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Collaborative Parking Vacancy Prediction for Cities
With Partial Sensors Missing
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Abstract— City-wide short-term parking vacancy (PV) predic-
tion is essential to transportation management. In many cities,
only partial parking lots are equipped with sensors, causing
severe data missing issues. Predicting PVs for parking lots with-
out sensors is attractive but challenging. First, PV prediction itself
is a nontrivial task since spatial dependencies among different
regions in a city are complex and dynamic. By connecting
parking lots based on geographical closeness using pre-designed
rules, state-of-the-art PV prediction models achieve reasonable
performance. However, those connectivities are not able to adapt
to capture the changing dependencies in the graph. Second,
node-to-node-based spatial and temporal dependencies will no
longer be reliable since neighboring parking lot sensors may be
intensely missing, which deteriorates the ability of the model
to accurately impute PVs, leveraging the complex dependencies.
To this end, we propose a novel framework named Collabo-
rative graph Learning for pArking vacancy Prediction (CLaP).
Specifically, to overcome the limitation of traditional pre-designed
node connections, we propose a collaborative training method
incorporating node attributes into graph augmentation, thus
enhancing the ability to capture dynamic spatial dependencies
through message aggregation. Besides, a recurrent PV recovering
module is developed to impute missing embeddings by deeply
coupling spatial-temporal dependencies. Experimental results on
two real-world datasets demonstrate that CLaP outperforms
state-of-the-art PV prediction models on city-wide PV prediction
and imputation precision for parking lots without sensors.

Index Terms— Parking vacancy prediction, graph neural net-
work, traffic prediction with data missing.

I. INTRODUCTION

WITH the development of Intelligent Transportation Sys-
tems (ITS) and the deployment of advanced sensing

technologies, smart transportation challenges can be solved
in a more data-driven manner [1]. Specifically, city-wide
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Fig. 1. Spatial distribution of parking lots in Hong Kong. Blue spots refer to
parking lots with real-time PV data, and red spots refer to parking lots with
PV data missing.

distributed sensors are deployed to provide real-time parking
space information [2]. It enables parking vacancy prediction,
helping drivers find nearby parking lots without cruising [3].

Existing PV prediction studies [4], [5], [6] rely on the
availability of complete PV sequences of all parking lots to
track spatial-temporal evolution tendencies and previse future
behaviors. However, PVs may not be continuously accessible
due to sensors partially missing. In many cities, sensors are not
installed due to high cost or may be broken because of poor
maintenance [7]. According to data1 collected from sensors
deployed by the Hong Kong government, we observe that 60%
of parking lots are incapable of recording PVs across consec-
utive time steps, as shown in Fig. 1. The severely missing
sensors lead to the high absence of PVs in both spatial and
temporal dimensions, which makes it challenging to achieve
a satisfactory prediction. Traditional preprocessing imputation
methods, e.g., k-Nearest Neighbor (KNN), could be utilized
to approximate the missing PVs before the implementation of
prediction models. But these methods fail to simulate real-
world spatial-temporal patterns comprehensively so that the
imputed PVs may be highly biased from ground truths.

1https://data.gov.hk/en-data/dataset/hk-td-msd_1-metered-parking-spaces-
data
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We notice that recent efforts [8], [9] aggregate nearest
neighbors at each time step and then transmit to recurrent
neural network (RNN) components to approximate the missing
PVs of the next time steps. Meanwhile, they capture spatial
dependencies through a static graph, which connects parking
lots based on human-designed criteria. Nevertheless, there
are two limitations. First, the precision of approximation
relies on the similarity of PV patterns among the nearest
nodes with sensors to the target node. The PV patterns may
evolve as time progresses, and the similarity of PV patterns
between the nearest nodes with sensors and target nodes may
change at different historical time spans. Iteratively generated
last-time step output does not explicitly model spatial-temporal
dependencies at different lengths of historical time slices. Thus
it may not provide sufficient context to impute the missing PVs
accurately. Second, to model spatial dependencies, graph con-
struction based on road connection or geographical closeness
is reasonable. But it may not be able to adapt to capture the
changing dependencies of complex real-time parking vacancy
patterns in the graph, which may be influenced by multiple
factors: Point-of-Interest (POI) distributions [10], traffic con-
ditions [11], etc. For example, it’s easy to find parking lots
around shopping malls, while hard for nearby office buildings
on weekdays.

In summary, real-time parking vacancy prediction with sen-
sors partially missing faces two significant challenges. (i) The
first challenge is the dynamic spatial dependencies faced by
PV prediction tasks. The PV patterns can change rapidly and
vary based on time. For example, at some time step, the
neighboring nodes may exhibit dissimilar PV patterns while
distant nodes may exhibit similar ones. A feasible solution
is adding connections to those parking lots that maximally
express dynamic spatial dependencies [12]. Nevertheless, it is
non-trivial to identify appropriate connections and pre-design
the graph structure due to non-obvious parking vacancy pat-
terns changing with time. (ii) The second challenge is how to
leverage the severely corrupted spatial-temporal dependencies
caused by missing PVs to do imputation. The PVs of neigh-
boring nodes may be highly possible absent, while the PV
patterns of distant nodes without missing sensors may have
different distributions at different time spans. To address this
intricate case, an available approach is to make approximations
considering spatial and temporal dependencies one after the
other. But it fails to model the deep interactions between
them simultaneously and does not provide sufficient context
to impute missing data preciously.

