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Computer-aided Colorization
State-of-the-science: A Survey
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Abstract—This paper reviews published research in the field of computer-aided colorization technology. We argue that within this con-
text, the colorization task can be considered to originate from computer graphics, advance by introducing computer vision, and progress
towards the fusion of vision and graphics. Hence, we propose a specific taxonomy and organize the research work chronologically. We
extend the existing reconstruction-based colorization evaluation techniques on the basis that aesthetic assessment should be introduced
to ensure the computer-colored images closely satisfy human visual-related requirements. We then perform an aesthetic assessment
using the proposed metric and existing evaluations, comparing the colorization performance of seven representative unconditional
colorization models. Finally, we identify unresolved issues and propose fruitful areas for future research and development. Details of the
project associated with this survey can be obtained at https://github.com/DanielCho-HK/Colorization.

Index Terms—Colorization, computer graphics, a taxonomy of colorization technology, colorization aesthetic assessment.

✦

1 INTRODUCTION

COLOR is an integrated and crucial part of the real
world. While appreciating the world’s natural beauty,

humans have never stopped trying to capture the rich colors
of nature by utilizing methods ranging from painting to
photography. A Canadian, Wilson Markle, first invented the
computer-aided colorization technology in 1970 to add color
to monochrome footage of the moon obtained during the
Apollo program. Nowadays, such colorization-related tech-
nologies have a wide range of applications, including restor-
ing the original colors of black-and-white photos [1], legacy
films [2], cartoons [3], [4], [5], animation colorization [6],
[7], [8], etc. Moreover, color has been an indispensable
element of the digital world, such as in computer graphics
research [9], and a significant component of computer-aided
visualization of information, concepts, and ideas.

Computer-aided colorization can be defined as gener-
ating color information from gray-scale images and line
drawings (or sketches) while keeping the structural details
unchanged through computing technology. For more than
two decades, this field has attracted the attention of many
researchers in computer graphics and computer vision, who
were trying to tackle four main problems: (1) Difficulty in
recovering the original color information; (2) Integration
of semantic understanding and different color sources; (3)
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Non-photorealistic colorization and (4) Evaluation of col-
orization.

Researchers have proposed various solutions to address
these four challenges: (1) To tackle the multi-modal problem
of image color [10], such as varying the colors of leaves in
different seasons (from green to yellow), two leading ap-
proaches have been used: user-guided conditional coloriza-
tion and deep color priors-based automatic unconditional
colorization. The former provides precise color information
through various forms of user interaction (e.g., reference
images, color hints, palettes, and text prompts), empha-
sizing the user’s dominant role in the coloring process,
while the latter relies on prior color information learned
from large-scale datasets, offering more prosperous and
more accurate data modeling and generation capabilities.
(2) Semantic correspondence has different implications in
both conditional and unconditional coloring processes. In
conditional coloring, this is primarily reflected in techniques
based on reference images and user hints/scribbles. The
coloring result must ensure that the color in the current area
matches the color of the same semantic area in the reference
image or aligns with the user-provided color information.
It is also crucial to manage different sources of color during
the coloring process [11], such as resolving conflicts between
user-provided color information and learned color priors.
The unconditional method involves image semantic under-
standing at three levels: global, pixel, and instance, which
are analyzed in detail in the following technical review. (3)
In the colorization literature, an increasing number of arti-
cles address the colorization of manga, line drawings, and
sketches, in addition to gray-scale images. Chen et al. [12]
provided a detailed comparison of these non-photorealistic
colorization targets, which we generally refer to as line
drawings in our survey. Unlike gray-scale images, line art
presents more challenges, including sparse information, a
lack of high-quality paired data for training, and complex
line structures with unique tones and textures in anime
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and manga. Therefore, methods designed explicitly for line
drawing colorization often utilize user inputs or reference
images as a pre-condition. (4) Evaluating colorization results
is challenging because they are inherently ill-posed and
subjective. Ground truth is not always available. Even when
gray-scale versions of a color image are constructed to create
ground truth, the results can be diverse and subjective and
may not necessarily align with the ground truth. Evaluation
metrics dedicated to colorization need to be developed for
the benefit of the research community.

Although some excellent reviews have been published
on colorization, they generally have certain limitations.
For example, Anwar et al. [13] mainly focused on single-
image colorization, while Huang et al. [14] focused on deep
learning-based colorization and largely ignored traditional
methods. Chen et al. [12], on the other hand, reviewed
the field of colorization, from image analogy to learning-
based methods, but did not discuss the latest advancements,
and their proposed taxonomy was developed according to
various types of colorization objects. Comparatively, our
survey addresses some of the above-mentioned weaknesses
and gaps, providing a much more detailed, comprehensive,
and up-to-date review of the field of computer-aided col-
orization. We also present our taxonomy to organize ex-
isting related work from the perspective of methodological
approaches. Considering colorization as a kind of computer
graphics task, we divide colorization into three broad cat-
egories: conditional methods, unconditional methods, and
video colorization (see Fig. 1). This survey complements
previous reviews, analyses the development of coloriza-
tion technologies, and identifies potentially rewarding fu-
ture directions in colorization research. Moreover, review-
ing the existing work reveals that evaluation metrics for
reconstruction-based models were not initially designed for
the colorization task, and there is no ground truth image.
The effectiveness of computerized colorization, precisely the
coloring quality, is a relatively abstract concept that is hard
to quantify and involves aesthetic assessment. This paper
proposes a novel colorization aesthetic assessment method
inspired by CLIP-based image quality assessment research.
The method simulates a human vision perception system.

The main contributions of our paper can be summarized
as follows:

• A thorough review of the research and other materials
on colorization technology published during the past
two decades provides a precise, insightful literature-
based analysis for follow-up research.

• The first introduction of aesthetic assessment of col-
orized images and the first evaluation of seven uncon-
ditional image colorization methods.

• A discussion of the main challenges, development
trends, and suggestions concerning potentially fruitful
future research directions and technological advance-
ments.

The remainder of this survey is structured as follows:
Section 2 reviews the published work on colorization tech-
nology and is organized according to our proposed tax-
onomy. Section 3 summarizes representative datasets that
can be used for training learning-based colorization models.
Section 4 introduces the concept of colorization aesthetic
assessment and compares seven unconditional colorization

techniques based on the proposed new aesthetic assessment.
Section 5 discusses future research directions, and Section 6
contains a summary and conclusions.

2 COLORIZATION

2.1 Conditional Colorization

Conditional colorization refers to the colorization technol-
ogy that can explicitly generate diverse colored results ac-
cording to different types of user inputs, namely conditional
controls. Conditional methods involve five main types of
control, namely reference image, hint/scribble, palette, text,
and multi-modal controls. The earliest natural image col-
orization publications are based on reference images [15]
and user hints [16]. With the development in technology, the
colorization methods have also evolved from the traditional
non-parametric optimization paradigm to the learning-
based paradigm, with the coloring objects extending from
gray-scale images to line drawings, including manga [17],
[18], anime [19], [20], [21], [22], cartoons [23], [24], [25],
icons [26], [27], etc.

2.1.1 Reference-based Methods
Reference-based colorization methods convert color infor-
mation from the reference images to the target gray-scale
images or black-and-white line drawings (see Fig. 2).

Gray-scale Image Colorization. Reference-based gray-scale
image colorization originates from the concept of image
analogy [28], a method of automatically learning an image
filter from training data. As in the case of other classic
computer graphic tasks, such as texture synthesis, texture
transfer, and artistic rendering, reference-based image col-
orization can be considered an image filter simulation based
on image analogy, depending on establishing semantic cor-
respondence between the reference and target images, i.e.,
identifying and aligning similar semantic features or objects
in both images so that the color information from the ref-
erence image can be accurately transferred to the gray-scale
image.

