Qinggang Zhang', Qijie Shen’, Feiran Huang®, Xiao Huang'

LLM Collaborative Filtering:
User-Item Graph as New Language

Huachi Zhou', Yujing Zhang', Hao Chen*",

'The Hong Kong Polytechnic University, Hong Kong
2City University of Macau, Macao
3 Alibaba Group, China
4Jinan University, China

{huachi.zhou, yu-jing.zhang, qinggangg.zhang } @ connect.polyu.hk

sundaychenhao @ gmail.com, gjshenxdu @ gmail.com
huangfr@jnu.edu.cn, xiaohuang @comp.polyu.edu.hk

Abstract

In collaborative filtering, learning effective embeddings for
users and items from interaction data remains a central chal-
lenge. While recent efforts leverage large language models
(LLMs) to enhance collaborative filtering, two critical limita-
tions persist: (1) Efficiency: LLM-based inference is signif-
icantly slower than traditional embedding-based search; and
(2) Topological Modeling: LLMs struggle to capture graph
structures, which are essential for modeling multi-order user-
item interactions. To address these limitations, we propose
New Language Collaborative Filtering (NLCF), a framework
that aligns LLMs with collaborative filtering by conceptual-
izing user-item graphs as new languages. This approach is
based on two key insights: (1) LLMs excel at mastering new
languages when trained on suitable corpora, and (2) the em-
pirical conditional probability between tokens in corpora con-
verges to the transition probabilities between nodes in graphs.
NLCF translates user-item graphs into corpora, where users
and items are treated as tokens. These corpora are used to
fine-tune LLMs, and the learned representations are aggre-
gated to construct user and item embeddings that encode
multi-order interactions. Unlike methods that deploy LLMs
for inference, NLCF distills LLM knowledge learned from
corpora into compact embeddings, enabling both efficient
training and real-time inference. The framework has been de-
ployed on a billion-scale e-commerce platform for several
months. Extensive experiments demonstrate that NLCF out-
performs traditional graph CF models and LLM-based base-
lines while achieving significant training and inference effi-
ciency improvement over LLM-based baselines.

Introduction

Collaborative Filtering (CF) plays a pivotal role in recom-
mender systems by suggesting new items to users based on
the collaborative information that users with similar inter-
actions share similar preferences (Yuan et al. 2023). Multi-
order interactions which represent the multi-order relation-
ships connecting users and items through various paths in
the user-item graph enrich this information by uncovering

*Corresponding author.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Existing 4 Response: A : NLCF W, W, W,
Methods oRA | 80Days.. l@Usernode ® Item node
: Random — ©0O
Embedding [) - 000
* !

!
Prompt: You are a smart LLM assistant. The | %

1

1

1

) Fine-
b tuning

& LoRA

user <user ID> has interacted with the
movies: <HisMovieList>. Please generate
the movie title that the user may enjory.
Response:...

Figure 1: Comparison of pipelines between existing methods
and NLCF. NLCF achieves efficiency through using short
graph sentences for training and embeddings for inference.

preferences beyond immediate interactions. To model multi-
order interactions, traditional models like LightGCN (He
et al. 2020) achieve this by iteratively aggregating embed-
dings from immediate interactions in the user-item graphs
to learn user and item embeddings. Recently, the capabilities
of large language models (LLMs) (Chen et al. 2024; Hong
et al. 2024) have inspired their application in CF. However,
aligning LLMs with CF tasks remains challenging, as LLMs
are optimized for natural language tasks rather than learning
user and item embeddings based on user-item graphs.

Existing methods attempt to adapt LLMs for CF by trans-
forming a user’s immediate interactions into natural lan-
guage graph descriptions. These approaches can be broadly
categorized into two classes: (i) Description Reasoning-
based methods: These methods leverage LLMs’ natural
language understanding to reason about collaborative in-
formation. For instance, TransRec (Lin et al. 2024b) con-
structs descriptive sequences from item identifiers, while
LLM-CF (Sun et al. 2024) employs Chain-of-Thought
prompting to distill collaborative information explicitly. (ii)
Embedding Injection-based methods: Methods like LC-
Rec (Zheng et al. 2024) and LETTER (Wang et al. 2024)
inject user and item embeddings from traditional models
(e.g., LightGCN) into prompts. By tokenizing collaborative
embeddings and combining them with natural language de-
scriptions, these methods aim to capture both semantic and
collaborative information.

Despite their potential, natural language graph
description-based methods face one or both of the fol-
lowing limitations in efficiency and topological modeling
for CF tasks.

(1) Multi-order Collaborative Information Loss: LLMs
can process only a limited number of interactions at a
time, making it extremely expensive to model multi-
order interactions and the underlying collaborative infor-
mation during training. While some methods inject col-
laborative embeddings into prompts (Zheng et al. 2024;
Wang et al. 2024), fine-tuning LLMs on precomputed
embeddings, rather than the original user-item graph, in-
evitably leads to information loss (Yang et al. 2024).

(2) Slow Inference: LLMs generate items token by token,
with each token depending on the entire prompt (Zhao
et al. 2023). The computational cost of generation scales
with the prompt length. This sequential generation pro-
cess, especially when using lengthy graph description
prompts, significantly slows down inference compared to
embedding-based search.

Although recent methods, e.g., LLMEmb (Liu et al. 2025)
and LLM-CF (Sun et al. 2024), have proposed efficient in-
ference mechanisms, they still focus on generating accurate
user and item profile representations rather than modeling
the user-item graph with LLMs. Given that user-item graphs
have been proven highly effective for capturing multi-order
collaborative information (Wei et al. 2024), modeling the
graph with LLMs powerful learning ability is a promising
direction. However, LLMs excel at learning a new language
but find it challenging to efficiently learn from the graph
with two key reasons:

(1) Structural Mismatch between Graph and LLM In-
puts: User-item graphs are irregular, two-dimensional
structures, while LLMs are designed to process one-
dimensional sequential data. Unlike graph CF models,
which aggregate multi-order interactions through graph
structure (Wu et al. 2020), LLMs lack a built-in mecha-
nism to handle such graph structures.

(2) Computational Constraints: As the order increases, the
number of multi-order interactions grows geometrically.
Modeling these interactions while maintaining a concise
representation is necessary since LLMs, containing bil-
lions of parameters, are computationally expensive dur-
ing both fine-tuning and inference. And deploying LLMs
in real-world recommender systems is particularly chal-
lenging due to latency constraints.

To address these challenges, we propose New Language
Collaborative Filtering (NLCF), a novel framework that en-
ables LL.Ms to efficiently learn collaborative embeddings by
treating the graph as a new language. As shown in Figure 1,
NLCF transforms the graph into concise corpus, where em-
pirical conditional probabilities between tokens in the cor-
pus converge to the transition probabilities between nodes
in the graph. This transformation enables NLCF to model
multi-order interactions, and then NLCF balances common
and rare interactions in the corpus through similarity-based

sampling. The resulting graph corpus is then used to fine-
tune the LLM efficiently, allowing it to construct collabo-
rative embeddings. NLCF achieves efficient training by us-
ing compact graph corpus rather than lengthy natural lan-
guage graph descriptions, and efficient inference by lever-
aging collaborative embeddings instead of token-by-token
generation. Our contributions are as follows:

* We propose NLCEF, a novel framework that efficiently in-
tegrates LLMs with CF tasks to learn user and item col-
laborative embeddings by treating the user-item graph as
a new language.

* We design two core modules: (i) a graph corpus collec-
tion module that transforms the graph into concise cor-
pus, modeling multi-order interactions; and (ii) a collab-
orative embedding construction module that fine-tunes
LLMs on this corpus to construct collaborative embed-
dings for efficient item search.

» Extensive experiments on three datasets show perfor-
mance gains over both traditional graph CF and LLM-
based baselines, with significant efficiency improvement
over LLM-based baselines. Online A/B tests further val-
idate NLCF’s effectiveness in industrial applications.

Preliminary

Notation. We represent the user-item graph as a tuple G =
(V,€), where V = U U T denotes the union of user
nodes U and item nodes Z. The node set is indexed as
{v1,v2,..., vy}, where [V] is the total number of nodes.
The edge set £ C U x T represents user-item interactions,
with cardinality |£]. These interactions are encoded in the

adjacency matrix A € RIVIxIVI:

1, if (vy,v) €E
Auz —)))) l
{07 otherwise. M

The bipartite structure ensures A,; = 0 for all user-user and
item-item pairs. We fine-tune LLMs on user-item graph G
with LoRA (Hu et al. 2021) W to learn user embeddings
h,,, and item embeddings h,,. More preliminary details are
put in Appendix D.

