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Outline
§ Vanilla Recurrent Neural Networks

§ Exploding and Vanishing Gradients
§ RNNs with Cell states

§ Long Short-Term Memory (LSTM)
§ Gated Recurrent Unit (GRU)

§ Sequence Learning Architectures
§ Sequence Learning with one RNN Layer
§ Sequence Learning with multiple RNN Layers

§ Application: Sequence-to-Sequence Model in Activities of Daily 
Living (ADL) Recognition
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Recurrent Neural Networks
§ Human brain deals with information streams. Most data is obtained, 

processed, and generated sequentially.
§ E.g., listening: soundwaves à vocabularies/sentences
§ E.g., reading: words in sequence

§ Human thoughts have persistence; humans don’t start their thinking 
from scratch every second. 
§ As you read this sentence, you understand each word based on your 

prior knowledge
§ The applications of multilayer perceptron and Convolutional Neural 

Networks are limited due to:
§ Only accept a fixed-size vector as input (e.g., an image) and produce 

a fixed-size vector as output (e.g., probabilities of different classes)
§ Recurrent Neural Networks (RNNs) are a family of neural networks 

introduced to learn sequential data.
§ Inspired by the temporal-dependent and persistent human thoughts

4COMP4434



New Jersey Institute of Technology

Real-life Sequence Learning Applications
RNNs can be applied to various type of sequential data to learn the 
temporal patterns.
§ Time-series data (e.g., stock price) à Prediction, regression
§ Raw sensor data (e.g., signal, voice, handwriting) à Labels or text 

sequences
§ Text à Label (e.g., sentiment) or text sequence (e.g., translation, 

summary, answer) 
§ Image and video à Text description (e.g., captions, scene 

interpretation)
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Task Input Output

Activity Recognition (Zhu et al. 2018) Sensor Signals Activity Labels

Machine translation (Sutskever et al. 2014) English text French text

Question answering (Bordes et al. 2014) Question Answer 

Speech recognition (Graves et al. 2013) Voice Text 

Handwriting prediction (Graves 2013) Handwriting Text

Opinion mining (Irsoy et al. 2014) Text Opinion expression
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RNNs have loops
RNNs are networks with loops,  
allowing information to persist.
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A chunk of neural network, A = fW , 
looks at some input !! and outputs a 
value ℎ!. A loop allows information 
to be passed from one step of the 
network to the next. 

Output is to predict a 
vector ht, where final 
output !!= #(ℎ!) at 
some time steps !
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Unrolling RNN

§ A recurrent neural network can be thought of as multiple copies 
of the same network, each passing a message to a successor

§ The diagram above shows what happens if we unroll the loop
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Pros and cons of vanilla RNNs
The recurrent structure of RNNs enables the following 
characteristics:
§ Specialized for processing a sequence of values ! " , … , ! #

§ Each value ! $  is processed with the same network A that 
preserves past information

§ Can scale to much longer sequences than would be practical for 
networks without a recurrent structure
§ Reusing network A reduces the required amount of 

parameters in the network
§ Can process variable-length sequences

§ The network complexity does not vary when the input 
length change

§ However, vanilla RNNs suffer from the training difficulty due to 
exploding and vanishing gradients
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Exploding and Vanishing Gradients

§ Exploding: If we start almost exactly on the boundary (cliff), tiny 
changes can make a huge difference.

§ Vanishing: If we start a trajectory within an attractor (plane, flat 
surface), small changes in where we start make no difference to 
where we end up.

§ Both cases hinder the learning process.
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Cliff/boundary

Plane/attractor
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Exploding and Vanishing Gradients in RNNs

In vanilla RNNs, computing this gradient involves many factors of $ 
(and repeated tanh)*. If we decompose the singular values of the 
gradient multiplication matrix,
§ Largest singular value > 1 à Exploding gradients

§ Slight error in the late time steps causes drastic updates in the early 
time steps à Unstable learning

§ Largest singular value < 1 à Vanishing gradients 
§ Gradients passed to the early time steps is close to 0. à Uninformed 

correction

10* Refer to Bengio et al. (1994) or Goodfellow et al. (2016) for a complete derivation

!! = #(%!,'%!)
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RNNs with Cell states
§ Vanilla RNN operates in a “multiplicative” way 

(repeated tanh)
§ Two recurrent cell designs were proposed and 

widely adopted: 
§ Long Short-Term Memory (LSTM) (Hochreiter 

and Schmidhuber, 1997)
§ Gated Recurrent Unit (GRU) (Cho et al. 2014)

§ Both designs process information in an “additive” 
way with gates to control information flow
§ Sigmoid gate outputs numbers between 0 

and 1, describing how much of each 
component should be let through

Standard LSTM Cell

GRU Cell

A Sigmoid Gate= Sigmoid ( Wf xt + Ut ht-1 + bf )E.g.,
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Activation Functions

12
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Long Short-Term Memory (LSTM)

§ The key to LSTMs is the cell state.
§ Stores information of the past à long-term memory
§ Passes along time steps with minor linear interactions à “additive”
§ Results in an uninterrupted gradient flow à errors in the past pertain 

and impact learning in the future
§ The LSTM cell manipulates input information with three gates.

