www.wolframalpha.com/
https://www.wolframalpha.com/
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Representation

§ ℎ$ (  represents the estimated probability that 
, = 1 on input (

§ ℎ$ ( = .{, = 1|(, 1} means probability of , = 1, 
given (, under parameter values 1

§ .{, = 0|(, 1} = 1 − ℎ$ (

§ Example

§
#%
#! = 1

6789:;	<=	>?@8	A<;!>	
§ ℎ$ # = 0.8: this email # has 80% chance of being spam
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Further Understanding

§ ℎ$ ( = 3 1%( = !
!&'!"#$

∈ (0,1)
§ Predict , = 1 when ℎ$ ( ≥ 0.5, i.e., 1%( ≥ 0
§ Predict , = 0 when	1%( < 0
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Decision Boundary

§ 1%( = 0 is the decision boundary, e.g.,
§ Assume ℎ$ ( = 3(−3 + (! + (")
§ Decision boundary:	−3 + (! + (" = 0, 

i.e., (! + (" = 3
§ Predict , = 1 when −3 + (! + (" ≥ 0, 

i.e., (! + (" ≥ 3 (red)
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Other Decision Boundary

§ Given ℎ$ ( = 3 1%( = 3(
)

1((( + 1!(! +
1"(" + 1)(!" + 1*("" = 3(−1 + (!" + ("")

§ If ℎ$ ( = 3(−1 + (!" + (""), draw the region 
that predicts , = 1 in the ((!, (") plane
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Non-Linear Decision Boundary

§ Decision boundary 1%( = 0 → (!" + ("" = 1
§ Predict , = 1 when (!" + ("" ≥ 1
§ The region of , = 1 is outside the circle
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Cost Function of Linear Regression

§ Cost Function = 1 = min
$& ,$' ,…

!
",
∑-.!, ℎ$(#(-)) − &(-) "
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§ Linear Regression
§ ℎ$ is linear 
§ I(/) is convex
§ I(/)	has a single minimum
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§ MSE: Mean Square Error
!
+ ∑,-!+ ?,. − ,. "

§ MAE: Mean Absolute Error
!
+ ∑,-!+ ?,. − ,.

§ MAPE (Mean Absolute Percentage Error)
!((%
+  ∑,-!+ 01%21%

1%
 

Regression Metrics
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Apply MSE to Logistic Regression

§ We can apply the same cost function for logistic 
regression
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§ Problems
§ I(/) would become non-convex. Why?
§ It has multiple local minimums
§ Gradient descent will be stuck in a local minimum

https://towardsdatascience.com/why-
not-mse-as-a-loss-function-for-logistic-
regression-589816b5e03c
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Logistic Loss

=(1) = 1
@A

,-!

3
BCDE ℎ$ ((,) , ,(,)

BCDE ℎ$ ( , , = F −log(ℎ$(()) , = 1
−log(1 − ℎ$(()) , = 0
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Logistic Loss - Heavy Penalty

BCDE ℎ$ ( , , = F −log(ℎ$(()) , = 1
−log(1 − ℎ$(()) , = 0

§ BCDE ℎ$ ( , , → 0  
§ When ℎ$ # → 1, i.e., predict & = 1
§ Good predication, low cost

§ BCDE ℎ$ ( , , → ∞  
§ When ℎ$ # → 0, i.e., predict & = 0
§ Bad predicafon!
§ High cost represents penalty

−log(:)
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Understanding !"#$ ℎ! & , ( = *

BCDE ℎ$ ( , , = F −log(ℎ$(()) , = 1
−log(1 − ℎ$(()) , = 0

§ BCDE ℎ$ ( , , → 0  
§ When ℎ$ # → 0, i.e., predict & = 0
§ Good predication, low cost

§ BCDE ℎ$ ( , , → ∞  
§ When ℎ$ # → 1, i.e., predict & = 1
§ Bad predicafon!
§ High cost represents penalty

−log(1 − :)

10
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Cost Function

!(#) = 1
'(

!"#

$
)*+, ℎ% .(!) , 0(!)