New Language Collaborative Filtering

In this section, we present NLCEF, an efficient framework that
applies LLMs to learn collaborative embeddings from the
user-item graph through new language learning. As shown in
Figure 2, NLCF consists of two primary modules: (i) Graph
Corpus Collection: The user-item graph is transformed into
anew language corpus that encodes multi-order interactions.
We retrieve this corpus by employing similarity-based sam-
pling to reduce the computational burden. (ii) Collaborative
Embedding Construction: The retrieved corpus is used to
fine-tune LLMs, enabling the model to capture multi-order
collaborative information. Hidden representations from the
fine-tuned model are then aggregated to construct collabora-
tive user and item embeddings for inference.

User-item Graph

Graph Corpus Collection

Similarity-based Sampli
(0@ | (0% g o o) (F) nlvieedsonie
9 i e E‘ : 1 (2) I“ 60 : '
. b !
0 Ko |winm| @7 @ g ; 2;3%333 =
0 =) |© @ g 20| 90000 | :
e 18 Walk | (1) (2] (2] g Dbt st i
(9] | (3] D 5
| o L4 Sampled @ 00000
@ User node @ Item node \\\\ 0 @/ Sentences © 96@0@
,,,,,,,,,,,,,,,,,,, Collaborative Embedding Construction $
______ltemSearch . . psg Aggregation "W (5% Frozen
|‘/ 9 0.01 9 . 6 Hldden Representanon L | Tuned

il
k!
|
| @096 temsee @M)

\\,,,,,,,,,,,,,,,,,,,,4

@ o.01 B i (7] |
Q001 — 8.@0[(4] | _Tz P
©o0.01 * OB . Ol

I L 11]
09909

~—— e P

060000 <3 | PR

Large Language Model

Figure 2: The overall pipeline of the proposed NLCF framework. NLCF treats the user-item graph as a new language. The
framework consists of two key modules: in the top part, NLCF first collects graph corpus through random walks and then
applies similarity-based sampling; in the bottom part, NLCF constructs collaborative user-item embeddings using fine-tuned

LLMs for efficient item search.

Graph Corpus Collection

We begin by mapping basic concepts in user-item graph to
their counterparts in graph language and then describe our
similarity-based sampling strategy for reducing corpus size.

Definition of Graph Language-related Concepts. User
and Item Nodes as Graph Tokens. We define the union of
user and item nodes V as a set of unique graph tokens in
this new language and extend the LLM tokenizer’s vocabu-
lary accordingly. These newly added tokens have randomly
initialized embeddings.

Graph Path as Graph Sentence. A connected sequence
of nodes in the graph, or a path, forms a graph sentence
in the corpus. For example, as shown in Figure 2, the path
s1 = {vg, vs,v2,v1,v3} represents a graph sentence. These
paths model multi-order interactions and capture collabo-
rative information by revealing behavior similarity. For in-
stance, v is likely to interact with vg because the second-
order neighbor user vs has previously interacted with vg.
The initial corpus S = {s1, s2,S3, . .. } is composed of such
sentences extracted from the user-item graph.

To extract graph sentences from the user-item graph, we
employ random walks (Grover and Leskovec 2016), whose
transition probability between nodes is defined as:

_ Au)
Py(vi | vy) = 225N (vy) Bui”’ v; € N(v), @
0 (vus vi) & €,

where N (v,,) denotes the neighbor set of node v,,, and A ;
represents the edge weight between nodes v,, and v;. Each
random walk continues walking until reaching a predefined
length [. This process is designed to ensure that empirical
conditional probability between tokens in resulting corpus

converges to the transition probabilities between nodes in
graphs. The guarantee is proved by the following theorem:

Theorem 1. Ler Ps(v;|v,) be the empirical conditional
probability computed from the corpus generated by a suf-
ficiently large number of random walks. As the number of
walks approaches infinity, Ps(v;|v,) converges in probabil-
ity to Py(v;|vy,).

The proof is provided in Appendix A. To sufficiently cap-
ture collaborative information, we generate d,, sequences
starting at each node v,,, where d,, = > A,,. is the degree
of v,,. This strategy yields the initial corpus S, which serves
as the foundation for the following processing.

Similarity-based Sampling for Graph Corpus Reduc-
tion. The scale of possible graph corpus is proportional to
the number of nodes and the average node degree. To limit
the corpus size, traditional method, e.g., random sampling or
node degree-based sampling does not account for subgraph
density around each node. In dense subgraphs, random
walks tend to generate highly overlapping sentences due to
frequent visits to common nodes. Some existing LLM-based
recommendation sampling methods (Lin et al. 2024a,c) fo-
cus on selecting important interactions for a small set of
candidate items, which are incompatible with our goal of
efficient item search from the entire item set (Zhou et al.
2025d). Other approaches rely on LLM fine-tuning (Zhou
et al. 2025¢c) or LLM data integration to identify important
samples (Wu et al. 2023) which would be computationally
expensive to use.

We propose a similarity-based sampling strategy that ad-
dresses these limitations. Our approach groups similar graph
sentences into clusters based on their sentence overlapping
and assigns lower sampling probabilities to densely popu-

lated clusters. By sampling representative sentences within
a pre-defined budget, this strategy reduces redundancy while
preserving essential collaborative information.

We measure the overlapping between any two graph sen-
tences using the Jaccard similarity:
|SP N S‘Il) (3)
|sp Ussql
where s, and s, represent two graph sentences. We then
group sentences into clusters based on their pairwise simi-
larities. A cluster C; is defined as a set of sentences where
each sentence shares a similarity above threshold ¢ with all
other sentences in the cluster:

C; = Sp € S: Ssimﬂmty(swsq) >1t,Vsq € C;. 4)

The size of each cluster |C;| reflects the density of similar
sentences within it. To achieve balanced representation, we
assign higher sampling probabilities to sentences from larger
clusters. The sampling probability for each sentence is nor-
malized across all clusters:

P(sy) =

Ssimilarily (Spu Sq) =

=m——— :Sq €C; 5
sG] e ©
where m is the cluster number automatically determined by
the algorithm. Then given a pre-defined sampling ratio a €
(0, 1], we sample sentences according to these normalized
probabilities to create a representative subset:

8 =s,~ P(sq) : 8, €S,|S'| =a|S]. (6)
This stratified sampling approach ensures balanced repre-
sentation across clusters while maintaining computational
efficiency within the specified budget constraints.

While computing pairwise similarities using Eq. (3) pro-
vides fine-grained clustering, it introduces a significant com-
putational complexity of O(]S|?), which is impractical for
large corpus. To address this challenge, we employ MinHash
to efficiently estimate Jaccard similarities, whose efficiency
is guaranteed by the following theorem:

Theorem 2. Let J(s,, s,) be the Jaccard similarity between
two graph sentences s, and sq. The MinHash estimator,

J (Sp, 8q), constructed from k independent hash functions,

is an unbiased estimator of J(sp,sq) with a variance of
J(sp,5q)(1=J(sp,Sq))
. .

The proof is detailed in the Appendix B. This theorem
demonstrates that MinHash provides a statistically sound
approximation of the true Jaccard similarity. By generating
compact signatures for each sentence and storing them in
hash tables, we can identify similar sentences with an ex-
pected complexity of O(|S|), thus making the similarity es-
timation feasible for large-scale graph corpora.

Theoretical Analyses about Connection between Graph
Corpus and Collaborative Information. The graph cor-
pus collection module models multi-order interactions by
transforming the two-dimensional user-item graph into a
one-dimensional graph corpus. It is important to formally
analyze whether this transformation quantitatively guaran-
tees the preservation of multi-order collaborative informa-
tion in the graph corpus. To address this, we present the fol-
lowing theorem:

Theorem 3. Let w denote the importance of node v; to node

vy, as measured by the gradient norm of a GCN, and let

’
w' = "= represent the empirical co-occurrence ratio, where

n' is the number of graph sentences containing both nodes
vy, and v;, and 1 is the number of graph sentences contain-
ing node v,,.