To tackle those challenges, we propose a novel framework:
Collaborative graph Learning for pArking vacancy Prediction
(CLaP), to predict parking vacancies with sensors partially
missing. The contributions can be summarized as follows:

• We design a deep learning framework tailored to the spe-
cific data missing issue for predicting city-wide parking
vacancy.

• We develop a collaborative graph training mechanism to
capture dynamic spatial dependencies between parking
lots. The graph-based spatial connections are learned by
incorporating node attributes into graph augmentation.

TABLE I
SUMMARY OF IMPORTANT NOTATIONS

• We propose a parking vacancy recovering module to
impute missing PVs. To deeply couple spatial-temporal
dependencies, pseudo PV embeddings are approximated
by jointly leveraging neighbor representations at different
historical time spans.

• We conduct extensive experiments on two real-world
datasets. Compared with several baselines, our model out-
performs significantly on PV prediction tasks, including
both city-wide predictions and predictions for parking lots
without sensors.

II. PRELIMINARIES

In this section, we introduce two key definitions and for-
mulate the problem statement of real-time PV prediction with
sensors partially missing. The important notations throughout
the paper are listed in Table I.

• Definition 1: Parking vacancy (PV). Let P = Pr ∪ Ps =

{p1, p2, . . . , pN } be a set of parking lots with the total
number of N , where Pr refers to parking lots with sensors
while Ps without. The PV of each parking lot pi is
represented as yt

i , indicating the available parking space
at time t . All involved yt

i denoted as Y t
= Y t

r ∪ Y t
s

are parking vacancies of all parking lots, where Y t
r

represents observed PVs from Pr while Y t
s represents

missing ones from Ps . Parking vacancy (PV) embeddings
denote high-dimensional node representations.

• Definition 2: Parking lot network. The parking lots are
modeled as an undirected graph G = (P, E, A, X),
where P is the set of all parking lots and E is a
set of edges indicating the connection between them.
A ∈ RN×N denotes the binary-valued adjacency matrix,
where Ai, j = 1 when the geographical distance between
pi and p j is smaller than a geographical threshold δ.
X ∈ RN×d refers to POI features of parking lots, which
can be learned through model training.

A. Problem Statement

For inference, given partially observed PV sequences YT
r =(

Y t−T +1
r , Y t−T +2

r , . . . , Y t
r
)

∈ R|Pr |×T from Pr at historical T
time steps, the objective is to predict PV sequences in the next
T ′ time steps YT ′

=

(
Y t+1, Y t+2, . . . , Y t+T ′

)
∈ RN×T ′

of all
parking lots P .

III. METHODOLOGY

The framework of CLaP is shown in Fig. 2. It is composed
of three major modules: attention-based POI feature extraction
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Fig. 2. The architecture of the proposed framework - Collaborative graph Learning for pArking vacancy Prediction (CLaP).

(POIAttn), recurrent parking vacancy embedding recovering,
and collaborative spatial-temporal modeling. (i) The first mod-
ule extracts POI features X for all parking lots as additional
node attributes besides PVs. This module guarantees park-
ing lots without sensors also have node attributes for the
recovery of PV embeddings in the second module and the
construction of an augmented graph in the third module. (ii) To
reconstruct severely corrupted spatial-temporal dependencies
for each node, we first recover missing PV embeddings for
sensorless nodes. The second module achieves this by employ-
ing two submodules: Spatial-Temporal Imputation (STImp)
and Feature-Based Augmented Imputation (feaImp). These
submodules leverage two types of information: neighbors’
historical PV embeddings and surrounding POI features sep-
arately to achieve more precise imputed PV embeddings. (iii)
To capture the intricate spatial dependencies, we design the
collaborative graph aggregation mechanism and develop two
submodules: Feature-based collaborative graph aggregation
(feaCoNN ) and value-based collaborative graph aggregation
(valCONN ). They learn augmented graphs and propagate PV
embeddings to model dynamic spatial dependencies at differ-
ent time steps on the extracted POI features and recovered
PV embeddings. Then the dilated temporal convolution block
with a gating mechanism (gated_TCN ) models the temporal
dependencies in the aggregated PV embeddings at the last T
time steps.

A. Attention-Based POI Feature Extraction

In the parking lot graph, each node is endowed with
node attributes representing parking vacancies and POIs. POI
information refers to a specific point location of potential
interest with geographical coordinates. It serves essential node
attributes to characterize parking lots.

Extracting POI features may be beneficial to explore spatial
dependencies between parking lots [4], e.g., parking lots are

more occupied around shopping malls than office buildings
at weekends. To selectively generate meaningful POI cate-
gorical information as additional node features, we utilize
self-attention mechanism [13] to capture the spatial depen-
dencies between parking lots and surrounding POIs, defined
as:

X = Attention (Q, K , V ) = so f tmax
(

QK ⊤

√
d

)
V, (1)

where X ∈ RN×d refers to the generated POI features; d
represents the extracted POI feature dimension; Q, K refers
to geographical information (latitude and longitude) of parking
lots and surrounding POIs, respectively; V refers to categorical
information of POIs. ⊤ denotes the transpose operation here.
If a POI is closer to a parking lot, the attention coefficient
learned by similar geographical information will weigh more
when aggregating POI-based features compared with other
POIs.

