
Depth of Field Rendering Using
Multilayer-Neighborhood Optimization
Benxuan Zhang, Bin Sheng , Ping Li , and Tong-Yee Lee , Senior Member, IEEE

Abstract—Depth of field (DOF) is utilized widely to deliver artistic effects in photography. However, existing post-processing

techniques for rendering DOF effects introduce visual artifacts such as color leakage, blurring discontinuity, and the partial occlusion

problems which limit the application of DOF. Traditionally, occluded pixels are ignored or not well estimated although they might make

key contributions to images. In this paper, we propose a new filtering approach which takes approximated occluded pixels into account

to synthesize the DOF effects for images. In our approach, images are separated into different layers based on depth. Besides, we

utilize adaptive PatchMatch method to estimate the intensities of occluded pixels, especially in the background region. We again

propose a new multilayer-neighborhood optimization to estimate occluded pixels contributions and render the images. Finally, we apply

gathering filter to achieve the rendered images with elite DOF effects. Multiple experiments have shown that our approach can handle

color leakage, blurring discontinuity and partial occlusion problem while providing high-quality DOF rendering effects.

Index Terms—Depth of field, multilayer, neighborhood optimization, rendering

Ç

1 INTRODUCTION

DEPTH of field (DOF) describes the range of objects that
appears to be sharp in an image, which is used exten-

sively in photography to produce artistic effects. The scene
points outside of the range of the DOF map to circular
regions in the image are called the circle of confusion (CoC),
while points within the depth of field appear to be focused.
The DOF effects enhance the perception of depth and makes
images natural. However, we could not obtain an image
with DOF effects without optical camera except via post-
processing. Thus, it will significantly enhance the perfor-
mance of camera if realistic DOF effects can be achieved via
post-processing methods. Therefore, DOF rendering has
become a significant field for obtaining realistic images.

Numerous methods have been dedicated to rendering
DOF effects [1], [2], [3], [4]. These methods can be mainly
classified into three groups: multipass approaches [5], [6],
light field approaches [7], [8], [9], and post-processing
approaches [10], [11], [12], [13], [14], [15]. Multipass
approaches operate on 3D scene representations, and light
field approaches rely on computational photography [16],
[17] and special equipment support [18]. Consequently,
they are not applicable to image-based DOF rendering due

to lack of 3D scene data information. Post-processing
approaches work in the image space with corresponding
depth information. They calculate each pixel’s blurring
degree (CoC) and each pixel of the image is blurred based
on CoC. Post-processing methods can further be catego-
rized into three types of approaches on the basis of how the
blurring is performed, namely, scattering, gathering, and
layered. Scattering methods scatter the color of a pixel to all
the pixels lie in its CoC. Gathering methods gather all the
color from a pixel’s CoC to synthesize the pixel’s intensity.
Both of them suffer from color leakage problems when fore-
ground color gets into focused region. Layered methods
decompose the image into layers and can reduce color leak-
age problem and partial occlusion. However, the methods
might cause blur discontinuity problems.

In this paper, we propose a spatially variant DOF synthe-
sis from a single input image with depth information. The
occlusion problem is discussed and illustrated by Barsky
et al. [19]. The colors from parts of the scene behind objects
are missing in image due to pinhole camera model. Thus,
methods that approximate the intensity of occluded pixels
are proposed [20]. They apply a GPU-based pyramidal
interpolation method to estimate occluded pixels. Lee
et al. [21] proposed a layered image-based method to
approximate different views in order to obtain good estima-
tion of occluded pixels. Lu et al. [22] extended the bilateral
filtering into motion bilateral filtering in order to reduce
temporal flickering. Unlike their method, our method
uses patch-based processing to estimate the intensity of
blocked pixels. Besides, we propose a recursive multilayer-
neighborhood optimization to estimate the contributions of
blocked pixels, which offers us more accurate results. Fig. 1
shows the DOF rendering effects of our method focused at
different depths. Note that our approach provides realistic

� B. Zhang and B. Sheng are with the Department of Computer Science and
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail: 150576806@qq.com, shengbin@sjtu.edu.cn.

� P. Li is with the Faculty of Information Technology, Macau University of
Science and Technology, Macau 999078, China. E-mail: pli@must.edu.mo.