Optimization-based methods. Inspired by this, Welsh et
al. [15] proposed the first method of transferring color from
a source image to a target gray-scale image. Their basic
idea was first to perform pixel neighborhood matching in
the luminance channel and then to transfer chromaticity
values from the source to the target. Irony et al. [29] in-
troduced an exemplar-based colorization technique, incor-
porating a specially designed texture-based classifier for
more accurate localized color transfer. This classifier is
derived from a detailed analysis of low-level features in
the reference image. In the early studies, gray-scale image
colorization models were built upon the assumption that
similarities in gray-scale intensities indicate color similar-
ities. Colorization algorithms can be misled by intensity
disparities arising from variations in shades and brightness
between its reference image and the target image. To ad-
dress the problem of illumination inconsistencies between
target and reference images, Liu et al. [30] introduced an
intrinsic colorization approach, which involved computing
an illumination-independent reference image by means of
intrinsic image decomposition. To mitigate the problems
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Fig. 1. Taxonomy of colorization technology. We classify colorization as a sub-task of computer graphics, in which the green sections belong to the
explicit diverse colorization, using conditional controls, and the blue sections belong to the unconditional colorization methods and applications for
vision tasks. Video colorization is separately shown in yellow to indicate it as an extension of image colorization in spatiotemporal dimensions.

Fig. 2. Illustration of reference-based colorization. The top row shows
reference-based gray-scale image colorization and the bottom row
shows reference-based line drawing colorization. Images courtesy
of [15], [19].

caused by variations in illumination, their method lever-
aged multiple reference images obtained from the inter-
net. A similar concept of using an extensive online image
database to colorize gray-scale images was also proposed
by Morimoto et al. [31]. The success of such reference-
based methods, however, depends heavily on retrieving a
suitable reference image. To expand the colorization target
range from famous landmarks to general objects and scenes,
Chia et al. [32] proposed a more user-friendly colorization
method that utilized semantic labels to search appropriate
reference images from the internet and thereby facilitate
accurate color transfer. To improve the speed of image
colorization, Gupta et al. [33] proposed a method that used
a fast cascade feature matching scheme for rapidly finding
correspondence between reference images and target im-
ages at the superpixel level. Bugeau et al. [34] designed a
variational model simultaneously modeling color selection
and spatial constraints. Li et al. [35] presented a novel
approach to colorizing target superpixels by formulating
it as a problem of dictionary-based sparse reconstruction.
They introduced the first sparse pursuit image coloriza-
tion method, using a single reference image. By reducing
limitations in terms of the images provided by users and

improving the precision of dense feature matching between
images, it can make reference-based colorization technology
more versatile. It generally presents a challenge when users
provide reference and target images of objects with different
scales. To tackle the problem of feature matching involving
different scales, Li et al. [36] introduced a cross-scale match-
ing technique that incorporates localized considerations of
various potential scales during the matching process. They
subsequently employed the graph-cut technique to fuse
the scales globally, aiming to identify spatially coherent
scales that exhibit high-quality matching. Fang et al. [37]
approached exemplar-based image colorization from the
point of view that it was a problem of color selection,
incorporating regularization constraints. They focused on
utilizing superpixels as processing units so as to improve
both the efficiency and robustness of colorization. Notably,
their work introduced the utilization of superpixel-based
non-localized self-similarity and localized spatial consis-
tency as novel techniques for image colorization.

In summary, the technological developmental route of
reference-based gray-scale image colorization was first started
with single image analogy, then utilizing the retrieval-based
method for selecting appropriate reference images when involving
multiple reference images, until the superpixel became the most
effective solution among the traditional techniques.

Learning-based methods. Since 2012, with the successful
application of Deep Convolutional Neural Network (CNN)
models [38] for many vision-related studies, reference-
based image colorization methods have also changed from
traditional optimization-based non-parametric models to
CNN-based parametric models. To address more complex
situations where clear correspondence between the target
and reference images is lacking, He et al. [39] proposed
an end-to-end network to learn the selection, propagation,
and prediction of colors from existing data. Unlike earlier
deep learning-based colorization approaches, their method
effectively captured local and global contents, resulting in
improved colorization outcomes, which avoided semantic
inaccuracies or low color saturation. Xiao et al. [40] pre-
sented a Dense Encoding Pyramids Network for coloriza-
tion, which mapped the color distribution from a reference
image onto a gray-scale image. Their model incorporated
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novel Parallel Residual Dense Blocks to capture comprehen-
sive local-global context information. Furthermore, a Hier-
archical Decoder-Encoder Filter was employed to aggregate
color distribution information across adjacent feature maps.
Inspired by work of stylizing photorealistic images [41],
[42], Xu et al. [43] designed a deep learning model con-
sisting of a transfer net and a colorization net to perform
real-time exemplar-based image colorization. For a reliable
reference-based image colorization system, the semantic
colors associated with the objects and global color distri-
butions are important color characteristics of the reference
image. Lu et al. [44] introduced Gray2ColorNet to address
this aspect. This end-to-end deep neural network innova-
tively combined reference image semantics and global col-
ors for effective image colorization. Yin et al. [11] modeled
colorization as a query-assignment problem for different
color sources and designed a unified attention mechanism
framework. Under this unified framework, selecting and
assigning colors from a reference image to the gray-scale
image adhered to a shared criterion, utilizing the semantic
features as a primary factor. Inspired by the observation that
a broad learning system was capable of efficiently extracting
semantic features [45], Li et al. [46] proposed Broad-GAN as
an approach for semantic-aware image colorization. They
devised a customized loss function to improve training
stability and to evaluate the semantic similarity between the
target and ground-truth images. Attention-aware methods
have recently emerged to tackle the inherent semantic cor-
respondence problem in reference-based image colorization.
Carrillo et al. [47] introduced a super-attention block that
leveraged superpixel features to transfer semantically re-
lated color characteristics from a reference image across var-
ious scales within a deep learning network. Similarly, Bai et
al. [48] proposed a Semantic-Sparse Colorization Network,
which employed a sparse attention mechanism to transfer
global image styles and detailed semantic-related colors to
gray-scale images in a coarse-to-fine manner. Wang et al. [49]
developed an effective exemplar-based colorization strategy
utilizing a pyramid dual non-local attention network to ex-
plore long-range dependencies and multi-scale correlations.

In summary, Learning-based reference colorization research
mainly tackled the semantic correspondence problem by intro-
ducing different solutions, including local-global deep features
aggregation, exemplar-based style transfer formulation, and at-
tention mechanism modules. In addition, the decoupling of the
color sources when performing the reference-based colorization
is of significance. Usually, the color comes from 1) the semantic
colors linked to objects in the reference image, 2) the global color
distribution encompassing tones and hues of the reference image,
and 3) the color information learned from large-scale datasets.

Line Drawing Colorization. The early method [50] formu-
lated reference-based line drawing colorization as a neural
style transfer problem [51]. Since basic neural style transfer
models designed for natural images cannot deal with line
drawings, they incorporated a residual U-Net architecture
and utilized an Auxiliary Classifier Generative Adversar-
ial Network (AC-GAN) [52] to apply the desired style
to the gray-scale sketch. In line drawing colorization, a
specialized group of researchers focuses on ‘manga’ and
‘anime,’ namely comics and animations originating in Japan.