This way, parking lots described by similar POI distributions
around will exhibit similar POI features for nodes. Instead of
concerning each POI’s influence on parking lots, we focus on
a set of POIs categories within a geographical range in the
city map for computing efficiency.

B. Recurrent Parking Vacancy Embedding Recovering

The recurrent PV embedding recovery module generates
pseudo PVs for all parking lots over the past T time steps
based on node attributes. It consists of two parallel submodules
for this purpose: spatial-temporal imputation (STImp), which
leverages neighboring nodes with historical PV values, and
feature-based augmented imputation (feaImp), which utilizes
extracted POI features from the POIAttn module.

1) Spatial-Temporal Imputation: For missing embedding
recovering, current efforts model spatial and temporal depen-
dencies separately and design divided components to do impu-
tation. The potential spatial-temporal interactions between
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them may not be fully captured. Due to the sensors being
severely missing, it is necessary for the target node to rely on
distant nodes to impute the missing PVs. The distant nodes
may not follow closely similar PV patterns to the target one;
that is to say, the importance of these nodes may vary over
time. As a result, the imputed data will inevitably be biased
from ground truths. Additionally, the errors may iteratively
propagate across consecutive time steps. In order to accurately
capture such intricate dependencies, it is necessary to analyze
the relationship between the nearest nodes with sensors and
the target node at different historical time spans. Inspired by
this, we target jointly modeling historical neighbor node PVs
at different time spans to impute missing data.

Due to the possible sparse connection between nodes,
we introduce a more tightly connected adjacency matrix for
PV embedding recovering: Â = A | A′ where A′

i, j = 1 when
the euclidean distance between pi and p j is among the top
K minimum in Pr . | refers to OR operation and hyper-
parameter K controls the sparsity of the graph. Â guarantees
that each parking lot has at least K neighbors having PV
embeddings. It eliminates the possibility of inconsequential
information aggregation arising from adjacent nodes lacking
PV embeddings. In other words, even if parking lots in a city
suffer from extreme sparsity, originally isolated nodes can also
have at least K edges connected to other nodes with sensors
in the tighter adjacency matrix.

The transition process of spatial-temporal dependencies
modeling can be viewed as a special Markov process [14]
where current states of all parking lots P can be inferred by
previous ones with:

Ẏ t
= β( Â ⊙ W t−1)Ẏ t−1, (2)

with

Ẏ t−1
= Y t−1

⊙ m + Ẏ t−1
⊙ (1 − m) , (3)

where W t−1
∈ RN×N is a learnable parameter matrix; β is a

trainable weight; ⊙ refers to element-wise product. Masking
assignment m ∈ {0, 1}

N is set to 1 if the corresponding node
has features, while 0 if it is missing. Ẏ t−1 refers to estimated
PV distributions while Y t−1 refers to real observed ones at
time t − 1. The Eq.(3) allows for updating of missing PVs
while preserving available PVs through the aggregation of
every adjacent timestamp.

Through this way, the states of neighbor nodes over different
time spans before t have the possibility of becoming the
optimal dependent ones of the target node. Based on the main
idea of the Markov process that the current state only depends
on the previous one and with the recurrent update on the
information of the current time step, Eq.(2) is updated by:

Ẏ t
=

τ∑
z=1

βz(

z∏
j=1

Â ⊙ W t− j )(Y t−z
⊙ (1 − m)), (4)

where τ denotes the selected historical length and is set as
a hyper-parameter. The aggregation guarantees that the target
node jointly considers the PVs of neighbor nodes over different
time spans. Fig. 3 represents the whole picture of our STImp.

Fig. 3. Spatial-temporal imputation block (STImp). The picture above
shows the spatial and temporal dependencies commonly concerned in the
PV prediction task. The picture below represents our idea of deeply coupling
spatial-temporal dependencies from adjacent nodes at previous time steps.

2) Feature-Based Augmented Imputation: STImp generates
pseudo PVs for all parking lots using historical neighbor-
ing nodes with PV values. The accurate approximation is
still challenging in scenarios with severely missing sensors.
We notice nodes with similar POI features may share similar
parking vacancy patterns. The extracted POI features may
serve as the beneficial signal to assist better PV approximation.
This motivates us to harness the generated POI features from
POIAttn within the parking network to generate improved
approximations of PV distributions concurrently. And we
introduce an attention-based graph convolution [15] to obtain
pseudo PV embeddings Ỹ t guided by POI features at each time
step. The message passing function defined on the parking lot
pi at the first layer is as follows:

ỹ(1)
i = σ

(∑
j∈Ni

ai j W y(0)
j

)
, (5)

where y(0)
j ∈ Rdp denotes PV embeddings for p j ; σ is the

sigmoid activation function; W ∈ Rdp×dp is a learnable matrix;
Ni = { j | Âi, j ̸= 0} denotes the nearest neighbor node set
with sensors of pi . The attentive weight ai j emphasizes the
neighboring parking lot with relevant extracted POI features
defined as:

ai j =
exp(D P(xi , x j ))∑

u∈Ni
exp(D P(xi , xu)

, (6)
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Fig. 4. Example of feaCoNN. Parking lot graph models the original graph structure. Augmented graph models the new graph structure considering feature-based
nodes c1 and c2.

where D P(xi , x j ) represents the scaled dot-product function
between POI features of pi and p j . By stacking multiple prop-
agation layers, we obtain the updated pseudo PV embeddings
for all parking lots P considering surrounding POI’s influence,
and denote them as Ỹ t .