� T.-Y. Lee is with the Department of Computer Science and Information
Engineering, National Cheng-Kung University, Tainan 70101, Taiwan.
E-mail: tonylee@mail.ncku.edu.tw.

Manuscript received 8 July 2018; revised 6 Jan. 2019; accepted 18 Jan. 2019.
Date of publication 23 Jan. 2019; date of current version 6 July 2020.
(Corresponding author: Bin Sheng.)
Recommended for acceptance by K. Zhou.
Digital Object Identifier no. 10.1109/TVCG.2019.2894627

2546 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

1077-2626� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8510-2556
https://orcid.org/0000-0001-8510-2556
https://orcid.org/0000-0001-8510-2556
https://orcid.org/0000-0001-8510-2556
https://orcid.org/0000-0001-8510-2556
https://orcid.org/0000-0002-1503-0240
https://orcid.org/0000-0002-1503-0240
https://orcid.org/0000-0002-1503-0240
https://orcid.org/0000-0002-1503-0240
https://orcid.org/0000-0002-1503-0240
https://orcid.org/0000-0001-6699-2944
https://orcid.org/0000-0001-6699-2944
https://orcid.org/0000-0001-6699-2944
https://orcid.org/0000-0001-6699-2944
https://orcid.org/0000-0001-6699-2944
mailto:
mailto:
mailto:
mailto:

DOF rendering, and is able to handle well the color leakage,
blurring discontinuity, and partial occlusion. Our approach
makes an assumption that the pixel depth information is
available through existing techniques such as stereo camera
and depth camera, and in one-to-one pixel correspondence
with original images. Although the depth images acquired
from real world are often in low-quality with holes. We
demonstrate that depth images with holes inpainted can be
used for producing realistic DOF rendering effect. There-
fore, our approach can be effectively incorporated into exist-
ing RGB-D image/video applications/hardware (such as
Kinect and RGB-D cameras), which provide both color
image and depth information. This offers a compelling
alternative to the current state-of-the-art techniques which
include a filter-based ad hoc method to approximate DOF
effects. The main contributions of our work are as following:

1) A new patch-based blocked pixels estimationmethod
that preserves spatial coherence, which is later used
in DOF rendering by applying recursive multilayer-
neighborhood optimization.

2) A new recursive bilateral filtering approach for esti-
mating the contributions of blocked pixels.

3) We achieved realistic DOF rendering in real-time via
GPU and demonstrated that it can further be used in
mobile devices with various applications potential.

Our paper is organized as: Section 2 introduces the previ-
ous work about depth of field rendering and related meth-
ods involved in our approach. Section 3 illustrates our
proposed approach for DOF rendering in detail. Section 4
shows the experimental results of our methods and makes
comparison with previous work. Finally, we give out the
conclusion and future directions of our work in Section 5.

2 RELATED WORK

Several DOF rendering methods exist in the image process-
ing and graphics fields. They can be categorized into three
groups: multipass approaches, light field approaches, and
post-processing approaches.

2.1 Multipass Approaches

Multipass approaches are utilized in 3D scenes and render
the DOF effects in the 3D graphics rendering pipeline. The
accumulation buffer method [6] and the distributed ray
tracing method [5] use such approaches. They use indi-
vidual cameras to render the scene multiple times and
accumulate all sample results. Consequently, those meth-
ods can achieve simulating most accurate DOF effects.
However, it is computationally expensive to calculate for
a large number of repeated rendering. Therefore, these
strategies are generally considered for offline rendering.
In recent times, some advanced strategies were proposed
to generate real-time DOF effects based on ray tracing.
McGuire et al. [23] proposed a stochastic rasterization
algorithm and can produce DOF effects. It can render
impressive effects for complex 3D scenes. However, the
accuracy of blur depends on the increasing of sampling,
which reduces the time for rendering. Lee et al. [24] built
the scene into layers using depth peeling, which can
accelerate ray tracing process for DOF effects. These mul-
tipass approaches are much easier to be incorporated in
VR applications. Nonetheless, they are not applicable to
DOF rendering based on images because previous 3D
scene information and the accurate rays for accumulation
is hard to obtain in image-based methods.