§ Input gate à controls the intake of new information
§ Forget gate à determines what part of the cell state to be updated
§ Output gate à determines what part of the cell state to output 13

Cell State )"

Gradient Flow
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LSTM: Components & Flow

§ LSTM unit output
§ Output gate units
§ Transformed memory cell contents
§ Gated update to memory cell units
§ Forget gate units
§ Input gate units
§ Potential input to memory cell
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Step-by-step LSTM Walk Through

Step 1: Decide what information to throw away from the cell state 
(memory) è
§ The output of the previous state ℎ%&" and the new information !% 

jointly determine what to forget
§ ℎ%&" contains selected features from the memory *%&"

§ Forget gate +% ranges between [0, 1]
§ Text processing example:

§ Cell state may include the gender of the current subject (ℎ%&").
§ When the model observes a new subject (!%), it may want to 

forget (+% → 0) the old subject in the memory (*%&"). 15

Forget gate
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Step 2: Input gate

Step 2: Prepare the updates for the cell state from input è
§ An alternative cell state 1*% is created from the new information 

!% with the guidance of ℎ%&"
§ Input gate 2% ranges between [0, 1]
§ Example: the model may want to add (2% → 1) the gender of 

new subject ( 1*%) to the cell state to replace the old one it is 
forgetting
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Input gate
Alternative 
cell state
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Step 3: Update the cell state

Step 3: Update the cell state è 
§ The new cell state *% is comprised of information from the past 

+% ∗ *%&" and valuable new information 2% ∗ 1*%
§ ∗ denotes elementwise multiplication
§ Example: the model drops the old gender information (+% ∗ *%&") 

and adds new gender information (2% ∗ 1*%) to form the new cell 
state (*%)
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New cell state
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Step 4: Output gate

Step 4: Decide the filtered output from the new cell state è 
§ tanh function filters the new cell state to characterize stored 

information
§ Significant information in !! à ±1
§ Minor details à 0

§ Output gate 4% ranges between 0, 1
§ ℎ% serves as a control signal for the next time step
§ Example: Since the model just saw a new subject (!'), it might 

want to output ("' → 1) information relevant to a verb (tanh(*')), 
e.g., singular/plural, in case a verb comes next 18

Output gate
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Gated Recurrent Unit (GRU)

§ GRU is a variation of LSTM that also adopts the gated design.
§ Differences:

§ GRU uses an update gate 5 to substitute the input and 
forget gates 2% and +%

§ Combined the cell state *% and hidden state ℎ% in LSTM as a 
single cell state ℎ%

§ GRU obtains similar performance compared to LSTM with fewer 
parameters and faster convergence. (Cho et al. 2014) 19
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Gated Recurrent Unit (GRU)

§ Update gate: controls the composition of the new state
§ Reset gate: determines how much old information is needed in 

the alternative state 1ℎ%
§ Alternative state: contains new information
§ New state: replace selected old information with new 

information in the new state
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Sequence Learning Architectures

§ Learning on RNN is more robust when the 
vanishing/exploding gradient problem is resolved.
§ RNNs can now be applied to different Sequence 

Learning tasks

§ Recurrent NN architecture is flexible to operate over 
various sequences of vectors.
§ Sequence in the input, the output, or in the most 

general case both
§ Architecture with one or more RNN layers
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Sequence Learning with One RNN Layer

1. Standard NN mode without recurrent structure (e.g., image classification, 
one label for one image)

2. Sequence output (e.g., image captioning, takes an image and outputs a 
sentence of words)

3. Sequence input (e.g., sentiment analysis, a sentence is classified as 
expressing positive or negative sentiment).

4. Sequence input and sequence output (e.g., machine translation, a sentence 
in English is translated into a sentence in French)

5. Synced sequence input and output (e.g., video classification, label each 
frame of the video) 22

1 2 3 4 5

• Each rectangle is a vector and arrows represent functions (e.g., matrix multiply)
• Input vectors are in red, output vectors are in blue and green vectors hold the RNN's state
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Sequence-to-Sequence (Seq2Seq) model
§ Developed by Google in 2018 for use in machine translation.
§ Seq2seq turns one sequence into another sequence. It does so by use of 

a recurrent neural network (RNN) or more often LSTM or GRU to avoid the 
problem of vanishing gradient. 

§ The primary components are one Encoder and one Decoder network. The 
encoder turns each item into a corresponding hidden vector containing the 
item and its context. The decoder reverses the process, turning the vector 
into an output item, using the previous output as the input context.

§ Encoder RNN: extract and compress the 
    semantics from the input sequence
§ Decoder RNN: generate a sequence 

based on the input semantics
§ Apply to tasks such as machine 
     translation

§ Similar underlying semantics
§ E.g., “I love you.” to “Je t’aime.”
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https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Gated_recurrent_unit
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
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num_layers
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Bidirectional RNN
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BBBB

§ Connects two recurrent units (synced many-to-many model) of 
opposite directions to the same output.

