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ABSTRACT
Learning interest representation plays a core role in click-through
rate prediction task. Existing Transformer-based approaches learn
multi-interests from a sequence of interacted items with rich at-
tributes. The attention weights explain how relevant an item’s
specific attribute sequence is to the user’s interest. However, it im-
plicitly assumes the independence of attributes regarding the same
item, which may not always hold in practice. Empirically, the user
places varied emphasis on different attributes to consider whether
interacting with one item, which is unobserved. Independently
modeling each attribute may allow attention to assign probability
mass to some unimportant attributes. Collaborative attributes of
varied emphasis can be incorporated to help the model more rea-
sonably approximate attributes’ relevance to others and generate
refined interest representations.

To this end, we novelly propose to integrate a dynamic collabora-
tive attribute routing module into Transformer. The module assigns
collaborative scores to each attribute of clicked items and induces
the extended Transformer to prioritize the influential attributes. To
learn collaborative scores without labels, we design a diversity loss
to facilitate score differentiation. The comparison with baselines
on two real-world benchmark datasets and one industrial dataset
validates the effectiveness of the framework.

CCS CONCEPTS
• Information systems → Recommender systems; Personaliza-
tion; Learning to rank.
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1 INTRODUCTION
Learning interest representations from concrete behaviors has re-
ceived broad attention in the click-through rate prediction task. Its
goal is to predict items to be interacted next from the candidate
item set and rank them in line with user preferences. Conventional
works statically concatenate item representations and input them
into multi-layer perceptron to predict target item click probabil-
ity [3, 8]. They often leave extracting high-level semantics from
behavior sequences to the embedding layers without explicit mod-
eling. Thus the concatenated vector can not accurately describe
user personalized interests. Many recent efforts leverage candidate
items to guide model to actions of interests and summarize them
in a fixed-length vector [5, 14].

Users’ interests are diverse. A user may interact with many
conceptually different products at a time [9]. Representing user
interests with a single vector irreversibly bottlenecks the expres-
sive information from the diversified user action sequences. Thus,
this line of works often aims to learn multiple latent interests
of each user. An item is associated with several attributes, and
rich attributes bring opportunities to multi-interest mining. The
Transformer-based [11] and capsule-based framework [2] are suc-
cessively designed to capture multiple diverse interests expressed
by the user behaviors. The attention weight explains the relevance
between attributes in each attribute sequence. Each attribute is
represented by the attentive sum of others in the sequence based on
the attention weights, and then each processed sequence is pooled
into one interest respectively.

Despite the success of the attention mechanism in multi-interest
click-through rate prediction, it implicitly assumes the indepen-
dence of attributes regarding the same item and may be insufficient
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Figure 1: Each played movie is associated with two attributes:
movie genre and nation. The router models collaborative
attributes and outputs scores.

to achieve further satisfactory model capacity. Empirically, the user
places varied emphasis on different attributes to consider whether
interacting with one item, which is unobserved. As illustrated in
Figure 1, the user interacted with three movies, each of which as-
sociated with two attributes, movie genre and nation. Traditional
efforts may assume no correlation between movie genre and na-
tion at each time step and adopt two attention heads to process
two attribute sequences. Nevertheless, we could observe that user
preferences are skewed toward cartoons and Japanese movies. The
router models collaborative scores and considers each attribute
contributions driving users to interact with an item. The attention
could leverage collaborative scores to more reasonably approxi-
mate attributes’ relevance to others and generate refined interest
representations.

Motivated by aforementioned problems, we explore modeling
collaborative attributes vertically for each click. The collaborative
scores represent the confidence of each attribute being the reason
why the user consumes this item. It pushes attention to focus on
influential attributes, which is beneficial to refine the quality of the
interest representations. However, two challenges ensue. First, each
click is often induced by intent synthesis, but the underlying intent
contributions are unobservable, meaning there is no available col-
laborative scores as a supervision signal to assist score assignment.
Second, the assigned collaborative scores for each attribute at the
same time stepmay collapse to a uniform distribution, hindering the
efforts to highlight the heterogeneous contributions of attributes.

To this end, we propose a novel framework CAMN (Collaborative
Attributes Based Multi-Interest Network) for click-through rate
prediction. We summarize our contributions as follows:

• To better approximate attributes’ relevance to others and
generate refined interests, we explore explicitly quantifying
the importance of attributes driving user to interact with an
item and propose a novel framework CAMN.

