
COMP4434 Big Data Analytics

Lecture 10
Recurrent Neural Networks

HUANG Xiao
xiaohuang@comp.polyu.edu.hk

New Jersey Institute of Technology

Outline
§ Vanilla Recurrent Neural Networks

§ Exploding and Vanishing Gradients
§ RNNs with Cell states

§ Long Short-Term Memory (LSTM)
§ Gated Recurrent Unit (GRU)

§ Sequence Learning Architectures
§ Sequence Learning with one RNN Layer
§ Sequence Learning with multiple RNN Layers

§ Application: Sequence-to-Sequence Model in Activities of Daily
Living (ADL) Recognition

3COMP4434

New Jersey Institute of Technology

Recurrent Neural Networks
§ Human brain deals with information streams. Most data is obtained,

processed, and generated sequentially.
§ E.g., listening: soundwaves à vocabularies/sentences
§ E.g., reading: words in sequence

§ Human thoughts have persistence; humans don’t start their thinking
from scratch every second.
§ As you read this sentence, you understand each word based on your

prior knowledge
§ The applications of multilayer perceptron and Convolutional Neural

Networks are limited due to:
§ Only accept a fixed-size vector as input (e.g., an image) and produce

a fixed-size vector as output (e.g., probabilities of different classes)
§ Recurrent Neural Networks (RNNs) are a family of neural networks

introduced to learn sequential data.
§ Inspired by the temporal-dependent and persistent human thoughts

4COMP4434

New Jersey Institute of Technology

Real-life Sequence Learning Applications
RNNs can be applied to various type of sequential data to learn the
temporal patterns.
§ Time-series data (e.g., stock price) à Prediction, regression
§ Raw sensor data (e.g., signal, voice, handwriting) à Labels or text

sequences
§ Text à Label (e.g., sentiment) or text sequence (e.g., translation,

summary, answer)
§ Image and video à Text description (e.g., captions, scene

interpretation)

5COMP4434

Task Input Output

Activity Recognition (Zhu et al. 2018) Sensor Signals Activity Labels

Machine translation (Sutskever et al. 2014) English text French text

Question answering (Bordes et al. 2014) Question Answer

Speech recognition (Graves et al. 2013) Voice Text

Handwriting prediction (Graves 2013) Handwriting Text

Opinion mining (Irsoy et al. 2014) Text Opinion expression

New Jersey Institute of Technology

RNNs have loops
RNNs are networks with loops,
allowing information to persist.

6COMP4434

A chunk of neural network, A = fW ,
looks at some input !! and outputs a
value ℎ!. A loop allows information
to be passed from one step of the
network to the next.

Output is to predict a
vector ht, where final
output !!= #(ℎ!) at
some time steps !

New Jersey Institute of Technology

Unrolling RNN

§ A recurrent neural network can be thought of as multiple copies
of the same network, each passing a message to a successor

§ The diagram above shows what happens if we unroll the loop

7COMP4434

New Jersey Institute of Technology

Pros and cons of vanilla RNNs
The recurrent structure of RNNs enables the following
characteristics:
§ Specialized for processing a sequence of values ! " , … , ! #

§ Each value ! $ is processed with the same network A that
preserves past information

§ Can scale to much longer sequences than would be practical for
networks without a recurrent structure
§ Reusing network A reduces the required amount of

parameters in the network
§ Can process variable-length sequences

§ The network complexity does not vary when the input
length change

§ However, vanilla RNNs suffer from the training difficulty due to
exploding and vanishing gradients

8COMP4434

New Jersey Institute of Technology

Exploding and Vanishing Gradients

§ Exploding: If we start almost exactly on the boundary (cliff), tiny
changes can make a huge difference.

§ Vanishing: If we start a trajectory within an attractor (plane, flat
surface), small changes in where we start make no difference to
where we end up.

§ Both cases hinder the learning process.

9COMP4434

Cliff/boundary

Plane/attractor

New Jersey Institute of Technology

Exploding and Vanishing Gradients in RNNs

In vanilla RNNs, computing this gradient involves many factors of $
(and repeated tanh)*. If we decompose the singular values of the
gradient multiplication matrix,
§ Largest singular value > 1 à Exploding gradients

§ Slight error in the late time steps causes drastic updates in the early
time steps à Unstable learning

§ Largest singular value < 1 à Vanishing gradients
§ Gradients passed to the early time steps is close to 0. à Uninformed

correction

10* Refer to Bengio et al. (1994) or Goodfellow et al. (2016) for a complete derivation

!! = #(%!,'%!)