We concatenate outputs from two submodules Y
t

= Ẏ t
+

Ỹ t
∈ RN×dp as the generated pseudo PV embeddings.

C. Collaborative Spatial-Temporal Modeling

After being processed by the recurrent parking vacancy
embedding recovery module, each parking lot has real or
pseudo PV embeddings for the last T time steps. We aim
to capture intricate dynamic dependencies by introducing
a collaborative graph aggregation mechanism. This mech-
anism introduces additional nodes for each dimension in
node attributes, i.e., POI features and PV embeddings at
each time step. These newly established nodes will prioritize
PVs related to the corresponding dimension and propagate
them to all parking lots based on their relevance. After the
module aggregates neighbor information at each time step,
a subsequent gated temporal convolution block performs time
step aggregation, evolving to predict the next time step.

1) Collaborative Graph Aggregation in Spatial Domain:
Current efforts only model spatial dependencies in a
pre-designed static graph. However, in real-world parking
scenarios, spatial-temporal correlations between parking lots
are more intricate and may change over time spans. For
example, it is common that two distant parking lots share
similar PV patterns at some time steps while quite different
at others. It drives us to deeply integrate node attributes into
the GNN aggregation to capture dynamic dependencies, that
is, to make nodes potentially sharing similar PV distributions
more tightly connected.

Based on that, we propose a novel graph training mecha-
nism. First, it augments parking networks with learned node
features as newly created nodes. Second, it links parking lots
with corresponding newly-added feature nodes. To provide
a clearer explanation of the operational details, the example
is illustrated in Fig. 4. Nodes p4 and p5 have the same
element 1 at the first feature dimension (c1). The augmented
graph connects them to node c1 by an edge with weight 1.
In this way, all parking lots not only aggregate adjacent node
messages through the pre-designed graph, but also attend to
distant nodes based on node attribute similarity.

We design two parallel submodules, feature-based col-
laborative graph aggregation (feaCoNN ) and value-based
collaborative graph aggregation (valCoNN ), with this mecha-
nism. The feaCoNN exploits the extracted POI feature as input
to construct the augmented graph, while valCoNN exploits
the real or pseudo PV embeddings. To save layout space,
we take feaCoNN as an example. The adjacency matrix of
the augmented graph is constructed as follows:

Â =

[
A X

X⊤ 0

]
∈ R(N+d)×(N+d), (7)

where X ∈ RN×d refers to POI features.
The node pairwise edge strength indicates the closeness of

spatial dependency. We capture the intricate spatial depen-
dency by prioritizing the neighbors with the edge strength
in Â. We proceed to conduct message aggregation on the
newly built augmented graph. Since the original POI features
of all parking lots are converted to edges, all node features are
randomly set to prevent the inclusion of duplicate information.
We use Ĥ (0)

∈ RN×dc to denote the freshly initialized features
of parking lot nodes P , while H̃ (0)

∈ Rd×dc denotes features
of feature nodes Q. Then the parking lot pi could aggregate
messages from P and Q together. Its feature is updated by:

Ĥ (1)
i = σ

(
α
∑

j∈N G
i

b̂i j Ĥ (0)
j + (1 − α)

∑
q∈Q b̃iq H̃ (0)

q

)
, (8)

with normalizing edge weights by a softmax function:

b̂i j =
exp( Âi j )∑

u∈N G
i

exp( Âiu)
, b̃iq =

exp( Âiq)∑
u∈Qexp( Âiu)

, (9)

where adjacency weight α is a trade-off factor; N G
i formulates

the neighbor node set of pi in parking networks G. After
multiple steps of message aggregation, we obtain the smoothed
POI-based features Xaug = Ĥ (k)

∈ RN×dc .
ValCoNN takes Xaug ⊕ Y

t
∈ RN×(dc+dp) as input and

generates Y t
aug ∈ RN×(dc+dp) at each time step recurrently

for further temporal modeling. The graph augmentation and
message aggregation of valCoNN are the same as feaCoNN,
and we omit them for brevity.

By applying these two submodules, node representations
can be aggregated based on learnable spatial dependencies.
And the connection is dynamically determined by real-time
PV embeddings and POI features. They guarantee parking lots
having similar features to share tighter spatial connection even
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if the two nodes are separated by a large number of edges in
the original graph, which benefits PV prediction for large-scale
cities with a mass of parking lots.

2) Dilated Convolution in Temporal Domain: The spatial
representations generated by collaborative graph aggregation
for last T time steps is Yaug ∈ RN×T ×(dc+dp). It effectively
captures the parking vacancy patterns of each parking lot
over time. To make accurate predictions, we extract both
short-term and long-term temporal dependency within the
patterns by leveraging 1D dilated causal convolution [16]. This
convolution operation has a large receptive field which allows
it to extract extensive information from Yaug . The dilated
convolution operation is defined as:

Ŷ =
(
θ1 ⋆ Yaug + b1

)
⊙ σ

(
θ2 ⋆ Yaug + b2

)
, (10)

where ⋆ refers to dilated causal convolution; θ1, θ2, b1 and b2
refer to weight and bias parameters separately.

We stack two convolutions with a gating mechanism [17]
to extend the receptive fields of historical PVs and obtain
aggregated representations Ŷ ∈ RN×T ×1. It contains both
spatial and temporal information, which could be utilized to
guide the next T ′ time step PV prediction.