• We propose a dynamic collaborative attribute routing mod-
ule to estimate collaborative scores and a diversity loss to
drive the model to learn imbalanced score distributions.

• Extensive experiments on public and industrial datasets
prove CAMN effectiveness.

2 COLLABORATIVE ATTRIBUTES BASED
MULTI-INTEREST NETWORK

Notations: We introduce model framework notations in detail.
Let I represent the item set collected from all sessions. Each item
𝑖 ∈ I is associated with 𝑘 attributes (including item identifier),

which are a small subset of attribute set A. Given a sequence 𝑠
with [𝑎𝑠1, 𝑎

𝑠
2 . . . 𝑎

𝑠
𝑙
] with 𝑙 items, the click-through rate prediction

task is to estimate the probability of the next item being clicked.
The 𝑟 -th corresponding attribute sequence associated with each
item in 𝑠 could be represented as [𝑎𝑠

𝑟,1, 𝑎
𝑠
𝑟,2 . . . 𝑎

𝑠
𝑟,𝑙
]1. To project 𝑘

consecutive attributes for one item from sparse vector to dense
vector, we look up attribute embedding matrix 𝑬 ∈ R |A |×𝑑 and
concatenate them together, where |·| is the cardinality and 𝑑 is
embedding dimension. Following this way, we obtain the composite
item embedding matrix 𝑿 ∈ R𝑙×𝑘𝑑 and elementary 𝑟 -th attribute
embedding matrix 𝑿𝑟 ∈ R𝑙×𝑑 for sequence 𝑠 .

2.1 Collaborative Attribute Routing Module
To collaboratively model attribute importance, we analyze user
intent and output collaborative scores for all attributes. A simple
yet effective collaborative attribute routing module is introduced
to estimate score distribution, which is further utilized to adjust
attribute relevance in Transformer. Given input matrix 𝑿 , layer
normalization [1] first rescales all the hidden units and prevents
embedding norm from influencing the stability of model training:

𝑿̃ = 𝐿𝑎𝑦𝑒𝑟𝑛𝑜𝑟𝑚(𝑿 ). (1)

A trainable matrix𝑾ℎ ∈ R𝑘𝑑×𝑘 is utilized to reduce the dimension
to the number of attributes 𝑘 and produce the initial routing scores
𝑷̃ . A user may only consider a few attributes to facilitate this in-
teraction. So we only select top 𝑞 elements and set the rest to −∞.
Then we normalize collaborative attribute scores independently at
each time step to constrain them in [0,1] and sum to 1. The final
collaborative score matrix 𝑷 ∈ R𝑙×𝑘 is formulated as:

𝑷 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑘𝑒𝑒𝑝𝑇𝑜𝑝𝑞(𝑿̃𝑾ℎ, 𝑞)), (2)

and

𝑘𝑒𝑒𝑝𝑇𝑜𝑝𝑞(𝑷̃𝑖 , 𝑞) 𝑗 =
{

𝑷̃𝑖, 𝑗 if 𝑷̃𝑖, 𝑗 in the top q element
−∞ otherwise . (3)

Notably, only the top𝑞 values have nonzero derivatives with respect
to the weights of the module.

2.2 Modified Transformer
We leverage Transformer [10] to produce relevance scores between
instances in the 𝑟 -th attribute sequence. Scores obtained in collabo-
rative attribute routing module are incorporated to adjust attribute
relevance and then help refine downstream interest representations.
Attributes allocated high scores are more likely the reason why the
user would like to interact with the item. Correpondingly, the 𝑟 -th
attribute sequence should receive more attention from the model.
The original weights are obtained by the multiplication between
latent item representations, and we apply collaborative score ma-
trix 𝑷 to scale the magnitude of the obtained weights. This process
outputs smoothed attention weight matrix 𝑨𝑟 defined by:

𝑨𝑟 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑷 ⊙ (𝑿𝑟𝑾
𝑄
𝑟 (𝑿𝑟𝑾𝐾

𝑟 )⊤
√
𝑑

)), (4)

1We omit superscript 𝑠 in the following notations for brevity. And all item attributes
should be in the same order.
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Figure 2: Toy example processed by CAMN pipeline. Shades of color represent different attributes.

where learnable parameter query, key matrices𝑾𝑄
𝑟 ,𝑾𝐾

𝑟 ∈ R𝑑×𝑑
are separately to map input to different latent spaces under 𝑟 -th
attention head.