New Jersey Institute of Technology

RNNs with Cell states
§ Vanilla RNN operates in a “multiplicative” way

(repeated tanh)
§ Two recurrent cell designs were proposed and

widely adopted:
§ Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997)
§ Gated Recurrent Unit (GRU) (Cho et al. 2014)

§ Both designs process information in an “additive”
way with gates to control information flow
§ Sigmoid gate outputs numbers between 0

and 1, describing how much of each
component should be let through

Standard LSTM Cell

GRU Cell

A Sigmoid Gate= Sigmoid (Wf xt + Ut ht-1 + bf)E.g.,

New Jersey Institute of Technology

Activation Functions

12

New Jersey Institute of Technology

Long Short-Term Memory (LSTM)

§ The key to LSTMs is the cell state.
§ Stores information of the past à long-term memory
§ Passes along time steps with minor linear interactions à “additive”
§ Results in an uninterrupted gradient flow à errors in the past pertain

and impact learning in the future
§ The LSTM cell manipulates input information with three gates.

§ Input gate à controls the intake of new information
§ Forget gate à determines what part of the cell state to be updated
§ Output gate à determines what part of the cell state to output 13

Cell State)"

Gradient Flow

New Jersey Institute of Technology

LSTM: Components & Flow

§ LSTM unit output
§ Output gate units
§ Transformed memory cell contents
§ Gated update to memory cell units
§ Forget gate units
§ Input gate units
§ Potential input to memory cell

14COMP4434

New Jersey Institute of Technology

Step-by-step LSTM Walk Through

Step 1: Decide what information to throw away from the cell state
(memory) è
§ The output of the previous state ℎ%&" and the new information !%

jointly determine what to forget
§ ℎ%&" contains selected features from the memory *%&"

§ Forget gate +% ranges between [0, 1]
§ Text processing example:

§ Cell state may include the gender of the current subject (ℎ%&").
§ When the model observes a new subject (!%), it may want to

forget (+% → 0) the old subject in the memory (*%&"). 15

Forget gate

New Jersey Institute of Technology

Step 2: Input gate

Step 2: Prepare the updates for the cell state from input è
§ An alternative cell state 1*% is created from the new information

!% with the guidance of ℎ%&"
§ Input gate 2% ranges between [0, 1]
§ Example: the model may want to add (2% → 1) the gender of

new subject (1*%) to the cell state to replace the old one it is
forgetting

16COMP4434

Input gate
Alternative
cell state

New Jersey Institute of Technology

Step 3: Update the cell state

Step 3: Update the cell state è
§ The new cell state *% is comprised of information from the past

+% ∗ *%&" and valuable new information 2% ∗ 1*%
§ ∗ denotes elementwise multiplication
§ Example: the model drops the old gender information (+% ∗ *%&")

and adds new gender information (2% ∗ 1*%) to form the new cell
state (*%)

17COMP4434

New cell state

New Jersey Institute of Technology

Step 4: Output gate

Step 4: Decide the filtered output from the new cell state è
§ tanh function filters the new cell state to characterize stored

information
§ Significant information in !! à ±1
§ Minor details à 0

§ Output gate 4% ranges between 0, 1
§ ℎ% serves as a control signal for the next time step
§ Example: Since the model just saw a new subject (!'), it might

want to output ("' → 1) information relevant to a verb (tanh(*')),
e.g., singular/plural, in case a verb comes next 18

Output gate

New Jersey Institute of Technology

Gated Recurrent Unit (GRU)

§ GRU is a variation of LSTM that also adopts the gated design.
§ Differences:

§ GRU uses an update gate 5 to substitute the input and
forget gates 2% and +%

§ Combined the cell state *% and hidden state ℎ% in LSTM as a
single cell state ℎ%

§ GRU obtains similar performance compared to LSTM with fewer
parameters and faster convergence. (Cho et al. 2014) 19

New Jersey Institute of Technology

Gated Recurrent Unit (GRU)