Furusawa et al. [18] introduced Comicolorization as the
pioneering approach to colorizing complete manga titles,
encompassing sets of manga pages. The semi-automatic
system uses reference images to colorize the input black-
and-right manga images. In the anime creation industry,
artists often manually draw anime character illustrations
with empty pupils first and then only thereafter fill in the
preferred colors or details in the pupils. Akita et al. [53]
introduced a colorization model, combined with a pupil
position estimation module, to colorize anime character
faces automatically with accurate pupil colors. To solve the
problem of not being able to obtain paired training data
before and after colorization, Lee et al. [54] proposed a
training scheme aimed at learning visual correspondence.
They achieved this by generating self-augmented references
with a self-supervised training scheme, eliminating the need
for manually annotated labels of visual correspondence.
This development facilitated end-to-end network optimiza-
tion without explicit supervision. Cao et al. [55] developed
a segmentation fusion model to reduce the color-bleeding
artifacts effectively. Li et al. [56] identified the problem gra-
dient conflict within the attention modules during line-art
colorization, negatively impacting the training stability. To
address this issue, they proposed a training strategy called
Stop-Gradient Attention. This strategy eliminated the gradi-
ent conflict problem, enabling the model to learn improved
colorization correspondence. Liu et al. [24] employed a
multi-scale discriminator to enhance the visual realism of
colorized cartoons, focusing on improving both global color
composition and local color shading. Chen et al. [25] intro-
duced an active learning-based framework that combined
the local-region matching of line art and reference-colored
images, followed by spatial context refinement using mixed-
integer quadratic programming (MIQP). Cao et al. [19] de-
vised an explicit attention-aware model for generating high-
quality colored anime line drawing images. Wu et al. [57]
proposed a pioneering self-driven dual-path framework for
reference-based line art colorization based on limited data.
More recently, Cao et al. [21] introduced AnimeDiffusion,
the first diffusion model tailored explicitly for reference-
based colorization of anime face line drawings.

In summary, reference-based line drawing colorization re-
search focused on cross-domain semantic correspondence and color
consistency to generate appropriate colored results. Nevertheless,
due to the lack of pairs of high-quality training data, it is difficult
to train models in a supervised manner. Since there is a lack of
large-scale training data, like natural images, the generalization
of existing models is still limited.

2.1.2 Hint/Scribble-based Methods

Hint/Scribble-based colorization is a technology that per-
forms colorization by propagating local user-provided color
scribbles (Fig. 3) and color points (Fig. 4).

Gray-scale Image Colorization. Levin et al. [16] introduced
an innovative interactive colorization technique that as-
sumed neighboring pixels in space-time, with similar inten-
sities, should exhibit similar colors. Using a quadratic cost
function, they formulated the color propagation process as
an optimization problem. Manual scribbling can be tedious
and time-consuming for images with complex details and
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requires aesthetic-related skills to obtain realistic results. The
method developed by Irony et al. [29] can automatically
generate ‘micro-scribbles’ from the image the user provides
as an example, greatly facilitating user involvement. To
solve the ‘color bleeding’ problem in boundary regions,
Huang et al. [58] developed an adaptive edge detection
scheme to prevent colorization from bleeding over bound-
aries. Yatziv and Sapiro [59] designed a fast colorization
framework based on the concept of color blending to speed
up the colorization process, and their method can be easily
extended to video colorization without the need for optical
flow computation. Since previous user-guided methods re-
quire a vast number of user inputs (e.g., in the form of
strokes) to achieve high-quality colorization of images with
complex textures, Luan et al. [60] considered the colorization
problem as one of image segmentation by using the concept
of texture cluster, and proposed an easy two-step coloriza-
tion system, including Color Labeling and Color Mapping.

Fig. 3. Illustration of colorization using color scribbles (or strokes). The
top row shows gray-scale image colorization, and the bottom row shows
line drawing colorization. Images courtesy of [16], [17].

After 2017, user-guided colorization methods have en-
tered the era of deep learning. Zhang et al. [62] introduced
deep learning technology to assist users in making informed
color input decisions. By training a model on large-scale
natural image datasets, the model acquires fundamental
capabilities for image semantic recognition and color infor-
mation statistics. Assisted with an interactive system, users
can specify their preferences using the trained model and
thereby generate plausible colorization results [62]. Kim et
al. [63] designed a simple add-on edge-enhancing network
to enable users to interactively annotate the color bleeding
region with scribbles. Instead of performing a direct op-
eration at the image level, their model used scribbles and
intermediate feature maps to generate edge-enhanced col-
orization outputs. Xiao et al. [64] designed a two-stage deep
colorization model that simultaneously accommodated in-
puts of both local color points and global palette. Yun et
al. [65] proposed the first color point-based real-time col-

Fig. 4. Illustration of colorization using color points. The top row shows
gray-scale image colorization, and the bottom row shows line drawing
colorization. Images courtesy of [50], [61].

orization model based on the Vision Transformer [66] which,
by leveraging the self-attention mechanism, can avoid pro-
ducing partially colorized outputs.

Line Drawing Colorization. User-guided colorization
methods for line drawings can be traced back to the work of
Qu et al. [17], who developed a stroke-based approach that
was tailored specifically for colorizing manga, characterized
by intensive strokes, hatching, halftoning, and screening.
Due to the sparse continuity of patterns in manga, conven-
tional intensity-continuity-based techniques are ineffective.
Qu et al. [17] proposed a method to propagate the color
in pattern-continuous and intensity-continuous modes auto-
matically. Sýkora et al. [67] presented a flexible colorization
tool that could be applied to various drawing styles as
opposed to the previous style-limited approaches.

As in the case of natural images, starting in 2017, many
user-guided line art colorization methods using deep learn-
ing techniques were developed. Sangkloy et al. [68] formu-
lated the colorization process as a sketch-to-image synthesis
problem involving scribbles control. They were the first
to utilize GAN to generate realistic images according to
sketches and sparse color scribbles. Liu et al. [23] designed
the auto-painter model, based on conditional Generative
Adversarial Networks (cGAN) [69], which automatically
generates colorized cartoon images from a sketch. Ci et
al. [70] proposed a model based on cGAN architecture
for scribble-based anime line art colorization. To generate
authentic illustrations with accurate shading, they inte-
grated their framework with WGAN-GP [71] and perceptual
loss [72]. Zhang et al. [61] proposed a learning-based frame-
work consisting of two distinct stages: drafting and refine-
ment. This decomposition simplified the learning process
and enhanced the overall quality of the final colorization
outcomes. In line art colorization, flat filling is a process
that uses relatively flat colors rather than color textures.
Zhang et al. [73] proposed the Split Filling Mechanism
framework to control the areas defined by user scribbles and
thereby generate realistic color combinations. Their method
can fill in flat, consistent colors to regions instead of pixel-
level color textures. Yuan and Simo-Serra [74] presented

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2025.3543527

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 13,2025 at 15:30:57 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

a Concatenation and Spatial Attention module that can
generate consistent and high-quality line art colorization
from user inputs. Previous methods performed colorization
in RGB color space, which resulted in dull colors and
inappropriate saturations. To address this problem, Dou et
al. [75] introduced the DCSGAN model, which was the first
to utilize Hue, Saturation, and Value (HSV) color space to
enhance anime sketch colorization. The HSV color space
closely aligns with the human visual cognition system. It is
well-suited for colorization tasks incorporating prior human
drawings, including hue variation, saturation contrast, and
gray contrast. Recently, Carrillo et al. [76] introduced an
interactive method for colorizing line art using conditional
Diffusion Probabilistic Models. Cho et al. [77] developed
the GuidingPainter model to improve the efficiency of the
interactive sketch colorization process, based on the concept
that making the model actively seeks regions where color
hints would be provided rather than rely too heavily on
deciding color local-position information provided by users.