Along this line, attention weights among attributes in the 𝑟 -th
attribute sequence are re-evaluated. The attribute assigned higher
scores will have more relevance with others and take a more domi-
nant position in the joint representation:

𝑿̂𝑟 = 𝑨𝑟 (𝑿𝑟𝑾𝑉
𝑟 ), (5)

where𝑾𝑉
𝑟 ∈ R𝑑×𝑑 represents parameter value matrix. To integrate

non-linear signal into item representations, we apply feed-forward
neural network to item representations:

𝑿̃𝒓 =𝑚𝑎𝑥 (0, 𝑿̂𝑟𝑾1 + 𝒃1)𝑾2 + 𝒃2, (6)

where 𝑾1, 𝑾2 ∈ R𝑑×𝑑 , 𝒃1, 𝒃2 ∈ R𝑑 are trainable matrices and
biased terms, respectively.

Following previous practices in DMIN [11], 𝑿̃𝒓 is pooled by
interest extractor to learn refined interest embedding. Finally, 𝑘 in-
terest vectors and target item embedding are concatenated together
and sent to MLP(Multi-layer Perceptron) to estimate the clicked
probability 𝑦.

2.3 Diversity Loss
Only multiplying collaborative scores may not sufficiently push
the model to differentiate attribute contributions at each click. To
distinguish vital attribute driving user behaviors, we design a diver-
sity learning objective to promote imbalanced collaborative score
assignment among all attributes. The loss function serves as a reg-
ularization technique and encourages the diversity of information
attended by different attention heads. It is given by the sum of
element-wise multiplication between each pair of attention weight
matrix of 𝑘 attributes:

L𝑑 =
1
𝑘2

𝑘∑︁
𝑖=1

𝑘∑︁
𝑗=1



𝑨𝑖 ⊙ 𝑨 𝑗



 . (7)

The model is jointly optimized by the diversity loss, and the next-
item clicked probability prediction loss. Our final training target is
to minimize the following objective:

L = 𝛼L𝑑 + L𝑝 , (8)

Table 1: Dataset Statistics.

Dataset Users Items Attributes Samples

Books 1686577 1861983 6 3373154
Industry 20448 7476 5 1525785

Electronics 651680 337652 6 1303360

where 𝛼 controls the weight of diversity loss. We treat the recom-
mendation task as a classification problem. The next-item clicked
probability prediction loss concerning the target item with truth
label 𝑦 is given by:

L𝑝 = −[𝑦 log𝑦 + (1 − 𝑦) log(1 − 𝑦)] . (9)

3 EXPERIMENTS
In this section, we conduct experiments over two benchmark datasets
and one industrial dataset to answer three questions.

• How effective is CAMN compared with the state-of-the-art
baselines?

• How much does each component of CAMN contribute?

3.1 Dataset Preprocessing
We evaluate all models on two publicly available datasets and one
industrial dataset.We summarize the dataset statistics in Table 1. No-
tably, Amazon Books and Amazon Electronics released by McAuley
et al. [7] contain product reviews and metadata from the Amazon
website. The Industrial dataset contains movie play records col-
lected from a leading home TV recommendation platform. For each
user, we obtain their reviews and sort them by ascending times-
tamps. The last interaction is treated as positive example, and we
randomly sample an item from the whole item set and pair it with
the user as a negative example. We randomly select 80% users in
each dataset as training set, 10% as validation set, and 10% as test
set. The maximum length of sequences is set as 20.

3.2 Experimental Setup
To enable a fair comparison, we use the source code released by
authors for the baseline. We implement CAMN with Tensorflow
and learning rate is set as 0.002. Following previous experimental
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protocols [11, 12], the number of embedding dimension 𝑑 equals
18 and Adam optimizer is utilized to optimize all models. Batch
size equals 2048 and 𝛼 is 0.0001. The number of interests is aligned
with the attribute number. AUC metric (Area Under Curve) [4] is
incorporated to evaluate all models. We repeatedly run all models
five times and report average results and standard deviation.

3.3 Compared Methods
We incorporate three groups of representative baseline methods
to verify our model performance. First, to verify the effective-
ness of capturing dynamic user interest, we include two models,
Wide&Deep [3] and PNN [8] which ignore chronological order of
clicked items. Second, to prove the superiority of multiple user inter-
ests, we include succeeding baselines DIEN [13] and DHAN [12],
which focus on learning single interest representation. Third, to
demonstrate the usefulness of modeling collaborative attributes in
interest refinement, we include the following methods ComiRec-
SA [2],MIND [6], and DMIN [11], which aim to extract multiple
interests from user sequences.