0 (%)-

Proof. Let thj denote the hidden feature learned by
GCN (Hamilton, Ying, and Leskovec 2017), defined as

ReLU (

move the non-linear activation function and GCN weights
from the GCN aggregation in this proof. However, the the-

orem still holds when these components are included. The

gradient of h . with respect to hE,L) is given by:

dL . Zvj EN(o0) Wlh,(uljfl)). For simplicity, we re-

ont) 1

ony~Y
onY dy o o onY

We iteratively expand this formula using the chain rule to
get:

and & [an? n
(;L Z[(;)] :ZHd =w,
ahvi =1 8}11}1 P p:l q:1 ’Uq‘p

where n is the number of paths containing both nodes v;
and vy, I’ is the length of the current path p, dy,,, repre-
sents the degree of the ¢-th node in the current path p. Since
we use Eq. (2) and perform random walk, the probability of
node v,, visiting v; is exactly the same as the sum of proba-
bilities for all paths shown above.

However, it is computationally impractical to retrieve
all such paths for every pair of nodes, especially when
similarity-based sampling is used. Let X, be an indicator
Bernoulli variable for the p-th walk in practice, which shows
whether the walk successfully reaches node v; starting from
Uy

Y — 1 if the walk reaches v;,
~ 10 otherwise.

From the previous theorem, the following expectation and
variance properties hold: E[X,] = w, and Var(X,) =
w(1—w). Now, if there are 71 paths from node v,, to node v;,
the empirical probability satisfies the following properties:

= w, and Var oo e | w(lfjw)- This

n

i1 X
B | ==t

variance is bounded by 1. Therefore, the sampling standard

error of the empirical probability w’, i.e., %, encoded in the
sampled corpus, satisfies:

w—w’|=0(}>.
f

In the proof, w represents collaborative information cap-
tured by GCNs in prediction by modeling multi-order in-
teractions, while w’ denotes the importance derived from

the sampled graph corpus as reflected by the empirical oc-
currence ratio. The theorem demonstrates that the sampled
graph corpus encodes collaborative information in a manner
consistent with GCNs, with the difference diminishing as the
number of sampled graph sentences increases. This result
provides a theoretical foundation for using graph sentences
as a proxy for mining collaborative information underlying
multi-order interactions.

Collaborative Embedding Construction

Having transformed the user-item graph into a new language
corpus rich in collaborative information, we proceed to
fine-tune LLMs to incorporate this information. After fine-
tuning, to enable efficient inference across the entire item
set, we construct collaborative user and item embeddings by
aggregating the hidden representations derived from the cu-
rated corpus.

Fine-tuning LLMs on the Corpus. Within these graph
sentences, multi-order collaborative information enables
distant tokens to influence the prediction of the next token in
the sentence. To capture this collaborative information, we
fine-tune LLMs by maximizing the likelihood of predicting
the next token within the graph corpus. Formally, the fine-
tuning objective is defined as:

IS’| Isql
[fpre = - ZZIOg P(sq,j | Sq,<jawpaw)a (7)

g=1j=1

where W, € RIVI*4 is the learnable head layer parameter
for predicting the next token. By optimizing this objective,
the fine-tuned LLM learns to capture multi-order collabora-
tive information embedded in the graph sentences. To con-
trol the memory usage, we incorporate the dynamic memory
bank mechanism and the details are put in the Appendix E.

Graph Sentence Representation Aggregation. After
fine-tuning, we obtain a well-trained LLM. However, di-
rectly deploying LLMs in an online recommender system
would incur prohibitive latency. To address this issue, we
precompute collaborative user and item embeddings offline,
enabling efficient recommendation at inference time.

LLM is used to compute hidden representations for each
graph token in the vocabulary:

hy; =LLM({sq,1,5¢,2, -5 8q¢,5-1}), (®)

where h, ; represents the hidden representation of the j-th
token in sentence s,, computed based on its preceding to-
kens Sq,155¢,2y+++5Sq,j—1-

To comprehensively encode multi-order collaborative in-
formation, we aggregate the hidden representations of the
target user v,, across multiple graph sentences. The aggrega-
tion is defined as:

h,, = Z hyp,

peEK
K={p:sq €8, sqp="2u, D=|s4| —k, 0 <k <|sy}
©))
where C specifies the valid positions of the token v,, across
the sampled corpus &', and k is a hyperparameter controlling

the allowed positions of user v,, within a sentence. The item
embeddings are computed analogously through the same ag-
gregation process.

By precomputing user and item embeddings offline,
NLCEF enables efficient real-time inference through simple
inner product search with these embeddings, eliminating the
need for costly LLM computations during serving.

Experiments

We conduct extensive experiments on three real-world
datasets to evaluate the effectiveness and efficiency of the
NLCF framework. Our experimental study aims to address
the following research questions: RQ1: How does NLCF
perform compared to state-of-the-art graph CF and LLM-
based baselines? RQ2: How do different design choices af-
fect NLCF’s performance, particularly regarding sampling
strategies and LLLM backbone selections? RQ3: How sen-
sitive is NLCF to key hyperparameters, such as sampling
ratio and sentence length? RQ4: How does NLCF perform
in real-world recommendation applications?

Experimental Settings

Datasets. We evaluate NLCF on three real-world datasets:
Steam (Kang and McAuley 2018), ML-1M and ML-
10M (Harper and Konstan 2016). Details about these
datasets are shown in Appendix F.1. Specifically, Steam con-
tains 918,951 interactions, 41,008 users, and 2,438 items.
ML-10M contains 2,340,369 interactions, 69,428 users, and
5,180 items. ML-1M contains 370,647 interactions, 4,869
users, and 1,818 items.

Baseline Methods. We compare NLCF with the fol-
lowing groups of baselines: Traditional Graph CF Base-
lines: (i) LightGCN (He et al. 2020),(ii) LightGCL (Cai
et al. 2023),(iii)) HMLET (Kong et al. 2022), and (iv)
AFDGCF (Wu et al. 2024b); LLM-based Baselines: Tran-
sRec (Lin et al. 2024b), LLM-CF (Sun et al. 2024), LET-
TER (Wang et al. 2024), LC-Rec (Zheng et al. 2024) and
LLMEmb (Liu et al. 2025). Details about these baselines
are shown in Appendix F.2. To evaluate the effectiveness of
the similarity-based sampling approach, we compare it with
random sampling.

Implementation Details. All experiments are conducted
using publicly released codes, with each baseline running on
one dedicated NVIDIA A100-SXM4-40GB GPU. The soft-
ware environment is based on 20.04.6. The Python version
is 3.9.22. We use the Hugging Face Transformers library
4.45.2. And we use metric Precision@N (Zhuang et al.
2025; Zhang et al. 2025) and NDCG@ N (Zhou et al. 2023).
More implementation details are shown in Appendix F.3.

Main Comparison (RQ1)

Tables 1 and 4 present the overall comparison across three
datasets, revealing two key observations:

First, LLM-based approaches do not consistently achieve
performance improvement over traditional graph CF ap-
proaches across all metrics. LLM-based approaches face

challenges in effectively incorporating collaborative infor-
mation from user-item graph. While methods like LC-Rec
and LETTER attempt to integrate collaborative embeddings
from traditional graph CF models, these methods that rely on
intermediate embeddings instead of directly modeling multi-
order interactions suffer from collaborative information loss.
This limitation may explain their performance degradation
as metric k increases and their inability to consistently out-
perform state-of-the-art graph CF models, particularly in
Precision metrics.

Second, NLCF achieves the most superior perfor-
mance across all three datasets, demonstrating a successful
paradigm shift. Rather than relying on traditional graph CF
methods to model multi-order interactions, NLCF enables
LLMs to directly capture the collaborative information from
the user-item graph, marking a paradigm shift.

Efficiency Comparison (RQ1)

Table 2 presents the training and testing efficiency results
across three datasets, revealing that most LLM-based base-
lines exhibit significantly longer training and inference times
compared to NLCF. This performance gap is expected, as
LLM-specific strategies—such as user sequence augmen-
tation and diverse prompt template designs—add consider-
able computational overhead. During inference, many LLM-
based approaches still rely on active LLM computations, fur-
ther increasing inference costs. While LLMEmb fine-tunes
LLMs to generate side information from user-item inter-
actions, it struggles with the inefficiency of lengthy natu-
ral language graph descriptions during training. As a re-
sult, it only improves inference efficiency compared to ear-
lier methods. Notably, LLMEmb does not model user-item
interactions directly; instead, it fine-tunes LLMs based on
user-item attributes, which fails to encode multi-order user-
item interactions and limits potential performance gains over
other LLM-based approaches. In contrast, NLCF achieves
remarkable efficiency through two key design choices: (i)
during training, it fine-tunes LLMs on concise graph sen-
tences derived from the user-item graph; and (ii) during in-
ference, it constructs collaborative embeddings, enabling ef-
ficient item retrieval across the entire item set. These designs
significantly reduce both training and inference computa-
tional costs, making NLCF more efficient than most LLM-
based baselines.

