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ABSTRACT
Recommending cold items in recommendation systems is a long-
standing challenge due to the inherent differences between warm
items, which are recommended based on user behavior, and cold
items, which are recommended based on content features. To tackle
this, generative models generate synthetic embeddings from con-
tent features, while dropout models enhance the robustness of the
recommendation system by randomly dropping behavioral embed-
dings during training. However, these models primarily focus on
handling the recommendation of cold items, but do not effectively
address the differences between warm and cold recommendations.
As a result, generative models may over-recommend either warm
or cold items, neglecting the other type, and dropout models may
negatively impact warm item recommendations. To address this,
we propose the Aligning Distillation (ALDI) framework, which
leverages warm items as "teachers" to transfer their behavioral in-
formation to cold items, referred to as "students". ALDI aligns the
students with the teachers by comparing the differences in their rec-
ommendation characters, using tailored rating distribution aligning,
ranking aligning, and identification aligning losses to narrow these
differences. Furthermore, ALDI incorporates a teacher-qualifying
weighting structure to prevent students from learning inaccurate in-
formation from unreliable teachers. Experiments on three datasets
show that our approach outperforms state-of-the-art baselines in
terms of overall, warm, and cold recommendation performance
with three different recommendation backbones.

CCS CONCEPTS
• Information systems → Social recommendation; • Human-
centered computing → Social recommendation.
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1 INTRODUCTION
Embedding-based collaborative filtering (CF) models have achieved
state-of-the-art performance in recommendations by learningmean-
ingful and exact behavioral embedding vectors for each user and
item from historical interactions [15, 16, 36, 47, 58, 59]. Specifically,
traditional CF models learn embeddings by enforcing the dot prod-
uct or MLP of historically interacted user-item embedding pairs
to be greater than non-interacted pairs [16, 36]. Graph-based CF
models incorporate neighbors’ embeddings to better model users’
and items’ behavior and achieve the state-of-the-art recommenda-
tion performance [9, 15, 47, 56]. However, in addition to "warm"
items with rich behaviors, there also exist thousands of "cold" items
produced every second, such as live streams [30, 41] and short
videos [13, 21, 28]. These cold items lack accurate historical embed-
dings, making it difficult for recommendation systems to accurately
evaluate users’ intent towards them, negatively impacting user
experiences and the revenue of recommender systems.

To address this, modern recommender systems aim to generate
accurate cold-start item embeddings and encourage cooperation
between warm and cold items [33, 62, 63]. Specifically, generative
models aim to generate powerful cold-start behavioral embeddings
to increase the recommendation performance of the cold models.
Examples include DeepMusic [43], which learns to generate the
embeddings by minimizing the MSE loss between the generated
embeddings and the trained warm embeddings, and meta-learning
models [33, 62], which use few-shot learning theory to map cold
content features to embeddings that can quickly converge to their
warm embeddings. Dropout models, on the other hand, randomly
drop the behavior embedding, which increases the robustness of the
recommendation models. Examples include DropoutNet [44] and
Heater [63], which both randomly drop the trained warm embed-
dings during the training process, and CLCRec [50], which reduces
the discrepancy between the distribution of ratings between warm
and cold recommendations in a contrastive learning solution.

Despite their ability to generate accurate cold-start embeddings,
existing models have limitations in accommodating both warm
and cold items. As shown in Figure 1(a), generative models handle
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Figure 1: This is a brief comparison of typical generative
and dropout models on CiteULike, showing (a) the warm
recommendation performance, (b) the distribution of predic-
tions for cold and warm items from DeepMusic (generative
model), and (c) the distribution of predictions for cold and
warm items from the DropoutNet (dropout model).

cold and warm recommendations independently, resulting in the
same warm recommendation performance as the backbone model.
However, their independent structure leads to a greater difference in
the rating distribution of warm and cold items compared to dropout
models (Figure 1(b)). This can result in over-recommendation of
either warm or cold items, presenting undesired cold items instead
of interesting warm items or neglecting the recommendation of
cold items. On the other hand, dropout cold-start models train a
hybrid model to accommodate both warm and cold items. As shown
in Figure 1(c), dropout-based models have a nearly equal rating
distribution of warm and cold items. But this comes at the cost
of a significant decrease in warm recommendation performance
compared to the backbone and generative-based models, negatively
impacting the recommendation of existing warm items.

The observed phenomenon is due to the fundamental differences
between recommendations based on user behavior (warm items)
and those based on content features (cold items). Current gener-
ative and dropout models show promise in handling cold items
but they do not effectively address the inherent differences. To
improve these limitations, a recommendation distillation solution
could be promising to bridge the gap by transferring the knowledge
of warm items to cold items. Recently, distillation models such as
Rank Distillation [40, 45] and Collaborative Distillation [25] have
proven successful in transferring knowledge from teacher models
to student models. However, applying this concept to cold-start
recommendations presents several challenges:
(1) Joint Recommendation: Cold-start recommendations require

cooperation between both cold students and warm teachers to
make the best recommendation, while existing ranking distilla-
tion only utilizes the student model. This raises challenges in
how to align the students with the teachers.

(2) Difference Modeling: The warm recommendation performance
and cold recommendation performance can only be partially
optimized by generative and dropout cold-start models, respec-
tively. It is difficult to discover and model the core differences
between teachers and students to cover both aspects.

(3) Unreliable Teachers: In cold-start recommendations, warm items
with historical information serve as teachers. However, some
warm items may not be well represented and their knowledge

transfer may introduce noise and hinder distillation. Hence,
accurately identifying unreliable teachers and reducing their
distillation weights is a challenge.