2.2 Light Field Approaches

These strategies are widely used in computational photogra-
phy that can change/broaden DOF using extra devices or by
changing the camera system to obtain additional data. The
coded aperture method [7] embeds a designed occluder into
the aperture of the camera lens, the focus sweep method [8]
uses a special lens with strong chromatic aberration, and the
lattice-focal lens method [9] organizes lens patches with dif-
ferent focal powers. These strategies can generate arbitrary
images of different focus point after it is shot, but it relies on
special hardware and large memory space which can be
computing expensive. Yu et al. [25] created the light field
through warping and then rendered DOF effects in real-time
using GPU-based parallel processing. However, it results in

Fig. 1. DOF effects generated by our DOF rendering approach focused at various depths. (a) Original all in-focus image and depth map, (b) focus on
the foreground, (c) focus on the middle depth, and (d) focus on the background. Our approach generates realistic DOF effects without color leakage,
blurring discontinuity, and partial occlusion.

ZHANG ET AL.: DEPTH OF FIELD RENDERING USING MULTILAYER-NEIGHBORHOOD OPTIMIZATION 2547

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

accumulated visual artifacts when rendered with large CoC
due to occlusion.

2.3 Post-Processing Approaches

Post-processing approaches work on image space rather
than 3D scene. It first takes a clear image and corresponding
depth image as input and calculates the size of CoC using
thin lens camera model. Finally, it blurs the image based
on CoC of every pixel. This kind of method can be further
classified into three categories: scattering-based methods,
gathering-based techniques, and layered methods [26].

Scattering-based methods scatter the intensity of every pixel
to its neighbor pixels according to size of CoC. Next, the
intensities of each pixel are blended based on varying
depths. Potmesil and Chakravarty [10] proposed the first
scatter method for DOF rendering using a direct linear filter.
However, there is a color leakage problem with their
method which causes the color of background blur blends
with the sharp focused region; Shinya [11] proposed a tech-
nique that uses a ray distribution buffer to process the blend
order to reduce color leakage issue. However, the technique
is both time-consuming and space-consuming due to heavy
sorting of the pixel depth. Yan et al. [12] built up an interac-
tive framework that develops depth maps and uses the scat-
tering method to blur the background. Lee et al. [27]
proposed a per-pixel layered splatting based method for
rendering a depth-of-field result which can enable real-time
post-processing. We combine the advantage of this
scattering method without considering ray tracing which
decreases computational time.

Gathering-based methods, on the other hand, use spatial fil-
tering of the neighboring pixels in the CoC of pixel to
achieve blurring effects [13]. These methods are efficient
than scattering methods in general due to fast execution of
filtering. Further, such techniques can exploit the texture
look up features of modern GPUs. Zhou et al. [15] proposed
a gathering-based method using separable kernel filtering.
A technique by Xue et al. [28] utilizes saliency as a depth
cue and a non-local means filter to blur the background and
foreground regions. However, most gathering-based techni-
ques suffer from color leakage problem. Lee et al. [14] pro-
posed one that uses the anisotropic mipmap interpolation
method. We also apply the anisotropic filter for DOF ren-
dering with uniform blurs rather than Gaussian blurs,
which is more approximate to actual cameras.

Layered methods decompose the image into layers and
then blur and blend them to get a final result [19], [29], [30].
These methods reduce color leakage and alleviate partial
occlusion by extrapolating layer boundaries. However,
blending of layers can cause new discontinuity artifacts.
Kraus and Strengert [20] proposed a pyramidal processing
technique, and the rendering results are comparable to dis-
tribution ray tracing techniques. However, their layered
technique is too sophisticated. Our proposed method com-
bines the scattering and layered methods, and incorporates
the concept underlying the layered method to rectify the
common artifacts such as color leak and give a better ren-
dering effect in foreground blurring. In addition, our pro-
posed method has excellent parallelism capabilities and can
render DOF effects in real-time.

3 APPROACH

This section describes in detail the methodologies utilized
as a part of our proposed DOF rendering. An overview of
the framework is given first, followed by background infor-
mation about depth of field. Finally, every component of
our approach is explained in detail.