§ Captures forward and backward information from the input sequence
§ Apply to data whose current state (e.g., ℎ") can be better determined 

when given future information (e.g., %#, %$, … , %!)
§ E.g., in the sentence “the bank is robbed,” the semantics of 

“bank” can be determined given the verb “robbed.”
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RNN Application: High-level ADL Recognition
§ Activities of Daily Living (ADLs) are introduced to evaluate the 

self-care ability of senior citizens (Williams 2014)
§ Sensor-based home monitoring systems

§ Environment: Placed in the environment to capture changes 
(e.g., on/off, motion)

§ Wearable: Attached to the body to measure movements 
and physiological signals

§ Sensors sample at 10 Hz à 0.8 million records per day
§ Machine learning (esp. deep learning) needed to recognize ADLs 

from the large amount of data
§ Mid-level (ML) ADLs: gestures, gait, etc.
§ High-level (HL) ADLs: preparing food, medical intake, 

senior care, etc.
§ Research Objective: develop a universal ADL recognition 

framework to extract HL-ADLs from raw sensor data 26
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Seq2Seq-ADL Research Design

• Intuition: Recognizing the HL-ADLs from the sensor data is similar 
to captioning/translation. We can generate ADL label sequence 
with a Seq2Seq model for the input data. The underlying 
semantics are similar.
• A Seq2Seq model is designed to extract HL-ADLs from the activity 

state sequence
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Activity Reconstruction
§ Objective: create temporally 

aligned activity 
representation from different 
data sources

§ Four sensors for 
demonstration:
§ a force plate à 

pressure on the floor 
§ a door on/off sensor à 

open (o) and close (c) 
states

§ a human motion sensor
§ object motion sensor 

attached on the fridge 
§ Step 1. Extract discrete 

motion states from motion 
sensor data with a state-of-
the-art gesture recognition 
model

§ Step 2. Interpolate discrete 
data from each sensor
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Activity Reconstruction
§ Steps 3. Sample each data stream 

at same timestamps to construct 
the Activity State representations
§ Temporally aligned 

observations
§ Steps 4. Encode the Activity 

States (%
§ Encode categorical (discrete) 

values using one-hot 
encoding

§ Step 5. Organize the states vector 
in a matrix )
§ Data matrix ) aggregates 

temporally aligned sensor 
observation sequences to 
represent the activity 29COMP4434
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Seq2Seq - Encoder
§ The encoder network takes the 

Activity State Sequence 6 as the 
input to generate the activity 
semantics vector 7

§ The encoder network adopts 
GRU recurrent cells to learn 
temporal patterns

§ Each hidden state ℎ$'  
depends on the input !$ and 
the previous state ℎ$&"'
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§ 7 is expected to be a condensed representation for human/object 
motions, object usages, and their temporal patterns during the 
period.
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Seq2Seq - Decoder

§ The decoder network takes the 
encoded activity semantics vector 7 
to generate HL-ADL label for each 
input vector

§ The decoder network also adopts 
GRU recurrent cells to interpret the 
temporal patterns

§ Multi-class classification 
§ Softmax à probability 

distribution over output classes
§ Categorical cross-entropy loss
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Experimental results

§ S2S_GRU model is evaluated on two different datasets
§ S2S_GRU is more accurate and flexible in adjusting to different 

real-life HL-ADL recognition applications
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Recall (%)
Filling 
pillbox

Watch 
DVD

Water 
plants

Answer 
the 
phone

Prepare 
gift card

Prepare 
soup Cleaning

Choose 
outfit

S2S_GRU 88.6 79.0 58.5 80.8 92.1 71.1 85.0 58.0
HMM 33.2*** 31.6*** 16.8*** 22.0*** 29.9*** 26.4*** 20.4*** 22.5***
S2S_LSTM 86.1* 77.8 64.3 74.9* 90.8* 69.6 82.5 49.5**

Recall (%) Relaxing Coffee time Early morning Cleanup Sandwich time
S2S_GRU 61.7 66.5 72.1 82.6 79.1
HMM 48.8 19.5*** 6.4*** 17.4*** 40.9***
S2S_LSTM 60.0 54.9** 75.9 83.2 59.9***

Recall of S2S_GRU against benchmarks on a wearable/environment motion sensor dataset

Recall of S2S_GRU against benchmarks on an environment sensor dataset

*: p-value<0.05, **: p-value<0.01, ***: p-value<0.001
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Development of natural language processing tools
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Summary

§ LSTM and GRU are RNNs that retain past information 
and update with a gated design. 
§ The “additive” structure avoids vanishing gradient 

problem
§ RNNs allow flexible architecture designs to adapt to 

different sequence learning requirements.
§ RNNs have broad real-life applications.

§ Text processing, machine translation, signal 
extraction/recognition, image captioning

§ Mobile health analytics, activity of daily living, 
senior care
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