Ablation Study (RQ?2)

We examine different variants of NLCF through experi-
ments shown in Figure 4 and 6. Since NLCF employs a
straightforward architecture without composite components
or multiple training objectives, we focus our analysis on two
key factors beyond hyper-parameters: the LLM backbone
and sampling strategy. Our experiments reveal two signifi-
cant observations:

First, NLCF’s performance aligns with empirical neu-
ral scaling laws. As the LLM parameter size increases, the
model’s performance improves substantially. For instance,
the Llama 1B model performs well, highlighting the power
of LLMs, while the 7B model achieves better results. How-
ever, the performance improvement from 7B to 8B models

—— walk=2

0.262 0.260 0.263 walk=3
.2

0 8.9261 0.265 —— walk=4

0. walk=5

N
[}
=}

Figure 3: The impact of graph sentence length [and sam-
pling ratio v on Precision@5 on ML-1M dataset.

is relatively modest, suggesting a saturation point in model
scaling benefits.

Second, our comparison with alternative sampling strate-
gies demonstrates the superiority of our similarity-based ap-
proach across almost all sampling ratios. This advantage
likely stems from two factors: random sampling fails to ac-
count for subgraph density and struggles to preserve repre-
sentative samples from each subgraph, while our similarity-
based sampling controls the granularity needed for effective
graph sentence grouping, particularly at lower sampling ra-
tios where performance gap becomes significant.

Hyper-parameter Sensitivity (RQ3)

We extensively evaluate the effect of hyper-parameters on
the performance of NLCEF, including sampling ratio «, graph
sentence length [, and similarity threshold ¢. The results, pre-
sented in Figure 3, Figure 5, and Table 5, reveal two obser-
vations:

First, NLCF achieves optimal performance with a graph
sentence length [= 4. This length indicates that third-order
collaborative information suffices for high-quality recom-
mendations, while higher-order information may introduce
noise without contributing positively to performance. In-
creasing the sampling ratio improves model performance.
Notably, performance declines only slightly when the ratio
is lowered from 1 to 0.75, indicating the effectiveness of our
sampling method.

Second, the similarity threshold demonstrates a critical
role in sampling effectiveness. A moderate threshold value
enables NLCF to maintain a more representative subset of
samples. High threshold values impose overly strict similar-
ity constraints, effectively reducing the sampling to random
selection as most graph sentences are deemed dissimilar.
Conversely, low threshold values lack discriminative power,
marking most samples as similar and diminishing the sam-
pling strategy’s effectiveness.

Model Steam ML-10M ML-1M
NDCG@5 NDCG@I10 | NDCG@5 NDCG@10 | NDCG@5 NDCG@I10
LightGCN (He et al. 2020) 0.2744 0.2790 0.1988 0.2007 0.2695 0.2436
LightGCL (Cai et al. 2023) 0.2623 0.2807 0.1944 0.2065 0.2112 0.2045
HMLET (Kong et al. 2022) 0.2730 0.2853 0.1919 0.1950 0.2723 0.2503
AFDGCF (Wu et al. 2024b) 0.2809 0.2897 0.2002 0.2004 0.2694 0.2484
TransRec (Lin et al. 2024b) 0.2796 0.2843 0.1961 0.1975 0.2706 0.2435
LLM-CF (Sun et al. 2024) 0.2772 0.2829 0.1976 0.1993 0.2735 0.2478
LETTER (Wang et al. 2024) 0.2717 0.2776 0.1928 0.1883 0.2683 0.2350
LC-Rec (Zheng et al. 2024) 0.2615 0.2682 0.1865 0.1822 0.2626 0.2321
LLMEmb (Liu et al. 2025) 0.2785 0.2858 0.2042 0.2034 0.2711 0.2446
NLCF 0.2864 0.2948 0.2171 0.2147 0.2796 0.2558
Table 1: NDCG performance with N = 5 and 10 across Steam, ML-10M, and ML-1M datasets.
Model Steam ML-10M ML-IM The performance metrics shown in Table 3 are averaged over

Train Test Train Test | Train Test

TransRec | 16h5m 3h25m
LLM-CF [13h24m 0.029s
LETTER | 5hém 3m3ls
LC-Rec [11h49m 18m59s
LLMEmb|41m36s 0.029s

18h44m 4h18m
16h58m 0.101s
7h27m 5m35s
13h22m 26m07s
48ml15s 0.101s

4h32m 52m42s
3h47m 0.003s
1h43m 1ml6s
3h18m 7m2ls
10m23s 0.003s

NLCF 42m43s 0.029s |44m19s 0.101s | 8m12s 0.003s

Table 2: Training and test time comparison among LLM-
based models (in seconds [s], minutes [m], and hours [h]).

A/B Test PCTR UCTR GMV ResTime
v.s. LightGCN +4.15% +3.11% +5.78% + 1.46%
v.s. LLM-CF +2.51% +2.47% +3.14% -20.17%

Table 3: Online A/B tests on the industrial platform.

Online Evaluation (RQ4)

We deploy NLCF on a billion-scale online shopping plat-
form and conduct A/B testing to evaluate its performance.
The platform serves hundreds of millions of users and bil-
lions of items, supported by two main components: an of-
fline computing center and an online service center. The of-
fline computing center processes user logs and generates a
graph corpus from processed user interactions through dis-
tributed jobs. It trains NLCF and generates collaborative em-
beddings for each user and item. Notably, we do not re-
quire a tokenizer to handle billions of tokens for mapping.
Another offline computing center task is the routine update
of collaborative embeddings. This process involves gener-
ating a new graph corpus from recent user interactions on
a daily basis. Because the final embeddings are constructed
via summation, they can be updated incrementally by sim-
ply adding the hidden representations derived from this new
corpus. The generated collaborative embeddings are then
transmitted to the online service center, which uses these
pre-computed user embeddings to efficiently retrieve items
from a massive item pool, thereby eliminating the need for
costly real-time LLM reasoning. NLCF is deployed as a re-
call model, replacing two baselines: the traditional graph CF
model LightGCN and the LLM-based approach LLM-CF.

eight consecutive weeks, with each model allocated 5% of
online traffic. Compared to Light GCN, NLCF achieves sig-
nificant improvements: +4.15% in PCTR, +3.11% in UCTR,
and +5.78% in GMV, demonstrating its superiority in captur-
ing user preferences and driving item consumption. Despite
using higher-dimensional embeddings, NLCF incurs only
a 1.46% increase in latency, ensuring scalability. Against
LLM-CF, NLCF shows moderate gains: +2.51% in PCTR,
+2.47% in UCTR, and +3.14% in GMV, confirming the ben-
efits of learning collaborative embeddings over data aug-
mentation. Additionally, NLCF reduces latency by 20.17%
compared to LLM-CF, highlighting embedding-only infer-
ence efficiency.

Conclusion

This study introduces a novel paradigm for fine-tuning
LLMs for CF task, enabling efficient modeling of multi-
order interactions in the user-item graph to learn effective
user and item embeddings. Existing methods that prompt
LLMs with graph descriptions face two major limitations:
(1) Efficiency — slower inference due to token-by-token
item generation compared to embedding-based search, and
(i1) Topological Modeling — difficulty encoding multi-order
interactions and collaborative information from user-item
graphs. To address these challenges, we propose NLCEF,
which treats the user-item graph as a new language. This
approach is built on two insights: (1) LLMs excel at learn-
ing new languages with suitable corpora, and (2) token tran-
sition probabilities in language align with node transition
probabilities in graphs. NLCF operates in two stages: (i)
transforming the user-item graph into a language corpus
that encodes multi-order interactions, and (ii) fine-tuning
LLMs on this corpus to capture underlying multi-order col-
laborative information and construct collaborative user and
item embeddings for efficient search. Extensive offline ex-
periments demonstrate NLCF’s superior performance over
both LLM-based and traditional graph CF baselines while
significantly improve computational efficiency over LLM-
based baselines. And online A/B tests conducted on a world-
leading shopping platform validate NLCF’s effectiveness in
real-world applications.

Acknowledgements

The work described in this paper was fully supported by
a grant from the Innovation and Technology Commission
of the Hong Kong Special Administrative Region, China
(Project No. GHP/391/22).