There are two primary research motivations for hint/scribble-
based methods. First, they enhance the accuracy and naturalness
of image coloring. User-provided color cues can serve as prior
information, helping the algorithm more accurately infer the color
distribution across different image areas. Second, these methods
increase user engagement and satisfaction. Allowing users to
provide color prompts gives them greater control, enabling them
to customize the image’s colors according to their preferences and
needs.

In addition, it is important to note that user-hint-based col-
orization methods are more commonly used in non-photorealistic
sketch coloring tasks. This is because, unlike natural images, line
art images lack a large dataset that defines prior color distribu-
tions. Furthermore, in animation or artistic creation, many color
schemes do not exist in nature. Due to the unique nature of non-
photorealistic art coloring, interactive user-hint-based methods
provide users with greater control and creative freedom.

Finally, to effectively manage conflicts between user-provided
hints and the color priors derived from the algorithm’s semantic
understanding of the image, colorization systems should be de-
signed with a flexible architecture that prioritizes user input when
necessary. Additionally, incorporating feedback mechanisms that
show users how their hints are being applied can help achieve the
desired results while maintaining a balance between algorithmic
suggestions and user creativity.

2.1.3 Palette-based Methods
Palette-based image colorization is a technique where a
limited set of colors, known as a palette, is used to colorize
a gray-scale image, as illustrated in Fig. 5. The color palette
usually reflects the overall tones or themes of the image,
while the image color conveys emotions by means of color
themes. Wang et al. [78] proposed the first system, called
the Affective Colorization System, which can efficiently col-
orize a gray-scale image semantically, using a color palette
with emotional information incorporated. Bahng et al. [79]
regarded the palette as an intermediate representation that
conveys the semantics of the image. They first designed a
model to generate multiple palettes according to different
text inputs and then performed palette-based gray-scale
image colorization. Xiao et al. [40] proposed a reference-
based colorization framework, with the palette being one

Fig. 5. Palette-based colorization. Images courtesy of [78].

reference type, to generate realistic colored outcomes. Wu et
al. [80] introduced a flexible icon colorization model based
on user-guided images and palettes.

Compared to other conditional colorization technologies,
palette-based methods have attracted relatively less attention from
researchers, with publications dealing with palette-based methods
mainly covering natural gray-scale image colorization or icon
sketch colorization.

2.1.4 Text-Based Methods

Text-based colorization [81] performs coloring according to
users’ instructions provided in the form of texts (natural
languages), and being a relatively novel cross-modal inter-
active method, to both natural and line images, as illustrated
in Fig. 6.

This technology can be categorized as non-diffusion-
based and diffusion-based methods. For traditional non-
diffusion-based methods. Chen et al. [82] pioneered a text-
based method for colorization. They developed a com-
prehensive modeling framework that completes two inter-
linked tasks of image segmentation and colorization for
language-based image editing. Their approach involved us-
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ing a CNN to process the source image and an LSTM [83]
network to encode the textual features according to the
language-based user inputs. Another important approach
was that of Bahng et al. [79], who focused on linking specific
words to particular colors and thereby encapsulating the
semantics of the text input. Their method produced relevant
color palettes that captured the essence of the text and which
were then applied to add color to gray-scale input images.
They mentioned that their technique allows individuals
without artistic expertise to create color palettes that ef-
fectively communicate high-level concepts. Weng et al. [86]

Fig. 6. Illustrations of text-based colorization. The top row illustrates
gray-scale image colorization, and the bottom row line drawing coloriza-
tion. Images courtesy of [84], [85].

presented a method that decoupled colors and objects into
different spaces. Their approach allowed for correctly apply-
ing designated (potentially unusual) color words to objects,
successfully addressing the common problems associated
with coupled color and objects, and mismatches between
them. Chang et al. [84] introduced the first transformer-
based text-based colorization system by analyzing the cross-
modal relationship between images and texts using cross-
attention learning, thereby addressing the large gap be-
tween the two modalities. Early methods independently
leveraged two distinct architectures for feature extraction:
CNN for images and LSTM for relevant textual descriptions.
In another study, Chang et al. [87] proposed a Transformer-
based framework to automatically consolidate related image
patches and attain instance awareness without additional
information. Their method solved the problem encountered
by previous researchers in differentiating between different
instances of the same object.

Due to the cross-attention mechanism module, Stable
Diffusion-based approaches can be easily combined with
text control for image coloring tasks. Chang et al. [88]
utilized the robust language understanding and extensive
color priors provided by Stable Diffusion [89] for text-based
colorization. Unlike previous approaches, which relied on
comprehensive color descriptions for many objects in the
image, this method avoided suboptimal performance, espe-
cially for items without color-matched descriptive words.
Thanks to the excellent data distribution modeling perfor-
mance of diffusion models and the color priors learned in
large-scale image datasets, [90], [91] can perform text-based
coloring tasks well and can even be extended to support
other interactive methods or unconditional automatic color-
ing.

Unlike natural gray-scale images, which can combine

color and semantic descriptions for accurate colorization,
cartoon line art coloring benefits from the rich tags pro-
vided by the Danbooru dataset. These independent tags
can be combined to produce coloring results with different
effects. Kim et al. [85] proposed an alternative approach,
employing a GAN for colorizing line art. Their method used
monochromatic line drawings and color tag data as inputs
to generate high-quality colored images. The current popu-
lar ControlNet-based anime content generation method [92]
also utilized these tag-based prompts to perform sketch-
guided anime content generation.

Text-based image colorization is a technique that involves
adding color to gray-scale images or sketches using textual de-
scriptions as guidance. It is worth noting that the forms of the two
types of text guidance are different. For natural images, the text
descriptions typically combine color and semantic information,
whereas, for cartoon line art, tag-based prompts are mainly used
to depict characters or scenes.

2.1.5 Multi-modal Methods

Multi-modal colorization methods perform colorization by
combining different types of control. Huang et al. [93] pre-
sented UniColor, the first unified framework that enabled
colorization in multiple modalities, encompassing both un-
conditional and conditional approaches and accommodat-
ing various conditions, including stroke, exemplar, text,
and combinations. The framework involved a two-stage
colorization process that integrated these conditions into a
single model. In the initial stage, the diverse multi-modal
conditions were transformed into a shared representation,
known as hint points. Notably, they introduced a CLIP-
based [94] approach to convert textual inputs into hint
points, ensuring compatibility with other modalities. The
subsequent stage involved a Transformer-based network
consisting of Chroma-VQGAN and Hybrid-Transformer
components. Recently, two diffusion-based models for nat-
ural image colorization [95] and anime sketch coloriza-
tion [20], [96] have been proposed, both supporting multiple
types of control for interactive colorization.

In summary, with the great improvement in the performance
of generative models, multi-modal interactive coloring technology
has gradually become the research direction and has high applica-
tion potential.

2.2 Unconditional Colorization

Unconditional image colorization is a process where a gray-
scale image is converted into a color image without any
additional input or guidance from the user. In previous
studies, researchers have also referred to this as automated
colorization. In this section, we discuss the technology from
three perspectives: the method paradigm, automatic seman-
tic colorization, and applications for vision tasks.

2.2.1 Method Paradigm

Regression-based Methods. Early attempts [97], [98] lever-
aged neural networks, as regression models, to minimize
average reconstruction errors, with the colorization entering
the era of deep learning by using a neural model to learn the
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mapping between gray-scale images and colored images.
The loss function can be defined as follows:

Lregression =
1

N

N∑
i=1

∥yi − ŷi∥2 , (1)

where N is the sum of pixel numbers, yi is the real color
value of the ith pixel, ŷi is the predicted color value.