To address the aforementioned challenges, we propose a novel
Aligning Distillation (ALDI) framework for item cold-start recom-
mendation, which utilizes warm items as "teachers" to distill behav-
ioral information to cold items, referred to as "students". Specifi-
cally, during training, we simultaneously compute predictions for
both teachers (incorporating behavioral embeddings) and students
(without behavioral embeddings). Then we are able to compare the
embeddings and prediction results between the teachers and the
students to model the inherent differences caused by the absence
of behavioral embeddings. After differences modeling, we design
aligning distillation losses tailored to reduce these differences and
guide the students toward alignment with teachers. In addition,
we evaluate teacher reliability by analyzing their historical user
interactions and we assign lower learning weights to unreliable
teachers. The main contributions are as follows:

• We propose a novel distillation problem for cold-start recommen-
dations, which aims to align the students with the teachers rather
than substitute the teachers. Besides, the aligning distillation is
generally powerful and can cold-start both traditional CF models
and graph-based CF models.

• ALDI introduces three inherent differences between the recom-
mendation of warm teachers and cold students due to lacking
behavioral information. Three tailored aligning distillation losses
are proposed to address these differences and align student mod-
els with teachers.

• To make the most of the teachers’ information, we implement a
teacher-qualifying weighting structure in ALDI to ensure that
student models learn more from reliable teachers and less from
unreliable ones.

• Comprehensive experiments demonstrate that ALDI achieves
generally good recommendation performance on two public
datasets using multiple backbone models. Ablation studies show
that AlDI outperforms ranking distillation recommendation mod-
els in cold-start scenarios. The code is publicly available 1.

2 PROBLEM STATEMENT
2.1 Notations and Problem Definition

Notations. We utilizeU and I to denote the user and item sets
of a given recommendation dataset, and H to denote the historical
interaction sets between users and items. Specifically, I𝑤 refers to
the warm item set that has at least one historical interaction record,
and I𝑐 refers to the cold item set that has no historical interaction
records. With typical warm recommendation backbones such as
Matrix Factorization, Neural Matrix Factorization, and Graph Neu-
ral Networks, we can learn behavioral embedding vectors for each
user and warm item, namely 𝑬U and 𝑬I𝑤 . At the micro level, we
employ 𝒆𝑢 and 𝒆𝑖 to denote the trained embedding vectors for user
𝑢 ∈ U and warm item 𝑖 ∈ I𝑤 . Since the cold items do not have
behavioral embeddings, the recommender systems provide content
features such as tags and descriptions for all items, including warm

1The source code is available at https://github.com/zfnWong/ALDI.

https://github.com/zfnWong/ALDI
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and cold items. Thus the cold items can be cold-started with their
content features, which is denoted by 𝒄𝑖 for each item 𝑖 ∈ I𝑤 ∪ I𝑐 .

Cold-start Recommendation. The recommender systems aim to
recommend top-𝐾 items to users from a pool of items by computing
relevance scores for warm and cold items. The performance of the
cold-start recommendations and the impact on warm recommenda-
tions can be evaluated through the three tasks defined as follows:
Overall recommendation (𝑅𝑒𝑐𝑎𝑙𝑙 ): A ranking of both warm and cold
items based on prediction scores, computed as

𝑅𝑒𝑐𝑎𝑙𝑙 = rank({𝑦 (𝑤 )
𝑢,𝑖

,∀𝑖 ∈ I𝑤} ∪ {𝑦 (𝑐 )
𝑢,𝑖
,∀𝑖 ∈ I𝑐 }, 𝐾) . (1)

Warm recommendation (𝑅𝑒𝑐𝑤 ): A ranking of warm items based on
prediction scores, computed as

𝑅𝑒𝑐𝑤 = rank({𝑦 (𝑤 )
𝑢𝑖

,∀𝑖 ∈ I𝑤}, 𝐾) . (2)

Cold recommendation (𝑅𝑒𝑐𝑐 ): A ranking of cold items based on
prediction scores, computed as

𝑅𝑒𝑐𝑐 = rank({𝑦 (𝑐 )
𝑢𝑖
,∀𝑖 ∈ I𝑐 }, 𝐾) . (3)

Here, rank(S, 𝐾) represents the ranking of prediction scores in the
set S and returns the indices of the top-𝐾 ranked items.

2.2 Cold-start Recommendation
Generative Models. Generative models are designed to make use

of the backbone recommendation model as the warm recommenda-
tion and generate approximate cold-start embeddings to coordinate
with it. The aim is to learn a generator function 𝑔(·) that produces
cold-start embeddings based on content features. The inference of
the generative models can be expressed as follows:

𝑦
(𝑤 )
𝑢𝑖

= 𝒆⊤𝑢 · 𝒆𝑖 , 𝑖 ∈ I𝑤 ,

𝑦
(𝑐 )
𝑢𝑖

= 𝒆⊤𝑢 · 𝑔(𝒄𝑖 ), 𝑖 ∈ I𝑐 . (4)

Though generative cold-start models can maintain the warm recom-
mendation performance of the backbone recommendation model,
there may still be considerable diversity between the warm rec-
ommendation and the cold recommendation in terms of rating
distribution (Figure 1(b)).

Dropout Models. Dropout models, such as DropoutNet [44] and
Heater [63], propose hybrid recommender systems that combine
behavioral embeddings with zero vectors by dropout strategy to
predict user-item relevance. They use an intermediary mapping
function 𝑓I (·) to map warm recommendation vectors 𝒆𝑖 , 𝒄𝑖 and
cold recommendation vectors 0, 𝒄𝑖 to a stable embedding vector.
The prediction of warm items and cold items is done using this
mapping function. The formal definition of the dropout cold-start
recommendation is:

𝑦
(𝑤 )
𝑢𝑖

= 𝑓U (𝒆𝑢 )⊤ · 𝑓I (𝒆𝑖 , 𝒄𝑖 ), 𝑖 ∈ I𝑤 ,

𝑦
(𝑐 )
𝑢𝑖

= 𝑓U (𝒆𝑢 )⊤ · 𝑓I (0, 𝒄𝑖 ), 𝑖 ∈ I𝑐 , (5)

where 𝑓U (·) and 𝑓I (·) are the intermediary mapping functions
for users and items, respectively. Joint training of warm items and
cold items using a dropout strategy ensures consistency between
the warm and cold recommendations, but at the cost of reduced

warm recommendation performance compared to backbone mod-
els (Figure 1(a)), as the behavioral embeddings are altered by the
intermediary mapping function 𝑓U (·).