D. Joint Training

We adopt the mean square error (MSE) loss to compare the
difference between imputed PVs and real historical PVs for
parking lots among Pr denoted as:

Lpseudo =
1
T

1
|Pr |

T∑
t=1

|Pr |∑
i=1

(
yt

i − yt
i
)2

. (11)

The Lpseudo loss is introduced to minimize the error between
the imputed PV distributions and observed one. Then we
compute the PV prediction loss of the next T ′ time steps also
for parking lots among Pr :

Ltrain =
1
T ′

1
|Pr |

T ′∑
t=1

|Pr |∑
i=1

(
yt

i − ŷt
i
)2

. (12)

Finally, we integrate two losses into a joint training objective:

Lall = Ltrain + γLpseudo, (13)

where γ controls the magnitude of recovering the loss.

IV. EXPERIMENTS

We conduct extensive experiments to investigate the effec-
tiveness of our proposed model. Four research questions are
waiting to be answered. Q1: How does CLaP perform on
PV prediction tasks compared with state-of-the-art baselines,
especially for those parking lots without sensors? Q2: How
does each core component of CLaP contribute to the whole
model performance? Q3: How does CLaP perform with differ-
ent hyper-parameters? Q4: How do missing PVs affect model
performance? Q5: How do POIs influence PV prediction from
different perspectives?

Fig. 5. Spatial distributions of sensors in two cities.

A. Two Real-World Datasets

• HK (Hong Kong). The dataset is collected from
DATA.GOV.HK,2 recording the occupancy status of park-
ing lots with sensing meters in Hong Kong. We use
Map-Matching to match all parking lots with road
segments collected from OpenStreetMap.3 Then the
objective becomes to investigate the total parking vacan-
cies on each road segment. The time is November 2021.

• SF (San Francisco). The dataset is collected from
HARVARD Dataverse,4 recording the measured parking
availabilities of parking lots in San Francisco. The period
was from June to July, 2013.

Figs. 5a and 5b show the spatial distributions of sensors in
Hong Kong and San Francisco. In Hong Kong, most sensors
are deployed on main streets in commonly visited business
and residential areas with large traffic flows; while in San
Francisco, sensors are located in a small business district
somewhere around a pier. The number of tested nodes is larger
and the sensors’ connectivities are much more complicated in
Hong Kong compared with those in San Francisco. We group
and transform parking records into PVs every 5 minutes.
We split the city map into 40 × 40 and 30 × 30 grids
for HK and SF datasets respectively, and count categorical
POI distribution [18] in each grid [19]. We will explain
the detailed description in the following POI analysis. The
geographical information of POIs that fall in corresponding
grids in POIAttn is recorded as the grid center’s latitude and
longitude. The example is shown in Fig. 6.

To validate the performance of our model, especially on
parking lots with sensors missing (Ps), we select nodes with
complete PV information. Notably, when training, we incor-
porate a N × T masking matrix with Ps nodes set to 0 and
Pr nodes set to 1 to guarantee parking lots with missing
sensors will not be included during the training process of
the proposed framework. The implementation of training is
shown in Fig. 7a. Besides, PVs are transformed using min-max
normalization before model implementation. Remarkably, the

2https://data.gov.hk/en-data/dataset/hk-td-msd_1-metered-parking-spaces-
data

3https://www.openstreetmap.org/
4https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/

YLWCSU
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Fig. 6. Example of POIAttn. POI features are generated based on the
attention score queried by locations. Example of POI attribute of one node.
Each element in the feature vector represents how many times a location or
place, e.g., c1 appears in the geographical range. The POI feature is generated
based on the attention score queried by the location.

predicted PVs are scaled back to make the comparison. The
detailed dataset description is shown in Table II.

B. Implementation Details

The model is implemented by PyTorch and run on NVIDIA
GeForce RTX 3090, 24GB memory. We use Adam optimizer
with a learning rate of 0.001. Early stopping is adopted based
on validation performance with a threshold of 30 epochs.

The observed PV sequences are split into training, vali-
dation, and test sets with a ratio of 6:2:2. Within each set,
we choose T = 12 and T ′

= 12 time steps. With a time step
corresponding to 5 minutes’ PV information, we use the past
one hour’s PV to predict the next one hour’s PV.

The hyper-parameters are tuned to be optimal based on
the performance of the validation set. Specifically, we set
the distance threshold δ = 1000 m and δ = 200 m to
connect parking lots for HK and SF datasets separately. K
for constructing Â is set to be 50 and 20 for HK and SF
datasets. The searched hyper-parameters are listed below. d,
dp are set to 16 and 32. Specifically, high-dimensional POI
features are generated from POIAttn, whose dimension d is
aligned with the dimension of POI categories. POI categories
are mapped to dimension d from a linear function. High-
dimensional PV embeddings dp are generated through the
feed-forward network (FFN). dc is set to 32 and 16 in HK
and SF datasets. α, β, γ equal 0.5, 0.9, and 1. τ is 6, that is
to say, it considers the historical 6 time steps when recovering
missing PV embeddings. The optimal propagation step of
graph convolution in feaImp, feaImp, and valCoNN is 1, 2,
and 2. We run all models five times repeatedly and report the
average results.