Classification-based Methods. By introducing the concept
of representation learning [99], Zhang et al. [100] treated col-
orization as a classification task using the image’s L channel
as input and its ab channels as outputs for supervised
learning. Changing pixel regression to pixel classification
significantly improved the colorization quality, especially
regarding saturation. The loss function can be defined as
follows:

Lclassification = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c), (2)

Where C is the total number of color categories, yi,c is the
true label of the ith pixel on the category c (usually one-hot
coding), ŷi,c is the probability that the model predicts that
the ith pixel belongs to class c. Similarly, Larsson et al. [101],
[102] explored colorization as a means of self-supervised
learning for visual comprehension, free from the constraints
of pre-trained backbone models. These insights into repre-
sentation learning through colorization have significantly
advanced the understanding of self-supervised tasks and
their applications in computer vision.

Generation-based Methods. Different from conditional col-
orization methods, involving various types of user con-
trol to generate diverse colored results explicitly, automatic
methods, utilizing generative models, can perform diverse
coloration implicitly, as illustrated in Fig. 7. Charpiat et
al. [10] undertook a pioneering work of implicitly learn-
ing the multi-modal probability distribution of colors. It is
worth noting that the word ‘multi-modality’ used in their
paper about fifteen years ago meant ‘diversity of colors,’
which differs from the meaning of multi-modality today,
namely, multiple forms of sensory inputs, such as images,
text, audio, and video. Nevertheless, as a result of their
groundbreaking work [10], many subsequent studies deal-
ing with diverse colorization still used ‘multi-modal’ within
the context of ‘diversity of colors.’

We find that previous studies, aimed at diverse col-
orization and published in different periods, adopted the
contemporary famous generative model algorithms as the
backbone of their approaches, including VAE [104], [105],
Flow [106], Auto-Regressive [107], [108], [109], [110], [111],
[112], [113], GAN [103], [114], [115], [116], [117], [118], [119],
[120], [121], [122], [123], and Diffusion Models [90], [91],
[124].

In summary, Auto-Regressive (including Transformer) and
GAN models are the mainstream generation architectures for
designing diverse coloring methods. Since generative algorithms
aim to model the distribution of training data, they have the
inherent property of generating diverse colorization results. As the
performance of the diffusion model stands out in various vision
tasks, its distribution-modeling performance in terms of data
diversity is superior to previous generative algorithms. Hence,

Fig. 7. Illustration of diverse colorization methods. The model, trained on
a large-scale image dataset, automatically learns the color priors and
performs implicit diverse colorizations. The gray-scale input image is on
the left, and the six images on the right are the colored results of certain
unconditional colorization methods. Images courtesy of [103].

researchers tend to design multi-modal interaction-based coloring
methods based on diffusion models.

2.2.2 Semantic Colorization
Semantic information is essential for performing high-
quality colorization. We divide the existing semantic auto-
matic colorization methods into three categories, including
global level, pixel level, and instance level, which corre-
spond to three vision tasks: image classification, semantic
segmentation, and instance segmentation, as illustrated in
Fig. 8.

Fig. 8. Illustration of three kinds of automatic semantic colorization meth-
ods. Global level, pixel level, and instance level separately correspond
to three vision tasks: image classification, semantic segmentation, and
instance segmentation.

Global Level. Iizuka et al. [125] was the first to propose
using semantic information for a colorization process; their
approach involved a fully automated data-driven method to
classify and colorize images utilizing a labeled dataset. It in-
tegrates local image features, calculated from local patches,
with visual context derived from semantic class labels. This
enables the model to determine and understand the corre-
lation between semantic labels and their respective colors.
Özbulak [126] proposed a colorization approach that uti-
lized the image recognition and understanding capabilities
of Capsule Networks (CapsNets) [127]. Vitoria et al. [128]
introduced an approach that combines adversarial learning
with semantic information for colorization. They leveraged
the power of GAN to generate realistic and visually pleasing
colored images. Their method incorporated semantic class
distribution learning, guiding the colorization process based
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on the semantic context of the image. The method proposed
by Jin et al. [129] introduced a new automatic colorization
approach based on a broad learning system [45], which
accurately determined the category and color of pixel blocks
through training. Kang et al. [113] proposed a semantically
reasonable and visually vivid colorization approach that
utilized a pixel decoder and a query-based color decoder.
The former was responsible for reconstructing the spatial
information of the image, while the latter used rich visual
cues to enhance color queries without requiring manually
determined color priors.

Pixel Level. The task of image classification typically pri-
oritizes transform invariance, meaning the classification
should remain the same even if the image is transformed.
Nevertheless, satisfactory colorization requires the use of
transform-variant features. In this regard, semantic segmen-
tation is viewed as a more appropriate sub-task for coloriza-
tion, which similarly relies on pixel-level and transform-
variant representations. Sharing the same idea, Zhao et
al. [130] proposed a method incorporating detailed object
semantics at the pixel level to direct the process of im-
age colorization. They trained a network with two loss
functions, one for semantic segmentation and the other for
colorization. By leveraging the pixel-level object semantics,
their approach enhanced the precision and uniformity of
the colorization process. Building on this work, Zhao et
al. [131] further investigated how to employ pixel-related
semantics to produce realistic colorization. In addition to
segmenting objects with common illumination conditions,
Duan et al. [132] proposed a method for coloring shadowed
images, which can be regarded as a specialized form of
segmentation that distinguishes between shaded and non-
shaded regions.

Instance Level. The various current approaches for learning
semantics in colorization, whether at the image or pixel
levels, have limited ability to capture the variations in object
appearance adequately. Although the previously reviewed
models have demonstrated impressive results for a wide
range of images, they experienced different problems when
faced with images containing multiple objects on cluttered
backgrounds. To solve such a problem, Su et al. [133]
proposed the first instance-aware colorization architecture,
incorporating an off-the-shelf object detector for capturing
segmented object visuals as well as utilizing an instance-
based colorization network to extract features at the object
level. By leveraging this approach, the model could effec-
tively handle complex scenes with multiple instances. Previ-
ous colorization methods have primarily focused on image-
level or entity-level features, thereby not adequately captur-
ing how the object instances in an image interact within the
overall context. To address this limitation, Pucci et al. [134]
introduced UCapsNet with capsules [127], incorporating
features at the image level, produced by convolutions, and
features at the entity level. Xia et al. [135] introduced
the concept of disentangled colorization and proposed the
identification of multiple color anchors that can effectively
represent the diverse color distribution within an image. By
specifying these anchor colors, their algorithm can predict
the image colors, leveraging the global color affinity to
ensure consistency in the overall structure. Chang et al. [87]

built upon the concept of instance-awareness in colorization
and introduced text guidance to establish a correspondence
between instance regions and color descriptions. This al-
lowed their model to assign colors to instances flexibly, even
when such correspondence was not encountered during
training.

In summary, colorization efforts benefit significantly from
high-level image understanding, which has evolved towards finer
granularity. Early methods treat the image as a whole, using
image classification for global content understanding. This is
referred to as the global level of understanding. Subsequently,
methods evolved to the pixel level, where each pixel is classified
through semantic segmentation. More recently, instance-level un-
derstanding has emerged, allowing different color assignments for
different instances.

2.2.3 Applications for Vision Tasks
Unconditional image colorization technology can also aid
other vision tasks. By illustrating two use cases, computa-
tional imaging as well as image restoration and enhance-
ment, we demonstrate to readers that the research perspec-
tive on colorization technology extends beyond developing
novel coloring algorithms. It also involves leveraging col-
orization technology to support other areas of research.

Computational Imaging. To improve the imaging quality
of monochrome-color dual-lens systems, Dong et al. [136]
tackled the reference-based colorization problem by ex-
panding the number of pixels in the reference image and
determining the color of each pixel in the target image
as the ranked average of the colors. They used ResNet to
capture high-level features from the input and reference
images, refining the intermediate features and establishing
feature relationships using convolution and Sigmoid layers.
As an extension of this work, Dong et al. [137], leveraging
a colorization CNN, introduced two parallel modules for
colorization and colorization quality estimation. This work
further advanced techniques for improving the colorization
process and had great practical value for improving the
imaging quality of mobile devices in various applications.