§ Update gate: controls the composition of the new state
§ Reset gate: determines how much old information is needed in

the alternative state 1ℎ%
§ Alternative state: contains new information
§ New state: replace selected old information with new

information in the new state

20COMP4434

New Jersey Institute of Technology

Sequence Learning Architectures

§ Learning on RNN is more robust when the
vanishing/exploding gradient problem is resolved.
§ RNNs can now be applied to different Sequence

Learning tasks

§ Recurrent NN architecture is flexible to operate over
various sequences of vectors.
§ Sequence in the input, the output, or in the most

general case both
§ Architecture with one or more RNN layers

21COMP4434

New Jersey Institute of Technology

Sequence Learning with One RNN Layer

1. Standard NN mode without recurrent structure (e.g., image classification,
one label for one image)

2. Sequence output (e.g., image captioning, takes an image and outputs a
sentence of words)

3. Sequence input (e.g., sentiment analysis, a sentence is classified as
expressing positive or negative sentiment).

4. Sequence input and sequence output (e.g., machine translation, a sentence
in English is translated into a sentence in French)

5. Synced sequence input and output (e.g., video classification, label each
frame of the video) 22

1 2 3 4 5

• Each rectangle is a vector and arrows represent functions (e.g., matrix multiply)
• Input vectors are in red, output vectors are in blue and green vectors hold the RNN's state

New Jersey Institute of Technology

Sequence-to-Sequence (Seq2Seq) model
§ Developed by Google in 2018 for use in machine translation.
§ Seq2seq turns one sequence into another sequence. It does so by use of

a recurrent neural network (RNN) or more often LSTM or GRU to avoid the
problem of vanishing gradient.

§ The primary components are one Encoder and one Decoder network. The
encoder turns each item into a corresponding hidden vector containing the
item and its context. The decoder reverses the process, turning the vector
into an output item, using the previous output as the input context.

§ Encoder RNN: extract and compress the
 semantics from the input sequence
§ Decoder RNN: generate a sequence

based on the input semantics
§ Apply to tasks such as machine
 translation

§ Similar underlying semantics
§ E.g., “I love you.” to “Je t’aime.”

23COMP4434

B B B B

y
0

y
1

y
2

y
m

…

An RNN as the encoder An RNN as the decoder

Input sequence

Encoded semantics

Decoded sequence

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Vanishing_gradient_problem

New Jersey Institute of Technology

num_layers

24COMP4434

New Jersey Institute of Technology

Bidirectional RNN

25COMP4434

BBBB

§ Connects two recurrent units (synced many-to-many model) of
opposite directions to the same output.

§ Captures forward and backward information from the input sequence
§ Apply to data whose current state (e.g., ℎ") can be better determined

when given future information (e.g., %#, %$, … , %!)
§ E.g., in the sentence “the bank is robbed,” the semantics of

“bank” can be determined given the verb “robbed.”

New Jersey Institute of Technology

RNN Application: High-level ADL Recognition
§ Activities of Daily Living (ADLs) are introduced to evaluate the

self-care ability of senior citizens (Williams 2014)
§ Sensor-based home monitoring systems

§ Environment: Placed in the environment to capture changes
(e.g., on/off, motion)

§ Wearable: Attached to the body to measure movements
and physiological signals

§ Sensors sample at 10 Hz à 0.8 million records per day
§ Machine learning (esp. deep learning) needed to recognize ADLs

from the large amount of data
§ Mid-level (ML) ADLs: gestures, gait, etc.
§ High-level (HL) ADLs: preparing food, medical intake,

senior care, etc.
§ Research Objective: develop a universal ADL recognition

framework to extract HL-ADLs from raw sensor data 26

New Jersey Institute of Technology

Seq2Seq-ADL Research Design

• Intuition: Recognizing the HL-ADLs from the sensor data is similar
to captioning/translation. We can generate ADL label sequence
with a Seq2Seq model for the input data. The underlying
semantics are similar.
• A Seq2Seq model is designed to extract HL-ADLs from the activity

state sequence

27COMP4434

New Jersey Institute of Technology

Activity Reconstruction
§ Objective: create temporally

aligned activity
representation from different
data sources

§ Four sensors for
demonstration:
§ a force plate à

pressure on the floor
§ a door on/off sensor à

open (o) and close (c)
states

§ a human motion sensor
§ object motion sensor

attached on the fridge
§ Step 1. Extract discrete

motion states from motion
sensor data with a state-of-
the-art gesture recognition
model