For other baselines, we all incorporate POIs into parking
lots as node features for a fair comparison. We utilize the
source code released by the authors and adopt the reported
optimal hyper-parameter configuration.

C. Experimental Settings

We analyze the model performance over two tasks: PV
prediction for all parking lots and parking lots without sensors.
The implementation of evaluation is shown in Fig. 7b.

• Task 1: PV prediction for all parking lots. This task
aims to predict PVs for all parking lots among P in

TABLE II
DATASET DESCRIPTION

Fig. 7. The implementation of training and testing dataset.

common scenarios where the sensor’s missing issue is
not severe. The missing ratio is fixed at 40%, and we
report the average predicted results of the first 15 minutes,
30 minutes, 45 minutes, and 60 minutes, respectively.

• Task 2: PV prediction for parking lots without sensors.
This task mimics some real-world scenarios, where the
parking lot network suffers from a severe sensor missing
problem. The missing ratio is set to 60% and 80% in
this task for all datasets. Notably, in this task, we only
calculate all model performance on parking lots among
Ps , to examine how effectively our model can predict
missing PVs under a high missing ratio. We report the
average results of the predicted next one hour.

The selection of parking lots without sensors can affect
model performance since the significance of PVs varies across
nodes in the graph. For a fair comparison, Ps is randomly
selected and shared by all the models before every run of the
model. Given that some baselines are incapable of handling
missing data, we average PVs of k nearest neighbors to impute
missing one within the geographical range δ defined before.

D. Evaluation Metrics

We adopt two evaluation metrics, mean average error
(MAE) and rooted mean square error (RMSE), for benchmark
comparison. Smaller numbers represent the estimated values
closer to the ground truths, indicating better performance.
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TABLE III
PERFORMANCE COMPARISON ON PREDICTION ACCURACY OF P WITH DIFFERENT PREDICTION TIME STEPS

E. Baselines

To compare with CLaP on task 1, we introduce the follow-
ing baselines:

• HA utilizes the average PVs of historical time steps as
the predicted one.

• STGCN captures spatial-temporal correlations through
building stacked ST-Conv blocks, each containing tem-
poral gated convolutions and spatial graph convolution
neural networks [20].

• DCRNN uses bidirectional random walks on graphs
to model spatial complexity and implements an
encoder-decoder model to capture temporal dependen-
cies [21].

• ASTGCN introduces a spatial-temporal attention mech-
anism to capture correlations through modeling recent,
daily-periodic and weekly-periodic dependencies [22].

• Graph WaveNet introduces an adaptive graph learning
module to capture temporal dependencies considering
long historical sequences [17].

• AGCRN proposes a data-learning spatial graph con-
struction method and utilizes GRU to capture temporal
dependencies [23].

• STGODE adds semantic adjacency matrix into graph
construction to better understand spatial correlations [24].

• TGNM captures the dynamic spatial associations on road
structures through a BERT-extended module and mines
traffic flow patterns based on a temporal graph neural
network [25].

Among those, STGCN, DCRNN, ASTGCN, Graph
WaveNet, AGCRN and STGODE are widely-used baselines
for traffic prediction. Traffic prediction and PV prediction
share commonalities to some extent. We choose those base-
lines to test the effectiveness of our model designed for data
completely missing.

We also include two variants of our model to evaluate the
effectiveness of the proposed core modules:

• CLaP-SP excludes the spatial-temporal imputation block
(SPImp). Only feaImp is left in the recurrent recovering
block.

• CLaP-GCN replaces collaborative graph aggregation
with traditional GCN in feaCoNN and valCoNN.

To demonstrate the superiority of CLaP on task 2, we intro-
duce some baselines aiming to handle missing PVs:

• KNN is used to impute data based on neighbors
within the range δ. Due to the limited available deep
learning-based models handling missing PVs, we select
KNN as one traditional imputation method to make a
comparison.

• BTTF proposes a Bayesian temporal factorization for
modeling large-scale spatiotemporal data in the presence
of missing values and making a prediction [26].

• GCN-LSTM leverages traditional GCN and LSTM to
capture spatial and temporal dependencies. The LSTM
temporal module is reused to recover missing data con-
sidering temporal influences [9].

• SHARE proposes a hierarchical graph convolution
structure to model spatial correlations and a parking
availability approximation component to handle missing
PVs [8].

F. Effectiveness Evaluation (Q1 & Q2)

We evaluate the overall performance of all baselines over
two datasets to answer the first and second questions.

Performance on Task 1. The result of task 1 is shown
in Table III. We notice that as the length of the predicted
time step increases, all models show a slight decline in
prediction accuracy. It may be due to the reason that it is
still hard to handle long sequential information. The table
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Fig. 8. Effectiveness of proposed modules.

TABLE IV
PERFORMANCE COMPARISON ON IMPUTATION PRECISION OF Ps WITH

DIFFERENT MISSING RATIOS

shows that CLaP significantly outperforms all other baselines
on two datasets, demonstrating our model’s superiority. The
exceeding is because these models are not designed to handle
inputs with missing PVs. Traditional data imputation before
model implementation introduces slight differences from real-
observed PVs, aggravating the model’s prediction accuracy.
Besides, both MAE and RMSE scores of the HK dataset are
relatively smaller than those of the SF dataset. The possible
reason for the small testing scores may be the larger number
of trainable nodes and the denser spatial distributions of
nodes in Hong Kong. Test results on the HK dataset achieve
an average 19.8% improvement on MAE and an average
13.0% improvement on RMSE, which demonstrate a less
significant enhancement compared with the 22.6% and 16.1%
improvement tested on the SF dataset. Because of the fewer
obtainable neighbor nodes based on the spatial graph in the SF
dataset, traditional data imputation methods will bring more
errors, and deep-learning-based PV prediction models will also
fail to aggregate useful node attribute information, thus leading
to worse prediction results. CLaP solves both the data missing
and the sparse spatial distribution problems, which are much
more severe in the SF dataset, and hence it demonstrates a
more significant improvement in SF.