Image Restoration and Enhancement. In the computer
vision field, some researchers proposed a general and multi-
purpose vision model for several low-level image pro-
cessing tasks and often evaluated the model performance
in many applications, including colorization. The seminal
work by Ulyanov et al. [138] demonstrated that a randomly
initialized CNN implicitly captured texture-level image pri-
ors when trained iteratively on a single image, indicat-
ing that the CNN can be fine-tuned for image restoration
tasks, such as reconstructing a corrupted image. Building
on this, Pan et al. [139] expanded upon existing methods
by utilizing image priors learned from a GAN trained on
extensive natural images. This approach enabled flexible
restoration and manipulation, unlike the fixed generator
assumptions in previous GAN inversion techniques. Their
method exhibited strong generalization capabilities across
various image restoration and manipulation tasks despite
not being tailored to each specific task. It restored miss-
ing information while preserving semantic details when
reconstructing corrupted images. This demonstrated the
potential for leveraging deep learning models to capture
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and apply rich image priors to diverse image restoration
tasks. Zhang et al. [140], using a unified model, introduced
an efficient SCSNet paradigm that used low-resolution gray-
scale images as input and produced high-resolution colorful
images as outputs. Their model performed colorization and
super-resolution in two consecutive stages, the first stage
incorporating a Pyramid Valve Cross Attention (PVCAttn)
module to combine information of the source and reference
images effectively. A Continuous Pixel Mapping (CPM)
module was developed in the second stage to efficiently
generate target images at any magnification, using discrete
pixel correlations in a continuous space. El Helou and
Süsstrunk [141] viewed colorization as a generalization of
classic restoration algorithms, such as image colorization, in-
painting, and denoising. They decoupled the image restora-
tion task into prior and data fidelity using an inversion
GAN model, where a prior represented added information,
such as the missing two-channel information for coloriza-
tion. Wang et al. [142] introduced a zero-shot framework
designed for arbitrary linear image restoration problems,
offering a versatile solution for diverse image restoration
endeavors, including image super-resolution, colorization,
inpainting, compressed sensing, and deblurring. In a related
study, Chan et al. [143] investigated the latent bank of GAN
to uncover existing natural image priors. They proposed a
novel approach that utilized pre-trained GAN models for
various image restoration tasks, including super-resolution,
colorization, and hybrid restoration.

2.3 Video Colorization
Although video colorization technology can be classified
similarly to image techniques into conditional and uncondi-
tional methods, as an extension of image technology, it has
unique challenges, including addressing video-specific user
guidance and handling temporal information. We discuss
video colorization techniques separately in the taxonomy to
highlight its uniqueness.

Yatziv and Sapiro [144] proposed an approach that uti-
lized an intrinsic, gradient-weighted distance measure to
spread user-provided scribble colors across entire images
or image sequences. Similarly, Jacob and Gupta [145] also
developed a method that relied heavily on user inputs
regarding segmentation and colorization. Their method im-
proved the process by using a keyframe to transfer color
to other frames, employing a motion estimation algorithm.
Sheng et al. [146] introduced a different approach that
involved establishing pixel similarity in the video’s gray-
scale channel, enabling parallel color optimization among
pixels across video frames.

In the present deep learning era, we can broadly cate-
gorize existing video colorization methods into four types.
The first type involves directly applying colorization over a
single image and then post-processing the colorized image
to achieve temporal consistency, as described previously
in [147]. This method ensures that the colorization remains
consistent over time, thereby providing a more realistic
output. Another study [148] presented a specific case that
demonstrated that training a model with Deep Video Prior
can directly produce temporal consistency.

The second type of method performs colorization on in-
dividual frames and encodes temporal consistency by using

motion estimation [149], [150] or inter-frame similarity using
diffusion priors [151], [152]. This approach ensures that the
colorization remains consistent with the inter-frame corre-
spondence throughout the video sequence. Nevertheless,
errors can accumulate due to inaccurate correspondence
estimation.

The third type of method follows the tradition of
example-based colorization, a colored frame being used
as a reference, with the colorization of subsequent frames
being achieved by evaluating content similarity [153], [154],
[155], [156], [157], [158], [159], [160]. This method ensures
a consistent color scheme throughout the video, based on
the reference frame. Additionally, other methods within this
type employed information propagation techniques to color
the video frames [161], [162], [163], [164], [165], [166]. This
approach allows for transferring color information from one
frame to another, ensuring coherent colorization across the
video.

The fourth and last type of method considers spatiotem-
poral features directly [167], [168], which eliminates the
need for motion estimation or sequential information trans-
fer from frame to frame, making it a more efficient method
of video colorization.

3 DATASETS

There are two situations in which researchers use datasets
for colorization purposes: one for testing the performance of
traditional methods, where researchers search the website
for images, and the other for training networks, using large-
scale image datasets, when designing deep learning-based
models. This survey reviews the datasets used for training
learning-based colorization models, as captured in Table 1.
Datasets have been sorted chronologically according to the
publication date and classified according to the types of
input to be colorized. ImageNet [170] is the most widely
used large-scale dataset for natural gray-scale image col-
orization, and researchers use this dataset to train models so
as to acquire the color prior. Most of these gray-scale image
datasets are mainly used for other vision tasks, although
they are also suitable for colorization tasks due to their
detailed annotations and scene categories. Researchers can
obtain many data pairs by converting the original color
images into gray-scale images. For video colorization, re-
searchers mainly use DAVIS [180] and Videvo [182] datasets
to train their models, especially for learning spatiotemporal
consistency. Unlike natural images which can be captured
easily on a large scale, collecting line drawing data presents
a challenge, essentially being two ways of doing so: the first
is to invite professional painters to draw manually, which is
relatively expensive and time-consuming, and the second
way is to extract the lines from colored animation data
using SketchKeras [186] or Anime2Sketch [187], although
the latter generally has line types which are very different
to actual hand-painted line drawings. In addition to the
above, the Danbooru dataset [184] is also a valuable resource
for anyone interested in anime-style artwork. The most
notable feature is its extensive tagging system. Images are
annotated with a wide range of tags describing various
aspects of the content, such as characters, themes, styles,
and specific elements. This rich tagging system makes the
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TABLE 1
An Overview of Major Datasets Used for Training Networks in Colorization Tasks

Category Dataset Year Type References
CIFAR [169] 2009 Image classification [108], [109]

ImageNet [170] 2009 Visual recognition [11], [39], [43], [44], [48], [49], [62], [64], [65], [107]
[100], [103], [104], [105], [108], [109], [157], [160], [163]

PASCAL VOC [171] 2010 Object recognition [46], [130], [131]
COCO [172] 2014 Object understanding [43], [47], [81]

Places 205 [173] 2014 Scene recognition [46], [125], [129]
LSUN [174] 2015 Scene understanding [104], [105], [116]

Gray-scale Image

ADE20K [175] 2017 Semantic segmentation [40]
MIT-Adobe 5K [176] 2011 Image enhancement [177]Color Platte Color Theme [78] 2012 Image colorization [78]

CoSaL [82] 2018 Image colorization [82]
Palette-and-Text [79] 2018 Image colorization [79]
SketchyScene [178] 2018 Sketch colorization [179]

Extended COCO-stuff [86] 2022 Image colorization [84], [86], [87], [88]
Text Guidance

Multi-instance [87] 2023 Image colorization [87], [88]
DAVIS [180] 2016 Video object segmentation [150], [154], [157], [160], [162], [165]

Kinetics [181] 2017 Human action recognition [156]Video
Videvo [182] 2018 Free stock video footage [150], [154], [160], [163], [165]

Manga109 [183] 2017 Media processing of manga [18]
Danbooru2018 [184] 2018 Anime character recognition [21], [53], [61], [70], [73], [74], [75], [76]

Anime Sketch Colorization Pair [185] 2019 Sketch colorization [19], [24], [57]Line Drawing

Tag2Pix [85] 2019 Sketch colorization [55], [77], [85]

dataset particularly valuable for training machine learning
models in tasks like image classification, object detection,
style transfer, and colorization.