2.3 Ranking Distillation
Inspired by the success of knowledge distillation in computer vi-
sion, the Ranking Distillation approach [40] compresses a large
backbone teacher model into a smaller yet powerful student model
by minimizing the recommendation loss and a ranking distillation
loss. The optimization problem is defined as:

min
𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡

L𝑟𝑒𝑐 + 𝜆L𝑅𝐷 , (6)

where 𝜃𝑠𝑡𝑢𝑑𝑒𝑛𝑡 are the parameters of the student model, L𝑟𝑒𝑐 is the
basic recommendation loss, and L𝑅𝐷 is the ranking distillation loss.
The ranking distillation lossL𝑅𝐷 evaluates the student’s prediction
scores with the scores given by the teacher [25, 40]. However, in
a model compression scenario, only the student model is used for
recommendations, while in a cold-start scenario, both the warm
(teacher) and cold (student) items are ranked and recommended
together. To ensure successful cold-start performance, the distilla-
tion model should align the student with the teacher, avoiding any
mutual negative influence.
3 ALIGNING DISTILLATION–ALDI
In this section, we outline the proposed framework ALDI for item
cold-start recommendation, including its overall structure and im-
plementation details. We start by presenting our frameworks includ-
ing defining the role of the "teachers" and "students", identifying the
three key differences between warm teachers and cold students, and
constructing the training batches. We then propose three tailored
distillation strategies to align the teachers and students, consid-
ering these differences. Finally, we introduce a teacher-qualifying
structure to prevent students from learning unreliable information
from unqualified teachers.

3.1 Overall Framework
3.1.1 Definition of Teachers and Students. In ALDI (as shown
in Figure 2), we assign the role of "teacher" to models that predict
user-item relations based on behavioral information, while "stu-
dent" models predict the same relationships using only content
features. Given a user-item pair (𝑢, 𝑖), the relevance score for a
teacher can be calculated by taking the dot product of the behavior
embeddings of user 𝑢 and item 𝑖 , as represented in Eq. (7).

𝑦
(𝑡 )
𝑢𝑖

= 𝒆⊤𝑢 · 𝒆𝑖 . (7)

For students, which may be used to predict the relevance of true
cold items with no historical data or simulated cold items created
during training by removing behavioral embeddings from warm
items, the framework generates cold-start embeddings from content
features and maps the user’s behavioral embedding to compute the
relevance score, as described in Eq. (8).

𝑦
(𝑠 )
𝑢𝑖

= 𝑓U (𝒆𝑢 )⊤ · 𝑓I (𝒄𝑖 ). (8)

The mapping functions 𝑓U (·) and 𝑓I (·) correspond to the trans-
formations of the user behavioral embedding 𝒆𝑢 and item content
feature 𝒄𝑖 , respectively. We use a two-layer multi-layer perceptron
(MLP) as the mapping functions 𝑓U (·) and 𝑓I (·), though more
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Figure 2: The sketchmap of Aligning Distillation (ALDI). ALDI involves teachers predicting user-item relations using behavioral
embeddings and students using mapped item content features. By computing both teacher and student predictions, we evaluate
the differences between them and implement tailored rating distribution aligning, ranking aligning, and identification aligning
strategies to narrow the gaps.

sophisticated structures such as the combination of experts [63]
could also be employed. However, in order to demonstrate the
framework’s effectiveness, we choose to use a simple generator.

As demonstrated in Eq. (9), the recommendation process seam-
lessly integrates the strengths of Dropout and Generative models
to result in a comprehensive recommendation system. Warm items
are predicted using the teacher settings, whereas cold items are
predicted using the student setting.

𝑦𝑢𝑖 =

{
𝒆⊤𝑢 · 𝒆𝑖 , 𝑖 ∈ I𝑤
𝑓U (𝒆𝑢 )⊤ · 𝑓I (𝒄𝑖 ), 𝑖 ∈ I𝑐

. (9)

This effective integration leverages the warm item recommendation
capabilities of the backbone model, while also aligning user behav-
ioral and cold-start item embeddings through mapping functions.
This leads to improved recommendations for cold-start items and
results in a more robust and effective recommendation system.

3.1.2 Introduction of the Differences. However, combining
warm and cold item recommendations can present challenges in
aligning the preferences of the teacher for warm items and the
student for cold items. If the system places more importance on
the relevance of cold items for the student than warm items for
the teacher, it could result in the recommendation of unsuitable
cold items. Conversely, if the system places less importance on the
relevance of cold items for the student than warm items for the
teacher, it may hinder the successful recommendation of desired
cold items to the user. The recommendation of students, which
is based on content features rather than directly reflecting users’
behavioral intent as in teachers, has three inherent differences
compared to teachers:

(1) Rating Distribution Difference: Figure 2(a) demonstrates
that teachers with behavioral embeddings can precisely de-
termine users’ intentions towards their items, resulting in
clear and distinguishable rating distributions for positive
and negative user-item pairs. Conversely, students’ behav-
ior characters are inferred from content features, making it

difficult to clearly differentiate the rating distributions for
positive and negative pairs as compared to the teachers.

(2) Ranking Difference: Figure 2(b) shows that the difference
in prediction scores between positive and negative user-item
pairs may vary greatly between teachers and students. This
difference may amplify the rating distribution difference and
negatively impact warm recommendations.

(3) Identification Difference: Figure 2(c) highlights that with
behavioral embeddings, teachers with similar behavioral
patterns have similar behavioral interests, making it easy
to identify their behavioral characteristics from other items.
On the other hand, students’ cold-start embeddings are de-
rived from content features, making them less effective in
identifying their behavioral characteristics as compared to
teachers.