Performance on Task 2. The result of task 2 is shown in
Table IV. From the table, we have the following observations.
First, a larger missing ratio leads to worse imputation
precision for those parking lots without sensors. It may be
due to severely corrupted spatial and temporal dependencies.

Under this scenario, the PVs of neighbors will be highly
inaccessible while distant nodes may not have similar PV
patterns. Thus the irrelevant PV patterns introduce bias for
the imputation process, causing a significant prediction error.
Second, the performance of deep learning-based models
handling missing PVs loses to CLaP, especially on the SF
dataset. The performance improvement is attributed to jointly
modeling consecutive historical time steps in PV imputation
and dynamic spatial dependencies. So CLaP performs con-
sistently better than other baselines on two datasets. Third,
CLaP performs the most stable as increasing missing ratio.
Although the baselines capture the spatial dependencies to
some extent, they do not model deep interactions between
spatial and temporal dependencies while jointly considering
the POI influence. In the HK experiment setting, since there
exists a relatively large quantity of nodes and the spatial con-
nectivities between nodes are comparatively dense, an extreme
80% missing ratio can still construct a spatial graph, which
helps make PV prediction. That is the reason why other models
perform not so badly when testing on HK with an 80% missing
ratio. However, the number of nodes in the SF graph is much
fewer, and an extreme 80% missing ratio will severely corrupt
the spatial correlations, which makes the prediction a task for
time-series modeling with few trainable samples. As a result,
KNN even performs the best in this extreme case, and other
deep learning-based models demonstrate extraordinarily bad
results. From the results, CLaP is more robust to the large
sensor missing ratio, demonstrating the effectiveness of the
proposed imputation module.

Ablation Study. The ablation study result is shown in
Fig. 8. The performance gap between the two variants and
CLaP shows the effectiveness of our proposed modules. CLaP-
SP excludes STImp, which does not consider coupling the
spatial-temporal dependencies when dealing with missing data.
The superiority of CLaP compared with CLaP-SP demon-
strates that coupling the dependencies between real-time PVs
is beneficial for imputing missing data. CLaP-GCN replaces
collaborative graph learning with traditional graph convolution
networks and loses to CLaP by a wide margin, which verifies
the effectiveness of incorporating node attributes into graph
augmentation to model the dynamic spatial dependencies.

G. Parameter Sensitivity Analysis (Q3)

In this subsection, we now explore the impact of different
hyper-parameters, including dimension dc over feaCoNN and
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Fig. 9. Parameter sensitivity analysis.

valCoNN, joint loss weight γ , adjacency α, and distance
threshold δ to investigate the third question. The results are
collected from all parking lots P on the two datasets.

CoNN dimension dc represents the initialized node feature
dimension of the augmented graph. Figs. 9a and 9b show that
the increasing embedding dimension generally harms model
performance. And setting dc = 16 and 32 for HK and SF
datasets are enough to achieve the best model performance.

Joint weight γ serves as a balancing factor between PV
prediction loss and imputation precision loss. And the results
are put on Figs. 9c and 9d. We notice that CLaP performs
better than drops as γ keeps rising. We infer that when γ

is small, raising it pushes the model to attend to a more
precise PV approximation and then gets good performance.
In contrast, when it is large, raising the weight makes the
model focus on adapting to the random fluctuations in PVs,
causing the overfitting problem. Therefore an appropriate γ

selection is vital to model performance.
Adjacency weight α refers to a trade-off factor between

interaction from the neighbor node set and interaction from
the feature node set for aggregation. The value range is
from 0 to 1. A value of either 0 or 1 corresponds to the
exclusion of one of the two interactions. We display the
results on two datasets in Figs. 9e and 9f and find that the
curves are U-shaped. The best performance is achieved when
the adjacency weight equals around 0.5, demonstrating the
necessity of the two interactions.

Distance threshold δ defines how parking lots are con-
nected in the network based on adjacency matrix A, where
Ai, j = 1 when the geographical distance between pi and
p j is smaller than the threshold δ. δ is difficult to define
since parking lots are distributed dissimilarly in different
cities. We decide to select the distance threshold based on
the performance of the validation set. From Figs. 9g and 9h,

Fig. 10. Studies on missing PVs. Fig. 10b shows the missing PV distribution
in our experiment setting above, and the corresponding predicted accuracy
(MAE) below.

δ is chosen to be 1000 and 200 meters to achieve the best
performance.