4 COLORIZATION ASSESSMENT METHOD

4.1 Limitations of Existing Evaluation Metrics
Assessing the output quality of various colorization meth-
ods is inherently linked to human visual aesthetic per-
ception. A hybrid evaluation methodology, incorporating
subjective and objective assessments, is standard in the pub-
lished literature. Subjective evaluation involves qualitative
analysis provided by the model designers and user studies
based on participants’ visual perceptions. Commonly used
objective evaluation metrics for assessing colorization per-
formance include Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM), Learned Perceptual Image
Patch Similarity (LPIPS), and Frechet Inception Distance
(FID). Huang et al. [14] provided a detailed analysis of
the existing evaluation metrics used in colorization. Nev-
ertheless, these first three evaluation metrics were initially
designed for image quality assessment [190] rather than
for colorization quality assessment. They evaluate the col-
orization quality by calculating the difference between the
colored image and the original color image of the input
gray-scale image, i.e., the generated image should be as
close to the original colored image as possible. Given that
the colored rendition of a gray-scale image lacks uniqueness,
achieving an exact replication of the original color image is
deemed unnecessary. There should not be a unique output
for any given input gray-scale image. Most learning-based
methods train the colorization networks with paired train-
ing data. As a result, the mainstream evaluation method
compares the colorization results with ground-truth color
images in the test dataset. In addition, FID is a metric
used to evaluate the performance of generative models. Al-
though some generative model-based colorization methods
may exhibit superior generation performance, this does not
necessarily mean that their colorization performance aligns
with the generation abilities.

4.2 Colorization Aesthetic Assessment

In this paper, in addition to reviewing the current state-
of-the-science, we explore the use of a neural network
model to simulate human visual perception to evaluate the
performance of automatic colorization models. Inspired by
the work of image aesthetic assessment [191], we propose a
new concept of colorization aesthetic assessment. Human aes-
thetic evaluation of colors involves psychology and visual
cognition elements, which hold significant practical value
in computational imaging. For example, when developing
imaging algorithms for mobile phone photography, differ-
ent cell phone manufacturers apply distinctly different color
adjustments, resulting in different color effects in photos of
the same scene. The key problem of aesthetic evaluation is
quantifying subjective judgment. Hence, we use two metrics
based on large-scale cross-modal data training to conduct
our coloring aesthetic evaluation test. In this survey, we
mainly focus on testing the unconditional natural gray-
scale colorization performance since the automatic color-
ing method can reflect the model’s ability for semantic
understanding and color representation. For demonstration
purposes, the two metrics described below are used to eval-
uate the following seven representative colorization models:
Colorful Colorization [100], User-Guided Colorization [62],
InstColor [133], BigColor [121], UniColor [93], Disco [135],
and DDColor [113]. All these models use automatic coloriza-
tion methods or are set in automatic mode, which means no
user-guided color information is included.

The first metric, CLIP-IQA [188], represents an image
quality assessment metric, leveraging the visual language
prior embedded in the CLIP model [94]. This metric enables
the evaluation of both the perceptual quality and abstract
perception of images without the need for explicit task-
specific training. Rather than computing the cosine simi-
larity between two feature vectors of image and text, the
cosine similarity between the image feature vector x and
every antonym prompt pair (t1, t2) is instead first computed
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Fig. 9. Colorization aesthetic assessment of seven automatic colorization models, including Colorful Colorization [100], User-Guided Coloriza-
tion [62], InstColor [133], BigColor [121], UniColor [93], Disco [135], and DDColor [113]. Under each example of the original color image and
the colored image, we show three scores computed by CLIP-IQA [188] and LAION-Aesthetics Predictor V2 [189]. The first two scores provide a
measure of the image quality on the basis of the image’s overall texture and color dimensions, while the last score represents the image’s aesthetic
quality. It can be seen that the colorization results of some samples exceed the original color images in terms of their aesthetic scores.

to reduce the ambiguity of text prompts as follows:

si =
x
⊙

ti
∥x∥ · ∥ti∥

, i ∈ {1, 2}, (3)

Softmax is then used to compute the final score s ∈ [0, 1] as
follows:

s =
es1

es1 + es2
. (4)

The CLIP-IQA metric can assess overall and fine-grained
image quality and contains many built-in evaluation
prompts. We mainly use ‘quality’ and ‘colorfulness’ to eval-
uate colorized images, including quality and color percep-
tions. Here, ‘quality’ refers to the overall picture quality
of the image, and ’colorfulness’ measures how rich and
saturated the colors appear. The higher the score, the higher
the image quality and contribution to the image’s overall
visual impact and aesthetic appeal.

The second metric, LAION-Aesthetics Predictor
V2 [189], is an image aesthetic assessment metric that
takes CLIP image embeddings produced using the clip-vit-
large-patch14 model as input and then outputs the aesthetic
score, ranging from 1 to 10, by concatenating a simple
linear model. It is trained on SAC, LAION-Logos, and

AVA datasets. The higher the score, the higher the aesthetic
quality.

4.3 Experiments

We performed non-reference image quality and aesthetic
assessments of seven representative colorization methods,
using COCO test dataset [172] with central cropped testing
images of resolution 256 × 256. As illustrated in Fig. 9,
these seven colorization methods accurately represent the
global semantic analysis of gray-scale images. The color
prior, learned by means of the training on a large number
of natural image datasets, can identify the sky as blue and
the lawn as green. Nevertheless, the automatic colorization
method is unsuitable for controlling all the details, such as
in the case of the bus in the top row of Fig. 9. An inter-
active approach would work better for such a fine-grained
coloring task. In addition, the examples in the second and
fourth rows of Fig. 9 also reveal pattern collapse problems
when training with paired data. The seven methods tend to
consider the patterned fur coat of the cat to be orange and
the car’s color to be red.
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Fig. 10. Visualization of the performance of seven automatic colorization methods, including Colorful Colorization [100], User-Guided Coloriza-
tion [62], InstColor [133], BigColor [121], UniColor [93], Disco [135], and DDColor [113]. (a) Aesthetic Score, (b) Inference Time, (c) Quality, (d)
Colorfulness, and (e) FID. All values are the normalized average scores.