References

Bao, K.; Zhang, J.; Zhang, Y.; Wang, W.; Feng, F.; and He,
X. 2023. Tallrec: An effective and efficient tuning frame-
work to align large language model with recommendation.
In Proceedings of the 17th ACM Conference on Recom-
mender Systems, 1007-1014.

Cai, X.; Huang, C.; Xia, L.; and Ren, X. 2023. LightGCL:
Simple Yet Effective Graph Contrastive Learning for Rec-
ommendation. In The Eleventh International Conference on
Learning Representations.

Chen, S.; Zhang, Q.; Dong, J.; Hua, W.; Li, Q.; and Huang,
X. 2024. Entity Alignment with Noisy Annotations from
Large Language Models. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Chen, S.; Zhou, C.; Yuan, Z.; Zhang, Q.; Cui, Z.; Chen, H.;
Xiao, Y.; Cao, J.; and Huang, X. 2025. You Don’t Need
Pre-built Graphs for RAG: Retrieval Augmented Generation
with Adaptive Reasoning Structures. In The Fortieth AAAI
Conference on Artificial Intelligence.

Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855-864.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems, 30.

Harper, F. M.; and Konstan, J. A. 2016. The MovieLens
Datasets: History and Context. ACM Trans. Interact. Intell.
Syst., 5(4): 19:1-19:19.

He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; and Wang,
M. 2020. Lightgen: Simplifying and powering graph convo-
lution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and
development in Information Retrieval, 639—648.

Hong, Z.; Yuan, Z.; Chen, H.; Zhang, Q.; Huang, F.; and
Huang, X. 2024. Knowledge-to-SQL: Enhancing SQL Gen-
eration with Data Expert LLM. In Findings of the Associa-
tion for Computational Linguistics: ACL 2024.

Hong, Z.; Yuan, Z.; Zhang, Q.; Chen, H.; Dong, J.; Huang,
F.; and Huang, X. 2025. Next-generation database inter-
faces: A survey of llm-based text-to-sql. IEEE Transactions
on Knowledge and Data Engineering.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Huang, F; Yang, Z.; Jiang, J.; Bei, Y.; Zhang, Y.; and
Chen, H. 2024. Large Language Model Interaction Simu-
lator for Cold-Start Item Recommendation. arXiv preprint
arXiv:2402.09176.

Jiang, Y.; Yang, Y.; Xia, L.; Luo, D.; Lin, K.; and Huang, C.
2024. RecLM: Recommendation Instruction Tuning. arXiv
preprint arXiv:2412.19302.

Kang, W.; and McAuley, J. J. 2018. Self-Attentive Sequen-
tial Recommendation. In IEEE International Conference
on Data Mining, ICDM 2018, Singapore, November 17-20,
2018, 197-206. IEEE Computer Society.

Kim, S.; Kang, H.; Choi, S.; Kim, D.; Yang, M.; and Park,
C. 2024. Large language models meet collaborative filter-
ing: An efficient all-round llm-based recommender system.
In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 1395-1406.

Kong, T.; Kim, T.; Jeon, J.; Choi, J.; Lee, Y.-C.; Park, N.;
and Kim, S.-W. 2022. Linear, or non-linear, that is the ques-
tion! In Proceedings of the fifteenth ACM international con-
ference on web search and data mining, 517-525.

Liao, J.; Li, S.; Yang, Z.; Wu, J.; Yuan, Y.; Wang, X.; and
He, X. 2024. Llara: Large language-recommendation assis-
tant. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 1785-1795.

Lin, J.; Shan, R.; Zhu, C.; Du, K.; Chen, B.; Quan, S.; Tang,
R.; Yu, Y.; and Zhang, W. 2024a. Rella: Retrieval-enhanced
large language models for lifelong sequential behavior com-

prehension in recommendation. In Proceedings of the ACM
on Web Conference 2024, 3497-3508.

Lin, X.; Wang, W.; Li, Y.; Feng, F.; Ng, S.-K.; and Chua,
T.-S. 2024b. Bridging items and language: A transition
paradigm for large language model-based recommendation.
In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 1816—1826.

Lin, X.; Wang, W.; Li, Y.; Yang, S.; Feng, F.; Wei, Y.; and
Chua, T.-S. 2024c. Data-efficient Fine-tuning for LLM-
based Recommendation. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 365-374.

Lin, Z.; Tian, C.; Hou, Y.; and Zhao, W. X. 2022. Im-
proving graph collaborative filtering with neighborhood-
enriched contrastive learning. In Proceedings of the ACM
web conference 2022, 2320-2329.

Liu, Q.; Wu, X.; Wang, W.; Wang, Y.; Zhu, Y.; Zhao, X.;
Tian, F.; and Zheng, Y. 2025. LLMEmb: Large Language
Model Can Be a Good Embedding Generator for Sequential
Recommendation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 39, 12183-12191.

Qu, H.; Fan, W.; Zhao, Z.; and Li, Q. 2024. TokenRec:
Learning to Tokenize ID for LLM-based Generative Rec-
ommendation. arXiv preprint arXiv:2406.10450.

Sun, Z.; Si, Z.; Zang, X.; Zheng, K.; Song, Y.; Zhang, X.;
and Xu, J. 2024. Large language models enhanced collab-
orative filtering. In Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Manage-
ment, 2178-2188.

Wang, W.; Bao, H.; Lin, X.; Zhang, J.; Li, Y.; Feng, F.; Ng,
S.-K.; and Chua, T.-S. 2024. Learnable item tokenization
for generative recommendation. In Proceedings of the 33rd

ACM International Conference on Information and Knowl-
edge Management, 2400-2409.

Wang, X.; He, X.; Wang, M.; Feng, F.; and Chua, T.-S. 2019.
Neural graph collaborative filtering. In Proceedings of the
42nd international ACM SIGIR conference on Research and
development in Information Retrieval, 165-174.

Wei, W.; Ren, X.; Tang, J.; Wang, Q.; Su, L.; Cheng, S.;
Wang, J.; Yin, D.; and Huang, C. 2024. Llmrec: Large lan-
guage models with graph augmentation for recommenda-
tion. In Proceedings of the 17th ACM International Con-
ference on Web Search and Data Mining, 806-815.

Wu, J.; Liu, Q.; Hu, H.; Fan, W.; Liu, S.; Li, Q.; Wu, X.-
M.; and Tang, K. 2023. Leveraging Large Language Mod-
els (LLMs) to Empower Training-Free Dataset Condensa-
tion for Content-Based Recommendation. arXiv preprint
arXiv:2310.09874.

Wu, L.; Qiu, Z.; Zheng, Z.; Zhu, H.; and Chen, E. 2024a.
Exploring large language model for graph data understand-
ing in online job recommendations. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38,
9178-9186.

Wu, W.; Wang, C.; Shen, D.; Qin, C.; Chen, L.; and Xiong,
H. 2024b. Afdgcf: Adaptive feature de-correlation graph
collaborative filtering for recommendations. In Proceed-
ings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, 1242—
1252.

Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE transactions on neural networks and learning
systems, 32(1): 4-24.

Yang, H.; Wang, X.; Tao, Q.; Hu, S.; Lin, Z.; and Zhang,
M. 2024. GL-Fusion: Rethinking the Combination of Graph
Neural Network and Large Language model. arXiv preprint
arXiv:2412.06849.

Yang, Z.; Wu, J.; Luo, Y.; Zhang, J.; Yuan, Y.; Zhang, A.;
Wang, X.; and He, X. 2023. Large language model can inter-
pret latent space of sequential recommender. arXiv preprint
arXiv:2310.20487.

Yuan, Z.; Chen, H.; Hong, Z.; Zhang, Q.; Huang, F.; Li,
Q.; and Huang, X. 2025. Knapsack optimization-based
schema linking for llm-based Text-to-SQL generation. arXiv
preprint arXiv:2502.12911.

Yuan, Z.; Yuan, F; Song, Y.; Li, Y.; Fu, J.; Yang, F.; Pan,
Y.; and Ni, Y. 2023. Where to go next for recommender
systems? id-vs. modality-based recommender models revis-
ited. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 2639-2649.

Zhang, A.; Deng, Y.; Lin, Y.; Chen, X.; Wen, J.-R.; and
Chua, T.-S. 2024a. Large Language Model Powered Agents
for Information Retrieval. In Proceedings of the 47th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, 2989-2992.