3.4 Comparison with Baselines
We start to answer the first problem of how effective CAMN is
compared with the state-of-the-art baselines. From Table 2, we
have several observations.

Wide&Deep and PNN do not achieve satisfactory results com-
pared with other baselines. They statically concatenate item em-
bedding together and do not model item transition in the sequence.
Thus user interest is not explicitly revealed and they fail to exactly
predict the possible next item. Dynamic user interest modeling
methods, including DIEN and DHAN exhibit competitive perfor-
mance with multi-interest models. They achieve better results than
the first group baseline. The improvement shows that learning in-
terest representation is beneficial for click-through rate prediction
task.

Different multi-interest models have varied abilities in dealing
with user complex interests. The first and second group baselines
lose to DMIN. It demonstrates the advantage of extracting multi-
interest than learning a unified interest. The third group baselines
are also inferior to DMIN, which indicates the superiority of Trans-
former in multi-interest modeling.

CAMN achieves consistent improvement over all the baselines
on three datasets which validates the effectiveness of our frame-
work. Remarkably, the improvement over DMIN proves that the
quality of interest representation in CAMN is better than DMIN.
Because collaborative attributes help analyze user intent and adjust
attention weight scores in each attribute sequence. It indicates the
effectiveness of collaborative attributes refining multi-interest.

3.5 Ablation Study
We turn to investigate the second problem of how much each com-
ponent of CAMN contributes to the whole model performance. Now
we introduce two variants of CAMN: CAMN-route and CAMN-loss.
CAMN-route is obtained by CAMN excluding diversity loss which
is used to validate the effectiveness of learning imbalanced collabo-
rative score distribution in each click. CAMN-loss is obtained by
CAMN removing collaborative attribute routing module, which

Table 2: Comparison with baselines w.r.t. AUC scores.

Methods Books Industry Electronics

AUC AUC AUC

Wide&deep 0.6594 ± 0.0025 0.7525 ± 0.0007 0.7057 ± 0.0020
PNN 0.6695 ± 0.0036 0.7565 ± 0.0003 0.7216 ± 0.0005

DIEN 0.7098 ± 0.0005 0.7596 ± 0.0001 0.7352 ± 0.0004
DHAN 0.7076 ± 0.0029 0.7637 ± 0.0000 0.7339 ± 0.0001

MIND 0.6710 ± 0.0028 0.7574 ± 0.0002 0.7232 ± 0.0006
Comirec-SA 0.6681 ± 0.0087 0.7620 ± 0.0001 0.7267 ± 0.0003

DMIN 0.7104 ± 0.0015 0.7659 ± 0.0001 0.7344 ± 0.0007

CAMN 0.7138 ± 0.0004 0.7698 ± 0.0001 0.7376 ± 0.0001

Table 3: Ablation study.

Methods Books Industry Electronics

AUC AUC AUC
CAMN-loss 0.7121 ± 0.0010 0.7659 ± 0.0001 0.7325 ± 0.0005
CAMN-route 0.6931 ± 0.0032 0.7689 ± 0.0001 0.7341 ± 0.0009

CAMN 0.7138 ± 0.0004 0.7698 ± 0.0001 0.7376 ± 0.0001

is derived to validate the effectiveness of modeling collaborative
attributes. The ablation study results on three datasets are summa-
rized in Table 3.

From the results, we can observe that CAMN outperforms its two
variants. We infer that without diversity loss, scores generated by
collaborative attribute routing module are more evenly distributed
and model struggles to distinguish decisive attribute from all associ-
ated ones. Without collaborative attribute routing module, diversity
loss may destroy attention weight matrix structure and negatively
affect model performance. The gap between CAMN and its variants
validates the effectiveness of the proposed collaborative attribute
routing module and diversity loss.

3.6 Conclusion
In this paper, we propose a novel model named CAMN to refine
multi-interest representation by modeling collaborative attributes
for click-through rate prediction. Collaborative attribute routing
module and diversity loss are introduced. The collaborative attribute
routing module outputs intent scores among all attributes to rescale
attention weight, thus leading to refined interest representation.
The diversity loss promotes differentiating collaborative scores on
each attribute concerning one item. Empirical results across three
real-world datasets validate the effectiveness of CAMN. Our future
works are to explore the possibility of diversity recommendation
based on learned collaborative scores.
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