)*+, ℎ% . , 0 = 1 −log(ℎ%(.)) 0 = 1
−log(1 − ℎ%(.)) 0 = 0

)*+, ℎ% . , 0 = −0log ℎ%(.) −(1 − 0)log(1 − ℎ%(.))

! # = − 1
'(

!"#

$
0(!) log ℎ% .(!) + 1 − 0(!) log 1 − ℎ% .(!)

31COMP4434



New Jersey Institute of Technology

Gradient Descent Algorithm

KI(/%, /!, ⋯ )
K/1

= 1
8L

-.!

,
ℎ$ #(-) − &(-) #1

(-)

< = = − 1
?@

!"#

$
A(!) log ℎ% C(!) + 1 − A(!) log 1 − ℎ% C(!)

ℎ% C = E =(C = 1
1 + F)%!*

/1 = /1 − a
KI(/%, /!, ⋯ )

K/1

Repeat until convergence {

}

Looks identical to linear regression!

32COMP4434



New Jersey Institute of Technology

How about Multi-class Classification

§ Train a logistic regression classifier ℎ$
(,) (  

for each class J to predict the probability of 
, = 1	

§ On a new input (, pick the class that 
maximizes max

,
ℎ$
(,) (

33COMP4434



New Jersey Institute of Technology

One-vs-All Approach
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Exercise

§ Assume that there is a classification problem with 4 classes. 
Each instance has 5 features. What is the total number of 
parameters, if you are solving it by using linear logistic 
regression and one-vs-all approach? Remember to include /%.

§ We have 4 classes, so we need 4 binary classifiers. In each 
classifier, we have /%, /!, /", ..., /2. Thus, in total, we have 4*6 
= 24 parameters.
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§ True Positives (TP): the actual class of the 
data point was True and the predicted is 
also True

§ True Negatives (TN): the actual class of 
the data point was False and the 
predicted is also False

§ False Positives (FP): the actual class of 
the data point was False and the 
predicted is True

§ False Negatives (FN): the actual class of 
the data point was True and the 
predicted is False

Classification Metrics

36
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Accuracy = TP + TN
TP + FP + FN + TN

§ A good measure when the target 
variable classes in the data are nearly 
balanced
§ 60% classes in our fruit images are apples 

and 40% are oranges

§ NEVER used as a measure when the 
target variable classes in the data are a 
majority of one class (Why?)

Accuracy
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Limitation of Accuracy

Accuracy = TP + TN
TP + FP + FN + TN

§ Example: In daily life, 5 people in 100 people have cancer.

§ Consider a fake cancer detection model only outputs ‘health’, 
its accuracy can achieve 95%. 

§ Although its accuracy is good, is it a good model? NO.

§ Observation: Accuracy performs bad when the target variable 
classes in the data are a majority of one class.
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Precision = TP
TP + FP

§ Precision is about being precise; even 
if we managed to capture only one 
True case, and we captured it 
correctly, then we are 100% precise

Recall = TP
TP + FN

§ Recall is not so much about capturing 
cases correctly but more about 
capturing all True cases

Precision and Recall
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F1	Score = 2×Precision×Recall
Precision + Recall

§ A single score that represents both Precision and Recall
§ F1 Score is the harmonic mean of Precision and Recall

§ Different with arithmetic mean, harmonic mean is closer 
to the smaller number as compared to the larger number

§ If Precision is 0.01 and Recall is 0.99, then arithmetic
mean is 0.5 and harmonic mean is 0.0198

§ Therefore, F1 score of the previous cancer detection 
model will be 0 (“positive” refers to having cancer)

F1 Score 
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Exercise

§ Assume that there are 1,000 documents in total. Among them, 
700 documents are related to big data analysis. You build a 
model to identify documents related to big data analysis. As a 
result, your model returns 800 documents, but only 550 of them 
are relevant to big data analysis. What is the recall of your 
model? What is the F1 score of your model?

§ TP = 550.  FP = 250. FN = 150
§ Precision = 550/800.
§ Recall = 550/700.
§ F1 = (2*550/800*550/700)/(550/800+550/700) = 0.733333333.
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