TABLE 2
Quantitative Comparison of Seven Automatic Colorization Methods Using Existing Evaluation Metrics

Method COCO test dataset (5k) ImageNet test dataset (10k)

PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓

Colorful Colorization [100] 22.96 0.998 0.213 17.90 22.84 0.998 0.219 9.72
User-Guided Colorization [62] 24.75 0.998 0.171 16.82 24.67 0.998 0.180 8.55

InstColor [133] 22.35 0.838 0.238 12.72 22.03 0.909 0.217 7.35
BigColor [121] 21.40 0.887 0.214 9.05 21.57 0.886 0.212 3.67
UniColor [93] 23.09 0.912 0.202 11.16 21.73 0.909 0.236 6.93

Disco [135] 20.46 0.851 0.236 10.59 20.72 0.862 0.229 5.57
DDColor [113] 23.41 0.997 0.184 7.88 23.18 0.997 0.192 3.93

TABLE 3
Inference Time Comparison of Eight Automatic Colorization Methods

Method Time cost (seconds)

Colorful Colorization [100] 0.0749
User-Guided Colorization [62] 0.0853

InstColor [133] 0.8144
BigColor [121] 0.0875
UniColor [93] 1.7162

Disco [135] 0.0945
DDColor [113] 0.0779
iColoriT [65] 0.1121

Regarding aesthetic evaluation, UniColor [93] produces
coloring results of high saturation and achieves the highest
scores in terms of color and aesthetics. BigColor [121] can
also produce a high-saturation coloring effect. In particular,
the cat example displays a prominent cat body coloring
effect, which is even more beautiful than the original image.
InstColor [133], Disco [135], and DDColor [113] all produce
similar color effects, and which is relatively soft. In terms
of score, DDColor performs slightly better than the other
two. Colorful Colorization [100] and User-Guided Coloriza-
tion [62] are two early learning-based methods. Their results
exhibit problems of color bleeding (the third column of
the top row) or incomplete coloring (the fourth column
of the bottom row) on the individual examples. According
to the experimental data, the quality score is not always
positively correlated to the aesthetic scores, with some sam-
ples having high aesthetic scores but low-quality scores.
This is due to coloring being a process of image recovery
and information enhancement of gray-scale images, and
different methods have different processing mechanisms for
gray-scale images. Hence, the information gain and image
loss are different. As is illustrated in Fig. 10, we used a
radar-type map to visualize indicators in five dimensions,

including (a) Aesthetic Score, (b) Inference Time, (c) Quality,
(d) Colorfulness, and (e) FID. All the values have been
normalized, and the larger the area, the better the overall
performance of the particular method.

We also evaluated the automatic colorization methods
using traditional assessment metrics on the COCO test
and ImageNet test dataset, the results being captured in
Table 2. Bold indicates the best, and underline indicates
the next best. To maintain the object structure without
geometry distortion, all images have been centrally cropped
to a resolution of 256 × 256 instead of directly resizing.
The reconstruction-based evaluation metrics and generation
capability index does not intuitively reflect the performance
of the colorization models for color information represen-
tation. In the case of both datasets, the FID scores illus-
trate that the early methods [62], [100], which do not use
generative models, perform worse than the other methods
for the diversity of data samples. In Table 3, we compare
the inference time of the eight automatic models, all tested
on a single RTX 4090 GPU, with the values in the table
representing the average time taken to colorize each im-
age. In addition to the above-discussed seven methods, we
demonstrate another method, iColoriT [65], which can also
perform unconditional colorization, although it is mainly
designed for interactively color-hint solutions. It is worth
noting that iColoriT is mainly designed for user hint in-
teractive colorization method; when it is used for uncon-
ditional colorization, this so-called automatic mode is two-
staged, i.e., firstly use their provided source code to generate
randomly sampling hint locations, and then according to
the generated color hints to perform colorization. In this
experiment, the generated color-hints are given by the Im-
ageNet ctest 10k dataset, so we don’t need to include the
time cost of color-hint generation. After a comprehensive
evaluation, DDColor [113] was found to be the current best
automatic gray-scale image colorization method. Using the
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theoretical aspects of vision to evaluate the images produced
by graphics is very much in line with the research concept of
‘vision for graphics,’ such as assessing the generated images
of Artificial Intelligence-Generated Content (AIGC) models.
We hope our initial attempts to perform a colorization
aesthetic assessment will inspire the research community
to pursue such an aesthetic-based approach and under-
standing in their future research. This would significantly
simplify and reduce the labor-intensive and burdensome
nature of colorization in the future.

5 DISCUSSION AND FUTURE WORK

Colorization technology has gradually developed over two
decades, from the initial user-guided gray-scale image ren-
dering technology to the more advanced learning-based
generative multi-modal colorization. The coloring targets
also varied during the period, covering static images and
videos in gray-scale or line art. In this section, we suggest
potentially valuable research directions in colorization that
need to be explored.

Integrate colorization with AIGC technology. The explo-
sion of AIGC technology has revolutionized colorization,
reforming the reference-based image colorization task as an
exemplar-guided image editing task. In particular, the field
of animation content generation shows significant research
potential. ControlNet-based work [92] demonstrates the ex-
cellent performance of generative models in sketch-guided
anime content generation. With generative algorithms [5],
[7], [8], tasks such as sketch frame interpolation, reference-
based colorization, and animation generation can be ac-
complished using a single model, significantly enhancing
animators’ work efficiency. As a valuable topic for future
research, we propose designing algorithms that can sup-
port the coloring of line drafts with large movements and
address the issue of poor coloring results during screen
transitions, as existing methods do not perform well in these
scenarios.

The trend of multi-modal interaction methods. At the
early development stage of colorization technology, meth-
ods based on user guidance were proposed, with various
user input forms. Nevertheless, using a single form is al-
ways inadequate. Hence, multi-modal fusion is considered
worthy of further in-depth research. These pioneering multi-
modal methods [93], [95], [96] verify the effectiveness of
the multi-modal coloring approach. Human guidance and
interaction are still essential in the coloring process, and the
neural network model only helps us fill in some color priors.
Within this context, various details must be manually fine-
tuned to generate final plausible results.

Generalization ability of reference-based methods. The
reference-based methods, especially for line drawing col-
orization, have been extensively studied [19], [21], [22], [54],
[56], in which cross-domain feature matching is the core
problem that always needs to be solved. Since the lack
of paired training data, Lee et al. [54] developed a self-
supervised augmented training strategy as a compromise,
formulating the problem as a line drawing guided image
restoration task to learn the cross-domain feature matching.

However, this method’s generalization performance is rel-
atively poor. Different from real-world images, the feature
correspondence of cartoons needs to be designed separately
and trained through customized datasets.

Image and Video Editing. Colorization techniques can be
used for image and video editing, such as recolorization
or color transfer [192], [193]. In addition to the editing of
color information in photographs and videos, researchers
are increasingly interested in more complex tasks, such
as non-photorealistic artistic rendering of images [194] or
videos [195], [196]. In particular, with the help of text
control, various artistic edits can be carried out on the
screen content, which has strong feasibility and commercial
value. As an extension to traditional coloring techniques,
an essential research direction should be executing these
‘magic applications’ with low power consumption so that
users can realize these operations more conveniently on a
mobile phone.

Dedicated new assessment methods for colorization.
To evaluate the performance of colorization methods,
researchers have utilized different assessment methods,
including subjective and objective evaluation metrics.
Huang et al. [14] have detailed the traditional evaluation
metrics used in research. In this paper, we also initially
attempt to introduce aesthetic assessment into colorization,
and it is still an open and challenging problem to design an
evaluation system tailored for colorization. As the assess-
ment of coloring results is highly subjective, and aesthetics
is one of the key aspects, developing a more accurate and
comprehensive coloring evaluation system would be a valu-
able research direction.

6 CONCLUDING REMARKS

This survey provides an overview of the research and state-
of-the-science in the field of colorization technology, which
originated from application research in computer graphics.
Based on this view, we provide a taxonomy of colorization
technology and describe the subcategories and contents.
Our systematic investigation and analysis conclude that
colorization originates in graphics, excels in vision, and
forms a fusion with the rapid development of generative
models (i.e., vision for graphics). In the process, we also
extend current colorization evaluation metrics and propose
a concept of colorization aesthetic assessment for evaluating
seven automatic colorization methods. We also explore the
challenges and potential future research directions in col-
orization. Finally, we hope this survey serves as a valuable
resource and inspiration for future researchers in coloriza-
tion.
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