To reconcile the differences between the teacher and student item
recommendations, we propose a training approach that enhances
students’ recommendation performance while aligning them with
the teachers. This is done by augmenting the basic recommendation
loss with a joint distillation loss. The optimization objective is
expressed as follows:

min
𝜃 𝑓

L𝑏𝑎𝑠𝑖𝑐︸ ︷︷ ︸
𝑅𝑒𝑐. 𝑙𝑜𝑠𝑠

+𝛼L𝑟𝑎𝑡𝑒 + 𝛽L𝑟𝑎𝑛𝑘 + 𝛾L𝑖𝑑𝑒𝑛︸                              ︷︷                              ︸
𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠

, (10)

where 𝜃 𝑓 represents the parameters of the mapping functions 𝑓U (·)
and 𝑓I (·). The first part of the objective, L𝑏𝑎𝑠𝑖𝑐 , refers to the stan-
dard recommendation loss (such as Bayesian Personalized Ranking
loss) that ensures the student model has the necessary capacity for
recommendations. The second part, the joint distillation loss, aligns
the students with the teachers by incorporating three different com-
ponents: rating distribution alignment (L𝑟𝑎𝑡𝑒 ), ranking alignment
(L𝑟𝑎𝑛𝑘 ), and identification alignment (L𝑖𝑑𝑒𝑛). The weights 𝛼 , 𝛽 ,
and 𝛾 control the importance of each alignment term.

3.1.3 Construction of Training Batches. In order to accurately
calculate the differences in identification and rating distribution, we
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propose a batch-wise loss calculation strategy (as shown in Figure 2).
This strategy involves constructing triple sets by considering both
positive user-item pairs (in H ) and negative sampled user-item
pairs. The triple sets are defined as follows:

O = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ H , (𝑢, 𝑗) ∉ H , 𝑖 ∈ I𝑤 , 𝑗 ∈ I𝑤}, (11)

Here,H represents the observed user-item interactions. We will
discuss the design of the distillation losses for the above-mentioned
differences with O in the next sections.

3.2 Rating Distribution Aligning Distillation
In this subsection, we propose using rating distribution aligning
distillation to synchronize the rating distributions of teacher and
studentmodels. This will ensure that when ranking items (in Eq. (1)),
both warm and cold items receive similar basic ratings. The align-
ment prevents the recommender system from unduly prioritizing
either warm or cold items, avoiding undesired recommendations.

To address the challenge of different relevance scores for positive
and negative user-item pairs, we independently align the rating
distributions of teachers and students for both positive and negative
pairs. This approach ensures accurate recommendations by syn-
chronizing the positive and negative rating distributions of teachers
and students. Specifically, we useD (𝑡 ) to denote the rating distribu-
tion of the teachers andD (𝑠 ) to denote the rating distribution of the
students. For a given training batch B, we have the positive distri-
butions D (𝑡 )

B𝐼
and D (𝑠 )

B𝐼
, as well as the negative distributions D (𝑡 )

B𝐽

and D (𝑠 )
B𝐽

. We define the rating distribution aligning distillation
loss as the following formula:

L𝑟𝑎𝑡𝑒 = Dis(D (𝑡 )
B𝐼
,D (𝑠 )

B𝐼
) + Dis(D (𝑡 )

B𝐽
,D (𝑠 )

B𝐽
), (12)

where Dis(·, ·) is a functionmeasuring the distance between two dis-
tributions. In this study, we employ the pointwise implementation
of the distance function, defined as:

Dis(D (𝑡 )
B𝐼
,D (𝑠 )

B𝐼
) = 1

|B|
∑︁

(𝑢,𝑖, 𝑗 ) ∈B

���𝑦 (𝑡 )𝑢𝑖
− 𝑦 (𝑠 )

𝑢𝑖

���2 ,
Dis(D (𝑡 )

B𝐽
,D (𝑠 )

B𝐽
) = 1

|B|
∑︁

(𝑢,𝑖, 𝑗 ) ∈B

���𝑦 (𝑡 )𝑢 𝑗
− 𝑦 (𝑠 )

𝑢 𝑗

���2 , (13)

where |B| denotes the size of the sampled batch B. Note that the
distance evaluation can be further updated to more sophisticated
metrics, such as KL-divergences [17] or Wasserstein distances [11].
However, in this study, we choose to use a simple metric to demon-
strate the effectiveness of our approach.

3.3 Ranking Aligning Distillation
In this subsection, we aim to align the students with content features
with behavior embeddings to the teachers by introducing a ranking
aligning distillation loss. We use the Bayesian Personalized Ranking
(BPR) discrepancy to measure the ranking capacity of the warm
and cold models, as shown in Eq. (14):

𝑟
(𝑡 )
𝑢𝑖 𝑗

= 𝜎

(
𝑦
(𝑡 )
𝑢𝑖

− 𝑦 (𝑡 )
𝑢 𝑗

)
,

𝑟
(𝑠 )
𝑢𝑖 𝑗

= 𝜎

(
𝑦
(𝑠 )
𝑢𝑖

− 𝑦 (𝑠 )
𝑢 𝑗

)
, (14)

where (𝑢, 𝑖, 𝑗) ∈ O denotes a batch sampled from Eq. (11) and 𝜎 (·) is
the Sigmoid function. 𝑟 (𝑡 )

𝑢𝑖 𝑗
represents the extent to which teachers

can score a positive item higher than a negative item, while 𝑟 (𝑠 )
𝑢𝑖 𝑗

represents the extent to which students can do the same.
The BPR discrepancy maps the difference in ratings between

positive and negative items to a range of (0, 1) using the Sigmoid
function. This discrepancy can be used to calculate a distillation loss
by treating it as the logits for a binary classification prediction, as
proposed in [18]. The ranking distillation loss, which is calculated
using the formula in Eq. (15), is defined as follows:

L𝑟𝑎𝑛𝑘 = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈B

(
𝑟
(𝑡 )
𝑢𝑖 𝑗

ln 𝑟 (𝑠 )
𝑢𝑖 𝑗

+ (1 − 𝑟 (𝑡 )
𝑢𝑖 𝑗

) ln(1 − 𝑟 (𝑠 )
𝑢𝑖 𝑗

)
)
. (15)

3.4 Identification Aligning Distillation
In this subsection, we aim to enhance the identification capability
of the students by aligning it with the teachers. The behavioral
embeddings of teachers effectively represent the behavioral charac-
teristics of items and distinguish a teacher from other negatively
sampled teachers. However, the content features of students do not
effectively do the same. We compare the identification capacity of
the teacher and student by measuring the distance between the
embedding of a positive item and a randomly negative sampled
item. The distance for a teacher or student can be computed as
follows:

𝑑
(𝑡 )
𝑖 𝑗

= 𝜎
(
𝒆⊤𝑖 · (𝒆𝑖 − 𝒆 𝑗 )

)
,

𝑑
(𝑠 )
𝑖 𝑗

= 𝜎
(
𝑓I (𝒄𝑖 )⊤ · (𝑓I (𝒄𝑖 ) − 𝑓I (𝒄 𝑗 ))

)
, (16)

where 𝑓I is the mapping function in Eq. (8) and 𝜎 (·) is the Sigmoid
function to map the distance to (0, 1) area.

To further improve the identification evaluation methods, we
introduce a batch-wise approach. In this approach, we select a given
positive item from the training batches as the query item and evalu-
ate the distance between the teacher or student embeddings of the
query item and the negative sampled items. Then, the identification
distillation loss is defined as follows:

L𝑖𝑑𝑒𝑛 = −
∑︁
𝑖∈B𝐼

∑︁
𝑗∈B𝐽

(
𝑑
(𝑡 )
𝑖 𝑗

ln𝑑 (𝑠 )
𝑖 𝑗

+ (1 − 𝑑 (𝑡 )
𝑖 𝑗

) ln(1 − 𝑑 (𝑠 )
𝑖 𝑗

)
)
, (17)

where B𝐼 and B𝐽 denote the sets of positive and negative items
in the training batch B. However, this approach has a complexity
of 𝑂 ( |B|2). To address this, we simplify the distillation loss by
computing the average embedding of the negative sampling set,
resulting in a complexity of 𝑂 ( |B|). The simplified distillation loss
is defined as:

L𝑖𝑑𝑒𝑛 = −
∑︁
𝑖∈B𝐼

(
𝑑
(𝑡 )
𝑖

ln𝑑 (𝑠 )
𝑖

+ (1 − 𝑑 (𝑡 )
𝑖

) ln(1 − 𝑑 (𝑠 )
𝑖

)
)
, (18)

where 𝑑 (𝑡 )
𝑖

and 𝑑 (𝑠 )
𝑖

are the average identification distance for item
𝑖 , which are computed as:

𝑑
(𝑡 )
B𝐽

=
1
|B|

∑︁
𝑗∈B𝐽

𝒆 𝑗 , 𝑑
(𝑠 )
B𝐽

=
1
|B|

∑︁
𝑗∈B𝐽

𝑓I (𝒄 𝑗 ) . (19)

𝑑
(𝑡 )
𝑖

= 𝜎

(
𝒆⊤𝑖 · (𝒆𝑖 − 𝑑 (𝑡 )B𝐽

)
)
,

𝑑
(𝑠 )
𝑖

= 𝜎

(
𝑓I (𝒄𝑖 )⊤ · (𝑓I (𝒄𝑖 ) − 𝑑

(𝑠 )
B𝐽

)
)
. (20)
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3.5 Teacher-qualifying Weighting Structure
In ALDI, we aim to align the students with the teachers by utilizing
distillation techniques. Unlike traditional distillation methods that
rely on the reliability and expertise of the teachers, our approach
utilizes items with trained behavioral embeddings as teachers. How-
ever, due to potential inaccuracies in the learned embeddings, align-
ing the students to unqualified teachers may negatively impact the
alignment. This is because the backbone recommendation model
learns behavioral embeddings from historical behaviors, and there
may be items without sufficient historical interactions to train accu-
rate embeddings. Therefore, to mitigate this issue, we assign higher
weights to qualified items with sufficient historical behaviors, while
assigning lower weights to unqualified items. Specifically, we use a
variant of the 𝑡𝑎𝑛ℎ function to control the distillation loss weight
of each teacher:

𝑤𝑖 =
2

1 + 𝑒−𝜔 ·𝑁𝑖/𝑁̄
− 1, (21)

where 𝑁𝑖 is the number of historically interacted users for item 𝑖 in
the training set, 𝑁 is the average number of historically interacted
users for all warm items, and 𝜔 is a hyper-parameter that controls
the intensity of weight gain as item frequency increases.

After incorporating the dynamic weighting of the teachers in the
ranking distillation loss, the revised ranking aligning distillation
loss can be updated with the following equation:

L𝑟𝑎𝑛𝑘 = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈B
𝑤𝑖

(
𝑟
(𝑡 )
𝑢𝑖 𝑗

ln 𝑟 (𝑠 )
𝑢𝑖 𝑗

+ (1 − 𝑟 (𝑡 )
𝑢𝑖 𝑗

) ln(1 − 𝑟 (𝑠 )
𝑢𝑖 𝑗

)
)
.

(22)
Similarly, the revised identification aligning loss can be revised as:

L𝑖𝑑𝑒𝑛 = −
∑︁
𝑖∈B𝐼

𝑤𝑖

(
𝑑
(𝑡 )
𝑖

ln𝑑 (𝑠 )
𝑖

+ (1 − 𝑑 (𝑡 )
𝑖

) ln(1 − 𝑑 (𝑠 )
𝑖

)
)
. (23)

However, since students should have similar distributions as the
teachers, regardless of the qualification of items, we do not adjust
the weight of the rating distribution in the distillation loss.