Zhang, Q.; Chen, S.; Bei, Y.; Yuan, Z.; Zhou, H.; Hong, Z.;
Chen, H.; Xiao, Y.; Zhou, C.; Dong, J.; et al. 2025. A sur-

vey of graph retrieval-augmented generation for customized
large language models. arXiv preprint arXiv:2501.13958.
Zhang, Y.; Bao, K.; Yan, M.; Wang, W.; Feng, F.; and He,
X. 2024b. Text-like Encoding of Collaborative Informa-
tion in Large Language Models for Recommendation. arXiv
preprint arXiv:2406.03210.

Zhang, Y.; Feng, F.; Zhang, J.; Bao, K.; Wang, Q.; and He,
X. 2023. Collm: Integrating collaborative embeddings into
large language models for recommendation. arXiv preprint
arXiv:2310.19488.

Zhao, W. X.; Zhou, K.; Li, J.; Tang, T., Wang, X
Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al.
2023. A survey of large language models. arXiv preprint
arXiv:2303.18223.

Zheng, B.; Hou, Y.; Lu, H.; Chen, Y.; Zhao, W. X.; Chen,
M.; and Wen, J.-R. 2024. Adapting large language modA
survey of large language modelsels by integrating collabora-
tive semantics for recommendation. In 2024 IEEE 40th In-
ternational Conference on Data Engineering (ICDE), 1435—
1448. IEEE.

Zhou, C.; Du, J.; Zhou, H.; Chen, H.; Huang, F.; and Huang,
X. 2025a. Text-Attributed Graph Learning with Coupled
Augmentations. In Proceedings of the 31st International
Conference on Computational Linguistics, 10865-10876.
Zhou, C.; Wang, Z.; Chen, S.; Du, J.; Zheng, Q.; Xu, Z;
and Huang, X. 2025b. Taming language models for text-
attributed graph learning with decoupled aggregation. In
Proceedings of the 63rd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers),
3463-3474.

Zhou, H.; Chen, H.; Dong, J.; Zha, D.; Zhou, C.; and Huang,
X. 2023. Adaptive popularity debiasing aggregator for graph
collaborative filtering. In Proceedings of the 46th interna-
tional ACM SIGIR conference on research and development
in information retrieval, 7-17.

Zhou, H.; Du, J.; Zhou, C.; Yang, C.; Xiao, Y.; Xie, Y.; and
Huang, X. 2025c. Each Graph is a New Language: Graph
Learning with LLMSs. arXiv preprint arXiv:2501.11478.
Zhou, H.; Yu, K.; Zhang, Q.; Chen, H.; Zha, D.; Pei, W.;
Kong, A.; and Huang, X. 2025d. Self-Monitoring Large
Language Models for Click-Through Rate Prediction. ACM
Transactions on Information Systems, 44(1): 1-25.

Zhou, H.; Zhou, S.; Chen, H.; Liu, N.; Yang, F.; and Huang,
X. 2024. Enhancing explainable rating prediction through
annotated macro concepts. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), 11736-11748.

Zhuang, L.; Chen, S.; Xiao, Y.; Zhou, H.; Zhang, Y.; Chen,
H.; Zhang, Q.; and Huang, X. 2025. LinearRAG: Linear
Graph Retrieval Augmented Generation on Large-scale Cor-
pora. arXiv preprint arXiv:2510.10114.

A. Proof for Theorem 1

We show that the empirical conditional probability Py(v; |
vy), computed from the corpus, converges to the transition
probability Py(v; | vy,) in graphs.

Let Ny(v,, — wv;) denote the number of transitions from
v, to v; observed in the initial graph corpus. The empirical
conditional probability is defined as:

Nﬁ(vu — Ui)
ZjeN(vu) Ny(vu = vj)

Pﬂ(vi | Uu) =

where A/ (v,,) represents the multi-order neighboring nodes
within the walk length [. And the expected number of tran-
sitions from v, to v;, denoted E[N(v,, — v;)], is:

E[Ns(vy = v;)] = dy - 1+ Py(v; | va),

By the Law of Large Numbers, as d,, — ©co or we sam-
ple k - d,, walks and & — oo, the observed transition count
Ni(v,, — v;) converges to its expectation:

Ny(vy — v;)

71 — Py(v; | vy).

The total number of transitions from v,, in the sampled walks
1803 e Xr(oy) Ns(vu = v;). The expectation of this term is:

E Z Ny(vy = vj)| = Z E[Ns(vy = vj)] = dy-l.

iEN (vy) FEN (vy)

Substituting these results into the definition of Py(v; | vy,),
we have:

Nq(vu — Ui)
ZjGN(vu) Ny(vu = vj)

Pi(v; | vy) =

And by the Law of Large Numbers, the numerator and de-
nominator converge to their expectations:

dy - 1+ Py(v; | vu)

P, i u
S(,U|’U>_> dul

= Py(vi | vu).

This proves that the random walk sampling process faith-
fully align the graph’s transition probabilities with the em-
pirical conditional probability in graph corpus.

B. Proof for Theorem 2

This section first introduces the construction of MinHash
signatures for graph sentences and establishes their relation-
ship with Jaccard similarity under both single and multiple
hash function scenarios. We then demonstrate how MinHash
signatures achieve more efficient similarity estimation com-
pared to pairwise comparison.

Let H = {hq,..., h} be a set of independent hash func-
tions. The hash signature for a graph sentence s, is defined
as:

[min hy(v;), min hg(v;), ..., min hg(v;)].
Vi E€ESp ViE€ESp ViESp

sig(sp) =

B.1 Single Hash Function Analysis

For k = 1, we establish the following lemma:

Lemma 4. Given a single hash function h and graph sen-
tences sy, Sq, the probability of their MinHash signatures
being equal is equivalent to their Jaccard similarity:

|8p N 84l

P(sig(sp) = sig(sq)) = J(sp,5¢) =

[sp U sq]

Proof. Consider a random hash function h that induces a
random permutation by sorting elements from s, U s, by
their hash values. Let sig(s,) = min,, e, h(v;) represent
the first element of s, in this permutation. The equality
sig(sp) = sig(sy) occurs if and only if the first element
belongs to s, N s,. Due to the random permutation prop-
erty, this probability equals the fraction of shared elements:

P(sig(sp) = sig(sq)) = 120%] = J(sp, 54)- O

[spUsq|

B.2 Multiple Hash Functions Analysis

For multiple hash functions, we construct an estimator using
MinHash signatures to approximate Jaccard similarity. Let
I(miny,cs, hj(v;) = min,, s, hj(v;)) denote an Bernoulli
indicator. The estimator is defined as:

J(5p, 5q) _Igzlvl}lelsih _zflelgqh(v;)).
Theorem 5. Given k independent hash functions, the

MinHash estimator J(sp,s,) is unbiased with variance
J(sp,5q)(1=J(sp,Sq))
. .

Proof. Since each indicator is an independent Bernoulli ran-
dom variable, by linearity of expectation:

E[J(sp,sq)] = Ivrlnelg)h _Flelgh(v;))] =
- J(8p,8)(1 — J(8p, 8q))
V(J,’I"[J(Sp,sq)]: (P q)(- (P q .

O

Thus, J (s, s,) provides an unbiased estimation of Jac-
card similarity. While traditional Jaccard similarity compu-
tation requires O(|S|?) operations, MinHash acceleration
reduces this to O(|S|) by storing signatures in a hash table
and retrieving graph sentences whose collision frequencies
exceed a specified threshold.

C. Related Work

We broadly categorize LLMs in recommender system into
two groups: LLMs as Recommender and LLMs as Data
Augmentor.

C.1 LLMs as Recommender

Recent research has increasingly explored LLMs’ potential
as recommenders (Zhang et al. 2024a). Given LLMSs’ natu-
ral language processing capabilities (Chen et al. 2025; Hong
et al. 2025; Yuan et al. 2025), there are two lines of ap-
proaches.

J(8p, 84)

Table 4: Precision performance with N = 5 and 10 across Steam, ML-10M, and ML-1M datasets.