§ Step 2. Interpolate discrete
data from each sensor

28COMP4434

New Jersey Institute of Technology

Activity Reconstruction
§ Steps 3. Sample each data stream

at same timestamps to construct
the Activity State representations
§ Temporally aligned

observations
§ Steps 4. Encode the Activity

States (%
§ Encode categorical (discrete)

values using one-hot
encoding

§ Step 5. Organize the states vector
in a matrix)
§ Data matrix) aggregates

temporally aligned sensor
observation sequences to
represent the activity 29COMP4434

New Jersey Institute of Technology

Seq2Seq - Encoder
§ The encoder network takes the

Activity State Sequence 6 as the
input to generate the activity
semantics vector 7

§ The encoder network adopts
GRU recurrent cells to learn
temporal patterns

§ Each hidden state ℎ$'
depends on the input !$ and
the previous state ℎ$&"'

30COMP4434

§ 7 is expected to be a condensed representation for human/object
motions, object usages, and their temporal patterns during the
period.

New Jersey Institute of Technology

Seq2Seq - Decoder

§ The decoder network takes the
encoded activity semantics vector 7
to generate HL-ADL label for each
input vector

§ The decoder network also adopts
GRU recurrent cells to interpret the
temporal patterns

§ Multi-class classification
§ Softmax à probability

distribution over output classes
§ Categorical cross-entropy loss

31COMP4434

New Jersey Institute of Technology

Experimental results

§ S2S_GRU model is evaluated on two different datasets
§ S2S_GRU is more accurate and flexible in adjusting to different

real-life HL-ADL recognition applications

32COMP4434

Recall (%)
Filling
pillbox

Watch
DVD

Water
plants

Answer
the
phone

Prepare
gift card

Prepare
soup Cleaning

Choose
outfit

S2S_GRU 88.6 79.0 58.5 80.8 92.1 71.1 85.0 58.0
HMM 33.2*** 31.6*** 16.8*** 22.0*** 29.9*** 26.4*** 20.4*** 22.5***
S2S_LSTM 86.1* 77.8 64.3 74.9* 90.8* 69.6 82.5 49.5**

Recall (%) Relaxing Coffee time Early morning Cleanup Sandwich time
S2S_GRU 61.7 66.5 72.1 82.6 79.1
HMM 48.8 19.5*** 6.4*** 17.4*** 40.9***
S2S_LSTM 60.0 54.9** 75.9 83.2 59.9***

Recall of S2S_GRU against benchmarks on a wearable/environment motion sensor dataset

Recall of S2S_GRU against benchmarks on an environment sensor dataset

*: p-value<0.05, **: p-value<0.01, ***: p-value<0.001

New Jersey Institute of Technology

Development of natural language processing tools

33COMP4434

New Jersey Institute of Technology

Summary

§ LSTM and GRU are RNNs that retain past information
and update with a gated design.
§ The “additive” structure avoids vanishing gradient

problem
§ RNNs allow flexible architecture designs to adapt to

different sequence learning requirements.
§ RNNs have broad real-life applications.

§ Text processing, machine translation, signal
extraction/recognition, image captioning

§ Mobile health analytics, activity of daily living,
senior care

34COMP4434

New Jersey Institute of Technology

Important References

§ Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. IEEE transactions on neural
networks, 5(2), 157-166.

§ Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep
learning (Vol. 1). Cambridge: MIT press.

§ Graves, A. (2012). Supervised sequence labelling with recurrent neural
networks. https://www.cs.toronto.edu/~graves/preprint.pdf

§ Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015, June). An empirical
exploration of recurrent network architectures. In International Conference
on Machine Learning (pp. 2342-2350).

§ Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent
neural networks for sequence learning. arXiv preprint arXiv:1506.00019.

§ Salehinejad, H., Baarbe, J., Sankar, S., Barfett, J., Colak, E., & Valaee, S.
(2017). Recent Advances in Recurrent Neural Networks. arXiv preprint
arXiv:1801.01078.

35COMP4434

https://www.cs.toronto.edu/~graves/preprint.pdf