4 EXPERIMENTS
We conduct comprehensive experiments on publicly available datasets
to address the following three research questions:

• Q1: Can ALDI achieve superior overall, warm, and cold
recommendation performance compared to state-of-the-art
cold-start recommendation models?

• Q2: Can ALDI effectively reduce the differences in rating
distribution, ranking, and identification between the teachers
and the students?

• Q3: Is ALDI more effective in cold-start recommendation
than compression-oriented distillation methods?

4.1 Experimental Setup
Datasets. We evaluate ALDI’s performance on cold-start items

using the CiteULike and XING datasets. CiteULike contains 5,551
users, 16,980 articles, and 204,986 interactions. The articles are
represented by 300-dimensional vectors as item content features.
XING is a subset of the ACM RecSys 2017 challenge dataset with
106,881 users, 20,519 jobs, and 4,306,183 interactions. The jobs’
content is represented by a 2,738-dimensional vector that encodes
attributes such as career level, tags, and other information. For

each dataset, 20% of items are designated as cold-start items, with
interactions split into a cold validation set and testing set (1:1 ratio).
Records of the remaining 80% of items are divided into training,
validation, and testing sets, using an 8:1:1 ratio.

Evaluation Metrics. We evaluate the overall, warm, and cold
recommendation performance using a full-ranking evaluation ap-
proach [15, 47]. As defined in Section 2.1, we evaluate the over-
all, warm, and cold recommendation performance. We use preci-
sion@K, recall@K, and Normalized Discounted Cumulative Gain
(NDCG@K) as metrics to evaluate the top-ranked articles. By de-
fault, K is set to 20 and the average values for all users in the testing
set are reported.

Implementation Details. We implement the baselines using
their officially provided implementations. In particular, for GAR,
we use the updated version of the GAR implementation provided in
the official repository, which is evaluated under the same CLCRec
settings as we used in our papers2. The dimension of the embed-
dings is set to 200 for all models. We use the Adam optimizer with
a learning rate of 0.001 and apply early stopping by observing
NDCG@K on the validation set. The size of each training batch and
the regularization weight are set to 1024 and 0.001, respectively.
The hyperparameters 𝛼 , 𝛽 , and 𝛾 in Eq. (10) are tuned using a grid
search. The 𝜔 in Eq. (21) is also tuned using a grid search. The
best hyperparameters are found for each dataset. For fairness, we
use the same options and follow the designs in their articles for all
baselines.

Baselines. To evaluate ALDI’s effectiveness and universality,
we compare it to seven state-of-the-art cold-start recommendation
models across three datasets:

• DeepMusic[43] uses deep neural networks to minimize the
MSE difference between generated and warm embeddings.

• MetaEmb[33] trains a meta-learning-based generator for
fast convergence.

• GAR[5] generates embeddings through a generative adver-
sarial relationship with the warm recommendation model.

• DropoutNet[44] improves cold-start robustness by randomly
discarding embeddings.

• MTPR[8] generates counterfactual cold embeddings consid-
ering dropout and BPR ranking.

• Heater[63] improves DropoutNet by using a mix-of-experts
network and considering embedding similarity.

• CLCRec[50] models cold-start recommendation with con-
trastive learning from an information-theoretic viewpoint.

• PGD[46] is a graph-based cold-start recommendation model
that learns the correlation between collaborative signal and
attributed heterogeneous graph.

4.2 Main Results (Q1)
The comparison of overall (Eq. (1)), warm (Eq. (2)), and cold (Eq. (3))
recommendation performance between ALDI and other baselines
on two datasets is presented in Table 1. To evaluate the effectiveness
of ALDI, we conduct cold-start experiments using traditional Matrix
Factorization (MF) [36], Neural Collaborative Filtering (NCF) [16],

2https://github.com/zfnWong/GAR
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Table 1: Overall, cold and warm recommendation performance comparison over three backbone models (MF, NCF, LightGCN).

Method
Overall Recommendation Cold Recommendation Warm Recommendation

CiteULike XING CiteULike XING CiteULike XING
Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

M
F

Backbone .0776 .0647 .1444 .1276 .0056 .0031 .0037 .0021 .2838 .1933 .4505 .2946

DeepMusic .0956 .0789 .1876 .1467 .2141 .1262 .2691 .1606 .2838 .1933 .4505 .2946
MetaEmb .0972 .0804 .1569 .1350 .2232 .1306 .2698 .1554 .2838 .1933 .4505 .2946
GAR .1440 .1132 .2381 .2105 .2453 .1479 .2945 .2192 .2272 .1438 .4091 .2708

DropoutNet .0794 .0670 .1733 .1454 .2268 .1356 .2773 .1953 .1343 .0792 .3304 .2140
MTPR .1060 .0810 .2100 .1750 .2496 .1476 .3314 .2299 .1728 .0998 .3834 .2532
Heater .1134 .0913 .2059 .1675 .2372 .1419 .2885 .1978 .1871 .1153 .3622 .2334
CLCRec .1269 .0992 .2188 .1845 .2295 .1347 .3184 .2272 .1898 .1167 .3568 .2397

ALDI .1618 .1204 .2727 .2223 .2684 .1550 .3595 .2521 .2838 .1933 .4505 .2946
%Improv. 12.36% 6.36% 14.53% 5.61% 7.53% 4.80% 8.48% 9.66% - - - -

N
CF

Backbone .0760 .0604 .1364 .1210 .0055 .0028 .0047 .0026 .1920 .1142 .4294 .2882

DeepMusic .0924 .0739 .1763 .1538 .1882 .1056 .2689 .1669 .1920 .1142 .4294 .2882
MetaEmb .0903 .0736 .1726 .1530 .2034 .1179 .2842 .1734 .1920 .1142 .4294 .2882
GAR .1224 .0947 .2231 .1888 .2149 .1260 .2985 .2067 .1875 .1113 .4034 .2731