Model .. Steam ML-10M ML-IM ..
Precision@5 Precision@10 | Precision@5 Precision@10 | Precision@5 Precision@10
LightGCN (He et al. 2020) 0.1232 0.0813 0.1559 0.1195 0.2527 0.2153
LightGCL (Cai et al. 2023) 0.0654 0.0503 0.1248 0.0911 0.1873 0.1569
HMLET (Kong et al. 2022) 0.1258 0.0884 0.1461 0.1141 0.2589 0.2238
AFDGCF (Wu et al. 2024b) 0.1307 0.0909 0.1575 0.1208 0.2575 0.2223
TransRec (Lin et al. 2024b) 0.0858 0.0448 0.1081 0.0603 0.1766 0.1218
LLM-CF (Sun et al. 2024) 0.1257 0.0827 0.1524 0.1132 0.2550 0.2170
LETTER (Wang et al. 2024) 0.1033 0.0690 0.1213 0.0835 0.2018 0.1645
LC-Rec (Zheng et al. 2024) 0.0924 0.0606 0.1106 0.0664 0.1931 0.1536
LLMEmb (Liu et al. 2025) 0.1280 0.0862 0.1572 0.1199 0.2542 0.2164
NLCF 0.1356 0.0932 0.1730 0.1281 0.2650 0.2297
g Z:i: 0.128 B 0.229 0215 0266 02.% z:iz
% 0.10 s '@ o264 0.262 / //l é 2305 /,0231
% 0.04 » 0.258 /'/6'2.;9 o o /.'/
e I

[Llama3.1-8b Llama2-7b Llama3.2-3b Llama3.2-1b |

Figure 4: The effect of replacing LLMs with different pa-
rameter scales on the performance of the NLCF model on
the ML-10M dataset.

0.277
271

o 0.2028%8 %7280 0.276

i 0.280

Figure 5: The impact of graph sentence length [and sam-
pling ratio « on NDCG@5 on ML-1M dataset.

Metric 0.25 0.50 0.75 1.00

Precision@5 0.2421 0.2650 0.2575 0.2591
NDCG@5 0.2550 0.2796 0.2754 0.2758

Table 5: The effect of similarity threshold ¢ on the perfor-
mance of NLCF on the ML-1M dataset.

sampling Proportion sampling Proportion

Figure 6: The impact of different sampling strategies on
NLCF performance: including random sampling, and our
similarity-based sampling across ML-1M dataset.

Description Reasoning-based Methods. One direct ap-
proach is to leverage the LLM’s inherent natural language
understanding and reasoning capabilities. These methods
transform user-item interactions into descriptive natural lan-
guage prompts and then task the LLM with prediction. For
a given user, his interaction history is formatted into a sen-
tence. For instance, methods like TALLRec (Bao et al. 2023)
organize item IDs or titles into simple descriptive sequences.
The core idea is to rely on the LLM’s reasoning power to in-
fer user preferences from this textual data. More advanced
studies in this category attempt to incorporate richer con-
text. For example, some pioneering work retrieves user and
item text along selected graph paths to provide the LLM with
more graph-specific information to reason over (Wu et al.
2024a). A prompt describing a single user’s history lacks
the powerful signal that arises from the aggregated behav-
ior of thousands of similar users. For instance, the fact that
many users who interact with item A also interact with item
B is a strong collaborative pattern that is lost in a simple
textual description. Furthermore, these methods depend on
slow, token-by-token text generation for inference, making
them inefficient for real-time recommendations over large
item sets.

Embedding and Structural Information Injection Meth-
ods. To address the shortcomings of pure text-based rea-
soning, a second line of work aims to inject richer col-
laborative information directly into the LLM (Zhou et al.
2025a,b). This is achieved by incorporating pre-computed

embeddings or creating additional tokens for structural el-
ements. These methods typically involve a two-stage pro-
cess. First, a traditional model, often a Graph CF model,
is used to learn latent user and item embeddings from the
full user-item graph. These embeddings, which encode col-
laborative signals, are then injected into the LLM’s in-
put. For example, studies like RecInterpreter (Yang et al.
2023), LLARA (Liao et al. 2024) and CoLLM (Zhang et al.
2023) plug these pre-computed embeddings directly into the
prompt. To better integrate these numerical representations,
BinLLM (Zhang et al. 2024b) proposed converting the con-
tinuous values in embeddings into discrete numerical to-
kens that are more natural for LLMs to process. Recog-
nizing the LLM’s ability to interpret latent representations
through fine-tuning, researchers begin incorporating these
representations more deeply, e.g., developing tailored tok-
enizers (Kim et al. 2024). Instead of injecting embeddings
from an external model, these methods learn to tokenize
these embeddings into several tokens and incorporate them
into the LLM’s vocabulary, e.g., LETTER (Wang et al. 2024)
and TokenRec (Qu et al. 2024). NLCF offers two distinct
advantages over these approaches: (i) it generates collabo-
rative embeddings for efficient item recall across the entire
item set, rather than relying on computationally intensive
text generation for a limited item subset, and (ii) it directly
learns collaborative information from graphs, fully leverag-
ing LLMs’ capabilities.

C.2 LLMs as Data Augmentor

Directly using LLMs as a recommender may introduce se-
vere latency. Consequently, many approaches utilize LLMs
as data augmenters to enhance representation learning of tra-
ditional recommendation models, addressing the semantic
limitations of ID embeddings. A fundamental approach uses
LLMs to integrate user and item attributes into unified vec-
tors (Wei et al. 2024). However, this method under-utilizes
LLMs’ reasoning capabilities regarding user behavior pat-
terns. More advanced approaches employ LLMs as inter-
action simulators, leveraging their step-by-step natural lan-
guage reasoning abilities to achieve promising results, even
in cold-start scenarios (Huang et al. 2024). LLMs can also
generate augmented user sequences for traditional recom-
mendation models (Sun et al. 2024) and produce valuable
side information, such as natural language explanations for
interactions (Zhou et al. 2024), enabling more informative
recommendations. RecLM addresses the challenge of noisy
initial profiles by generating refined, high-quality user and
item profiles (Jiang et al. 2024). Our method distinguishes it-
self by directly leveraging LLMSs’ capability to estimate user
preferences while avoiding excessive computational over-
head by learning collaborative embeddings.

D. Preliminary Details

Low Rank Adaption. Low-Rank Adaptation (LoRA) is
a widely used parameter-efficient fine-tuning method for
LLMs. LoRA incorporates trainable matrices into LLM (Hu
et al. 2021) through low-rank decomposition. Specifically,

given the weight matrix of a LLM, denoted as W &€ RdXd,,

LoRA introduces a modification W = W -+ BA, which
represents the low-rank adaptation for fine-tuning.

Collaborative Filtering. CF task learns user and item
embeddings to predict user preferences based on the user-
item interactions. And multi-order interactions and underly-
ing collaborative information from user-item graph G (He
et al. 2020) are beneficial for mining user preferences. Dur-
ing training, CF models update user embeddings h,,, and
item embeddings h,,, to model multi-order interactions. The
initial embeddings H is updated as:

H® = f(A,H),

where f(-) is a Graph Neural Network (GNN) model that
captures high-order collaborative information underlying
user-item interactions. The model optimizes these embed-
dings to effectively predict observed interactions in &.
During inference, the model predicts user preferences by
leveraging learned embeddings to search the entire item set
Z. For each user v,,, preference scores ,,; are computed for
all items v; € Z by using a simple dot product:
jui =h{ Th{Y (10)

v

The model then ranks items by preference scores and rec-
ommends the top-/V items to each user.

E. Dynamic Memory Bank Details

Fine-tuning LLMs on large-scale datasets introduces signif-
icant memory challenges, as each user and item token re-
quires storing its embedding and associated weight vectors
in the head layer W, € RIVIX4 To address these scalability
issues, we design a dynamic memory bank mechanism that
efficiently manages these vectors during fine-tuning. Our dy-
namic memory bank mechanism consists of two key strate-
gies: (i) Batch-wise embedding loading: Instead of loading
all user and item embeddings and head-layer weight vec-
tors into memory, NLCF loads only the embeddings and
weights associated with tokens in the current batch. This
significantly reduces memory overhead. (ii) Sampled soft-
max optimization: To further reduce memory usage, we op-
timize only the weight vectors corresponding to tokens in the
current batch, instead of the full set of head-layer weights.
By integrating these strategies, the dynamic memory bank
mechanism enables NLCF to efficiently fine-tune LLMs on
large-scale datasets while maintaining scalability.

F. Experimental Details
F.1 Dataset Details
We evaluate NLCF on three large-scale real-world datasets:
* ML-10M: A dataset from MovieLens, i.e., GroupLens

Research, including rich movie metadata such as titles
and genres.

» Steam: A gaming platform dataset containing user-game
interactions and game metadata, including titles, publish-
ers, etc.

* ML-IM: A dataset from MovieLens containing movie
ratings, user and item metadata.

These three datasets are chosen since they contain
user/item textual attributes, facilitating LLM baseline run-
ning. Following previous efforts (Lin et al. 2022), we split
each dataset into training, validation, and test sets with a
ratio of 8:1:1. We filter out users and items from the test
and validation set that do not appear in the training set. Fol-
lowing prior LLM-based recommendation studies (Lin et al.
2022), we only retain interactions whose ratings are greater
than or equal to 3. Following (Wang et al. 2019), we remove
users and items with fewer than 10 interactions.