H. Impact of Missing Data (Q4)

We conduct two groups of experiments to investigate how
missing ratios would affect model performance on the HK
dataset. In the first group, we visualize all parking lots on a
spatial map based on their geographic coordinates and plot the
result in Fig. 10a. In the top subfigure, green circles represent
the parking lots with sensors, while yellow circles represent
those without sensors. In the bottom subfigure, the shades of
the color depict the MAE results predicted by the well-trained
CLaP model, wherein a lighter shade signifies superior per-
formance. We note that it is challenging to accurately predict
future PVs for parking lots without sensors, especially for
those whose neighbors also suffer from the severe sensors
missing problem. In the second group, we vary the missing
ratio and test the prediction performance of all parking lots for
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Fig. 11. POI-related analysis.

CLaP. It is reasonable that the increasing number of equipped
sensors will improve the ability to predict future PVs, which
is shown in Fig. 10b.

I. Impact of Point-of-Interests (Q5)

To add additional contextual information on parking lots,
we select POIs and generate rich node features in POIAttn.
In this subsection, we conduct several experiments to test the
effectiveness of introducing POIs on the HK and SF datasets.

POIs positively impact the model performance. As shown
in Fig. 11a, both the MAE and RMSE scores demonstrate
an improvement in the introduction of POI information for
the two datasets. We notice a relatively notable improvement
in the SF dataset after dynamic POI information is incorpo-
rated, which demonstrates the importance of additional node
attributes when PV features are missing in the PV prediction
scene.

To incorporate rich POI features for each parking lot in an
efficient way, we split the city map into several areas and
generate weighted POI distributions based on the distance
between parking lots and areas. It is difficult to decide the
splitting criteria in reality because of the unknown relation-
ships between POIs and parking patterns. We choose the best
splitting criteria based on the accuracy performance tested on
the validation dataset. Based on the evaluation scores shown
in Figs. 11b and 11c, we select 40 × 40 and 30 × 30 for
splitting with the sizes around 0.7 and 0.2 square kilometers
for HK and SF, respectively.

V. RELATED WORK

A. Graph Convolution Network

Convolution in graphs shows a more flexible extraction of
local patterns than traditional convolution implemented on
grid-based data. Recently, spatial and spectral-based graph
convolution [15], [27] have shown significant results in various
downstream tasks [28], [29], [30](e.g., node representation,
link prediction, etc.). Thanks to GCN’s effectiveness, many
existing works targeting spatial-temporal prediction [31], [32],
[33], [34] leverage the combination of GCN and RNN-based
methods, showing promising results. However, traditional
graph convolution only considers complex and dynamic spatial
correlations as closeness-based static graph structures locally,
which cannot handle complicated global information transfer
in our research setting.

B. Traffic Prediction

Traffic prediction has recently become a hot topic, referring
to the prediction of traffic-related data, including speed, vol-
umes, congestion, etc. Traffic prediction relies on modeling
the spatial-temporal correlations given historical informa-
tion. STGCN [20], DCRNN [21], ASTGCN [22], Graph
WaveNet [17], AGCRN [23] and STGODE [24] design
different graphs and propagation methods to capture spatial
dependencies and utilize RNN and its variant to model tem-
poral dependencies. Recently, efforts have been involved in
traffic prediction with data missing. TGNM [25] imputes
missing nodes by capturing the dynamic spatial associations on
road structures through a BERT-extended module and mines
traffic flow patterns. Traffic prediction shares similar model
backbones and experimental settings with parking vacancy
prediction to some extent, and can be viewed as a more
generalized topic in traffic.

C. Parking Vacancy Prediction

The early practices consider parking vacancy prediction a
classification problem [35] and conduct a comparative analysis
using traditional machine learning techniques, including K-
Nearest Neighbors, Random Forest, and Voting Classifier.
Recently, deep learning-based models [36], [37], [38] have
been extensively applied to PV prediction. Du-parking [39]
incorporates mobility and meteorological features to parking
lots to optimize the prediction of spatial-temporal correlations
between parking lots, which targets fine-grained classification.
A hybrid model that stacks two RNN components is proposed
to take advantage of historical knowledge [40]. Current efforts
and Mepark [4], [5] combine both GCN and Long short-term
memory (LSTM) to capture spatial and temporal correlations
based on observed historical data and other external factors.
CPPM [41] captures spatial correlations based on similarities
between parking lots with the aid of street image informa-
tion and generates related features to model spatial-temporal
correlations. ALL [42] utilizes reinforcement learning and
federated learning to deal with the small sample issues faced
by PV prediction. However, those methods fail to investigate
intricate spatial correlations in city-wide parking scenarios
and are not able to handle parking lots without sensors since
complete historical PV sequences are required for model
implementation.
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VI. CONCLUSION

In this paper, we introduce CLaP, an effective framework
for parking vacancy prediction with sensors partially missing.
Our contributions are two-fold: (i) We explore to model the
dynamic spatial dependencies by incorporating node attributes
to augment parking networks. (ii) We jointly leverage neighbor
representations at different historical time spans to impute
missing PV embeddings. The extensive experiments demon-
strate that our model outperforms state-of-the-art baselines
regarding stability and effectiveness. Our model also enjoys
high flexibility. For example, feaCoNN can be conducted
recurrently by other related dynamic external factors (e.g., POI
check-ins, trajectories) and is expected to show better predic-
tion results. Our future work is to explore the influence of those
dynamic external factors on model performance. Besides, since
missing is an important issue in our work, we are interested
in investigating whether and how including “key nodes” will
influence the prediction performance. Moreover, our model
can be utilized in other downstream spatial-temporal prediction
tasks facing data scarcity issues besides PV prediction.
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