DropoutNet .0837 .0677 .1832 .1547 .1986 .1180 .3089 .1852 .1582 .0925 .3520 .2318
MTPR .1041 .0810 .1846 .1538 .2102 .1204 .3332 .2262 .1730 .1048 .3669 .2337
Heater .0936 .0752 .2031 .1669 .2274 .1326 .2974 .2221 .1717 .1027 .3751 .2399
CLCRec .1047 .0820 .2117 .1750 .2197 .1257 .2989 .2155 .1665 .0986 .3537 .2346

ALDI .1428 .1068 .2453 .2036 .2429 .1394 .3551 .2608 .1920 .1142 .4294 .2882
%Improv. 16.67% 12.78% 9.95% 7.84% 6.82% 5.13% 6.57% 15.30% - - - -

Li
gh

tG
CN

Backbone .0812 .0622 .1311 .1161 .0041 .0019 .0045 .0026 .2528 .1541 .4248 .2919

DeepMusic .0985 .0745 .1651 .1460 .2239 .1259 .2870 .1702 .2528 .1541 .4248 .2919
MetaEmb .0924 .0714 .1696 .1494 .2252 .1295 .2823 .1764 .2528 .1541 .4248 .2919
GAR .1357 .1062 .2205 .1848 .2539 .1489 .3017 .2171 .2339 .1455 .4131 .2793

DropoutNet .0883 .0639 .1661 .1431 .2309 .1312 .2732 .1860 .1175 .0692 .3388 .2182
MTPR .1001 .0753 .1928 .1648 .2585 .1454 .3254 .1955 .1753 .0967 .3930 .2618
Heater .1118 .0894 .2095 .1830 .2438 .1407 .3271 .2224 .1946 .1193 .3982 .2708
CLCRec .1293 .0965 .2067 .1791 .2435 .1425 .3087 .2138 .2149 .1302 .3925 .2650
PGD - - .2099 .1725 - - .3245 .2284 - - .3491 .2215

ALDI .1626 .1201 .2409 .2041 .2692 .1539 .3377 .2356 .2528 .1541 .4248 .2919
%Improv. 19.82% 13.09% 9.25% 10.44% 4.14% 3.36% 3.24% 3.15% - - - -

and graph-based LightGCN [15] models as representative recom-
mendation models. For each backbone model, we present the cold-
start performance of the backbone model, three generative mod-
els (DeepMusic, MetaEmb, and GAR), and four dropout models
(DropoutNet, MTPR, Heater, and CLCRec), as well as the perfor-
mance of the graph-based model PGD. The improvements are cal-
culated by comparing ALDI to the best baseline for each backbone,
which is highlighted by underlining.

• ALDI outperforms all seven baselines in terms of overall and
cold recommendation performance across all datasets and
backbones. This success is attributed to the alignment of
students and teachers in ALDI, which improves its recom-
mendation performance.

• In the comparison of each backbone, GAR is the best baseline
for overall recommendation performance on both CiteULike
and XING. The generative models also consistently perform
better in warm recommendation than dropout models.

• The use of randomly initialized embeddings as the cold-
start embedding results in the worst recommendation per-
formance across all datasets and backbones, emphasizing
the importance of designing effective cold-start models.

4.3 Aligning Results (Q2)
In Figure 3, we present the comparison of teachers and items
in terms of our three proposed differences (§ 3.1.2) to determine
whether ALDI aligns students with teachers best. Figure 3(a) shows
the rating distribution of positive and negative user-item pairs
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Figure 3: Comparison of teacher (MF) and student (cold-start) models’ rating distribution, ranking, and identification differences
on CiteULike dataset.

as rated by teachers (𝑦 (𝑡 )
𝑢𝑖

and 𝑦 (𝑡 )
𝑢 𝑗

) and students (𝑦 (𝑠 )
𝑢𝑖

and 𝑦 (𝑠 )
𝑢 𝑗

).
Figure 3(b) presents the distribution of BPR discrepancy for teach-
ers (𝑟 (𝑡 )

𝑢𝑖 𝑗
) and students (𝑟 (𝑠 )

𝑢𝑖 𝑗
). Figure 3(c) shows the distribution of

identification distance for teachers (𝑑 (𝑡 )
𝑢𝑖 𝑗

) and students (𝑑 (𝑠 )
𝑢𝑖 𝑗

). Com-
paring ALDI to four baselines, we conclude that it aligns students
better with teachers than other methods. In Figure 3, we present the
comparison of teachers and items in terms of our three proposed
differences (§ 3.1.2) to determine whether ALDI aligns students
with teachers best. Figure 3(a) shows the rating distribution of pos-
itive and negative user-item pairs as rated by teachers (𝑦 (𝑡 )

𝑢𝑖
and

𝑦
(𝑡 )
𝑢 𝑗

) and students (𝑦 (𝑠 )
𝑢𝑖

and 𝑦 (𝑠 )
𝑢 𝑗

). Figure 3(b) presents the distri-

bution of ranking distance for teachers (𝑦 (𝑡 )
𝑢𝑖

− 𝑦 (𝑡 )
𝑢 𝑗

) and students

(𝑦 (𝑠 )
𝑢𝑖

− 𝑦 (𝑠 )
𝑢 𝑗

). Figure 3(c) shows the distribution of identification

distance without 𝜎 (·) for teachers (𝑑 (𝑡 )
𝑢𝑖 𝑗

) and students (𝑑 (𝑠 )
𝑢𝑖 𝑗

). Note
that the Sigmoid function 𝜎 (·) has been omitted in Eq. (14) and
Eq. (19) for improved visualization clarity. Reading Figure 3, we can
observe that ALDI outperforms other baselines in approximating
the teacher’s distribution, and even matches it, demonstrating that
ALDI effectively reduces the gap between students and teachers
compared to baseline models.