F.2 Baseline Details
The introduction of baselines is listed below:

* LightGCN (He et al. 2020): A lightweight framework
that learns user and item embeddings through linear
graph propagation.

* LightGCL (Cai et al. 2023): A graph-based model that
leverages singular value decomposition for data augmen-
tation to address sparsity and bias issues.

* HMLET (Kong et al. 2022): A hybrid graph model
combining linear and non-linear embedding propagation,
with adaptive propagation based on node centrality.

* AFDGCF (Wu et al. 2024b): A dynamic feature-
dimension filtering approach that addresses over-
correlation and over-smoothing in graph CF.

¢ TransRec (Lin et al. 2024b): A transition-based frame-
work utilizing multi-facet identifiers for enhanced item
indexing and ranking.

* LLM-CF (Sun et al. 2024): An instruction-tuning ap-
proach that leverages LLMs’ world knowledge for graph
CE.

e LETTER (Wang et al. 2024): A learnable tokenization
framework incorporating semantics from LLMs and col-
laborative information from graph CF models.

* LC-Rec (Zheng et al. 2024): A learnable tokenization
framework that fine-tunes LLMs on various prompt tem-
plates.

e LLMEmb (Liu et al. 2025): A framework fine-tunes
LLMs on user and item attributes for generating better
user and item embeddings for downstream models.

The baselines are divided into two groups: traditional
graph CF baselines and LLM-based baselines. Among the
LLM-based baselines, we include two from the descrip-
tion reasoning-based category, i.e., LLM-CF and TransRec,
and two from the embedding injection-based category, i.e.,
LETTER and LC-Rec. Additionally, we include two base-
lines that fine-tune LLMs for side information generation to
achieve efficient inference , i.e., LLM-CF and LLMEmb.

F.3 Implementation Details

The underlying GPU computations is managed by CUDA
12.8. For a fair comparison, we measure running time on a
single GPU, distinguishing between training and test phases.
For methods that pre-compute user and item embeddings,
we search target items by performing similarity search based
on these embeddings. For generation-based methods, we

generate target item identifiers using trained LLMs. For
NLCF, we set the batch size to 256 with a learning rate
of le-4. Traditional graph CF baselines use a batch size of
4096. While the A100 supports larger batches, we find this
value optimal for balancing gradient stability and conver-
gence speed. For LLM-based baselines, we maximize their
batch size within hardware constraints, as prompt lengths
vary across models. We tune hyper-parameter using grid
searches based on the performance of validation set. The
graph sentence length [is selected from {2,3,4,5}, simi-
larity threshold ¢ from {0.25,0.5,0.75, 1}, and aggregation
position k is set as 1 to avoid redundancy. The sampling
proportion « is fixed as 75% except for the ablation study
experiments. For the main comparison, we adopt LLAMA-
3.1-1B as the default LLM backbone to ensure a fair com-
parison. To evaluate the generalization capability of NLCF,
we further evaluate it with several LLAMA variants, in-
cluding LLAMA-2-7B, LLAMA-3.2-3B, and LLAMA-3.1-
8B. To control for the randomness, each model gets run
five times. And the reported results have passed the signifi-
cance test with p-value < 0.01. For offline experiments, we
use the full-ranking evaluation approach Precision@N and
NDCG@N following previous approaches, where N is set
to 5 and 10. For industrial A/B tests, we use the online met-
rics: PCTR, UCTR, GMYV and ResTime.

F.4 Evaluation Metric Details
The introduction of evaluation metrics is listed below:

* Precision measures the proportion of recommended
items that are actually relevant to the user in the top K
recommendations.

* NDCG evaluates the ranking quality of recommenda-
tions by considering both the relevance and the order of
the recommended items.

* PCTR is the ratio of overall clicks to overall impressions.
* UCTR is the ratio of users who click to overall.
* GMV is the total values of user purchases.

* ResTime measures the average response time from user
request phase and return recommendation results phase.

F.5 NLCF Pseudocode

The NLCF model, whose pseudocode is detailed in Al-
gorithm 1, enhances collaborative filtering by leveraging
LLMs through three main phases:

In the graph corpus collection phase, NLCF represents
user-item interactions as a bipartite graph G = (V, £), where
V = U UZ. For each node v, € V, the algorithm per-
forms d, random walks of length [, generating graph sen-
tences. These sentences are clustered using MinHash signa-
tures based on similarity threshold ¢. A sampling probability
P(sq) 1/|C;] prioritizes sentences from smaller clusters,
producing an optimized corpus S’ of size « - |S].

During the collaborative embedding construction phase,
NLCF initializes LoRA parameters W and fine-tunes
the LLM by minimizing the prediction loss Lp,.. =

=24 2108 P(sq,j]84,<j, Wp,W). Using a dynamic
memory bank, it loads only necessary embeddings for each

Algorithm 1: New Language Collaborative Filtering
(NLCF)

1: Input: User-item graph G = (V, &), where V = U U
Z, LLM with parameter W,,, Sampling ratio «, walk
length [, similarity threshold ¢, Aggregation position k

2: Output: User embeddings h,, , Item embeddings h,,

3: procedure COLLECTGRAPHCORPUS(G, I, o, t)

4: S+ 0 > Initial corpus

5: for each node v, € V do

6.

7

8

d, < degree of v,
fori=1tod, do
s < RANDOMWALK(G, vy,)
length [starting from v,
9: S+ SU{s}
10: end for
11: end for
12: Compute MinHash signatures for all s € S

> Walk of

13: Insert graph sentences into hash table and group
into clusters C; based on similarity threshold ¢

14: for each cluster C; do

15: for each sentence s, € C; do

16: P(sq) < % > Calculate sampling
probabilities

17: end for

18: end for

19: &’ « Sample « - S| sentences from S according to
P(sq)

20: return S’

21: end procedure
22: procedure CONSTRUCTEMBEDDINGS(S', W)

23: Initialize LoRA parameters W

24: while not converged do

25: Sample batch of graph sentences {s,} from &’
of size b

26: Load embeddings and weights for tokens in
batch using dynamic memory bank

27: Lpre = =32, 225108 P(sq,5]5q,<j: Wp, W) ©
Compute loss

28: Update W to minimize Lpre

29: end while

30: for each user v, € U do

31: K+ A{p:sq €8, s9p=0up=|54 —k,0<
k< lsql}

32: h,, « EPGIC LLM({S4,15 84,2, ---s Sq.p—1})

33: end for

34: for each item v; € 7 do

35: K« {p:sqe8,sqp=u0vip=Isq —k0<
B < Jsq|}

36: hq}i < ZPE)C LLM({SqJ,Sq,Q, --~75q,p—1})

37: end for

38: return h, , h,,

39: end procedure

40: procedure NLCF(G, W, [, a,t, k,b)

41: S’ + COLLECTGRAPHCORPUS(G, [, a, t)

42: h,, ,h,, + CONSTRUCTEMBEDDINGS(S', W)
43: return h, ,h,,

44: end procedure

45: procedure RECOMMEND(v,,Z, h,, , h,, , N)

46: for each item v; € 7 do

47: Yui th -h,,

48: end for

49: return Top- N items with highest ¢,,;
50: end procedure

> Dot product

batch. For users v, € U and items v; € Z, the model ag-
gregates representations from positions where they appear
in graph sentences, generating embeddings hv,, and h,,.

In the recommendation phase, NLCF computes the simi-
larity between user v,, and each item v; as jui = hv, ‘h,,,
returning the top-/NV items with highest scores.

F.6 Limitations

One limitation of NLCF is the need to tune multiple hy-
perparameters, including sentence length, position step, and
similarity threshold. Identifying the optimal configuration
requires multiple grid or random searches, which can be la-
borious despite the training and inference efficiency of our
proposed model. Another limitation stems from the inherent
requirement of LLMs, which demand higher GPU resources
compared to traditional CF models, even though our model
is designed for efficient training and inference.

F.7 Future Directions

Our future work will first focus on enhancing the inter-
pretability aspects of NLCF by developing methods to ex-
tract human-understandable patterns from the learned LLM
representations, potentially enabling explanation generation
for recommendations. Second, investigating mechanisms to
incorporate explicit user feedback for continual learning
would enable the model to adapt to evolving user prefer-
ences while maintaining interpretability.