4.4 Distillation Comparison(Q3)
In Table 2, we compare ALDI with two traditional ranking dis-
tillation models: Ranking Distillation (RD)[40] and Collaborative
Distillation (CD)[25]. RD focuses on modeling the ranking order
difference between the teacher and student models, while CD pri-
oritizes the prediction scores of the student on top-ranked items
from the teacher. As indicated by the results in the table, our ALDI
consistently outperforms RD and CD in terms of Recall and NDCG
across both the CiteULike and XING datasets with three different
backbones. ALDI demonstrates superiority over CD by 17.83% on
the CiteULike dataset and by 11.21% on the XING dataset. This
supports the effectiveness of our tailored designed distillation loss
in improving performance in cold-start recommendation tasks.

Ablation Study. The figure in Figure 4 demonstrates the impact
of the hyperparameter 𝜔 on the recommendation performance on
CiteULike and XING with the MF backbone. The best results were
achieved when 𝜔 was set to 5 for CiteULike and 4 for XING. The
results indicate that a moderate intensity of 𝜔 is crucial in avoiding
the learning of unreliable teacher information.

5 RELATEDWORK
5.1 Embedding-based Recommendation
Recommender systems are designed to recommend personalized
items to billions of users out of millions of items [53, 60, 61]. One



Aligning Distillation For Cold-start Item Recommendation SIGIR ’23, June 03–05, 2023, Taipei, Taiwan

Table 2: Comparing ALDI with ranking distillation recom-
mendation methods for overall recommendation perfor-
mance. The improvements are computed by comparing ALDI
with the best baselines (underlined).

Backbone Variant CiteULike XING
Recall NDCG Recall NDCG

MF

RD 0.1269 0.0932 0.2089 0.1674
CD 0.1336 0.0972 0.2385 0.1999
ALDI 0.1618 0.1204 0.2727 0.2223

%Improv. 21.11% 23.87% 14.34% 11.21%

NCF

RD 0.0920 0.0748 0.1854 0.1433
CD 0.1032 0.0799 0.2152 0.1806
ALDI 0.1428 0.1068 0.2453 0.2036

%Improv. 38.37% 33.67% 13.99% 12.74%

LightGCN

RD 0.1234 0.0917 0.2093 0.1669
CD 0.1380 0.1002 0.2132 0.1742
ALDI 0.1626 0.1201 0.2409 0.2041

%Improv. 17.83% 19.86% 12.99% 17.16%
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Figure 4: Performance of the proposal w.r.t. different 𝜔 in
dynamic weight adjustment.

common technique is to represent each user or item as an embed-
ding vector. To this end, MF-based models [16, 24, 54] learn the
embeddings by factorizing the user-item interaction matrix into
user embedding vectors and item embedding vectors.

Recently, Graph Neural Networks (GNNs)[3, 4, 6, 20] have been
effective for multiple graph-based learning tasks, such as node clas-
sification and link prediction. Since the user-item interactions can
be seen as the edges between users and items, the entire user-item
interaction records can be reformulated as user-item graphs. Thus,
motivated by the success of GNNs, NGCF[47] first adapts GNN-
based collaborative filtering to learn the user/item embeddings. To
accelerate the graph convolution process, LightGCN [15] skips the
non-linear layers and achieves state-of-the-art recommendation
performance.

5.2 Cold-start Recommendation
The cold-start problem, which refers to the difficulty in recommend-
ing items to new users with limited interaction history, has been ad-
dressed by several approaches in recommendation systems [10, 48].
Generative models, such as DeepMusic [43] and meta-learning-
based methods [33], incorporate user and item contents and gener-
ate mappings from cold item embeddings to warm item embeddings.
The use of Generative Adversarial Networks (GANs) such as RA-
GAN [2], LARA [39], and GAR [5] has also proven effective in
solving the cold-start problem.

Dropoutmodels, such as DropoutNet [44],MTPR [8], CC-CC [37],
Heater [63], VELF [52], and CLCRec [50], simulate the behavior of
cold users and items by randomly dropping the trained embeddings
during training. These methods differ in the manner in which the
embeddings are dropped, ranging from replacing them with zero
vectors to incorporating them into inference for CTR prediction.

5.3 Knowledge Distillation
In knowledge distillation, a simple student model is trained to
mimic a complex teacher model to achieve similar or better perfor-
mance [18, 42]. This technique is widely used in various fields of AI,
including visual recognition, NLP, and recommender systems. For
example, knowledge distillation has been applied to image classifi-
cation [1, 27, 35], object detection [26, 38], face recognition [23, 31],
and image/video segmentation [14, 32]. In NLP, knowledge distil-
lation is used to create lightweight language models for various
tasks [12, 19, 29, 57].

Recently, knowledge distillation has been applied to recom-
mender systems, especially in ranking distillation [22, 25, 34, 40],
adversarial distillation [7, 49], and privileged feature distillation [46,
51, 55]. These methods aim to improve the performance and effi-
ciency of recommender systems by transferring knowledge from a
complex teacher model to a simpler student model. However, they
overlook the aligning distillation in cold-start recommendations,
where the teachers have to work together with the students.

6 CONCLUSION
In conclusion, the Aligning Distillation (ALDI) framework is pro-
posed to tackle the challenge of recommending cold items in recom-
mendation systems by narrowing the inherent gap between warm
items and cold items. ALDI effectively addresses the differences be-
tween warm and cold recommendations by transferring behavioral
information from warm items to cold items and incorporating a
teacher-qualifying weighting structure to ensure accuracy. Experi-
ments on three datasets demonstrate the superiority of ALDI over
state-of-the-art baselines in terms of overall, warm, and cold recom-
mendation performance over three different but typical warm rec-
ommendation backbones. Besides, ablations studies present ALDI
achieves superior cold-start recommendation performance than
ranking distillation recommender systems.
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