3.1 Overview

Our proposed approach comprises the following steps:
Given a color image and the corresponding depth map, we
first calculate an RCoC map containing the range of each
pixel’s blurriness based on the acquired depth map. Then
we apply Simple Linear Iterative Clustering (SLIC) segmen-
tation algorithm [31] on the depth map so that we divide
the pixels in the similar depth into several layers. We pro-
cess each pixel based on its layer and adjacent information.
We use PatchMatch method to guess the intensity of
occluded pixels near the boundary and apply multilayer-
neighborhood optimization to estimate the contributions of
each pixel. The framework of our proposed approach is
shown in Fig. 2, and also described in Algorithm 1.

Algorithm 1. General Framework of our Approach

1: Calculate RCoC for each pixel;
2: Apply SLIC algorithm to divide image into layers;
3: Use adaptive generalized PatchMatch to guess occluded

intensity of pixel q0 as Iðq0Þ via EM algorithm;
4: for each pixel p in the image do
5: for each nearby pixel q do
6: if q lies in closer layer then
7: Calculate the maximal weight of blocked pixels

whose CoC contains pixel q;
8: end if
9: end for
10: end for
11: for each pixel p in the image do
12: Calculate weighted sum of contributions of visible and

invisible pixels as the intensity value of pixel p;
13: end for

3.2 DOF Rendering

We adopt the classic thin lens formula [32] of the radius of
the CoC with blur control parameter a as follows:

RCoCðpÞ ¼ a � jdf � dðpÞj
dðpÞ ; (1)

where RCoC is the radius of CoC, df is the focused depth,
and dðpÞ is the depth of the pixel p. All parameters in Eq. (1)
are lessened to only two parameters in the above equation:
df and a. df represents the focused depth and a represents
the settings parameters of the camera and aperture. It con-
trols the blurriness of the defocused region. Since we are
dealing with raster images, RCoC needs to be measured in
pixels. Thus, the unit for alpha is pixel. Further, since depth
value d is normalized in the range 0-255, df also needs to be
set to a normalized value between zero and 255. The pixels
that have RCoC less than one pixel are considered to be
acceptably sharp, and the depth range of the acceptably
sharp pixels is from dfmin to dfmax.

2548 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

The major component of our proposed DOF rendering
method is a new patch-based blocked pixels estimation
method especially for those pixels lie in the neighbor of
blurred boundary. Thus, we divide the image region into
three regions: foreground region Vforeground, in-focus region
Vin-focus and background region Vbackground.

p 2
Vforeground; dðpÞ < dfmin

Vin-focus; dfmin < dðpÞ < dfmax

Vbackground; dðpÞ > dfmax:

8<
: (2)

The artifacts such as color leakages problems are often
visible in the region between background and in-focus
region and partial occlusion problems are often visible in
between in-focus and foreground region. In order to
address these problems, we apply SLIC segmentation algo-
rithm to divide it into finer layers and apply patch-based
blocked pixels estimation method to tackle such artifacts.

3.2.1 The Influence of Blocked Pixels

First of all, we clarify the overlapped influence of pixels in
different regions and show our intuition on how to solve
these problems. As discussed above, artifacts are generated
near the boundary. From perspectives of the optic of thin
lens camera, the boundary between foreground region and
background region should be blurred continuously. Thus,
gathering filter or scattering filter can be applied directly.
But the boundary between background and in-focus region
should be clear while using scattering filter will result in
color leakage problem. Finally, the boundary between fore-
ground and in-focus region is continuous in blur. Besides,
occluded pixels will also influence the rendered DOF
results. In Fig. 3, there are three different layers overlapping
in the blue rectangle region. Considering the rendering of
yellow regions, yellow regions block green and red regions.

What we do here is not to simplify the blocked regions into
one hidden pixel, we need to extend the green and red
regions into yellow region as shown in black arrows in the
right figure. Thus, there are more than one layer involved in
contributing final pixel. For real scenes, if there are multiple
layers overlapped, we extend the further layer to estimate
the influence of hidden pixels in different layers.

Then, we discuss the potential influence of blocked pix-
els. As show in Fig. 4, p is a blocked pixel in the background
plane while q is a boundary point between in-focus plane
and background plane. q0 is the focused point in the image
plane. Most of rays from p are blocked by in-focus plane
except that between two orange rays. Since these rays will
not affect the pixels below q0 in the image plane, the blocked
pixels make no contributions to pixels in the in-focus plane.
Furthermore, when q lies in a closer background layer or
foreground plane, q projects into a circle which overlap
with the CoC of p. Thus, blocked pixels p will make

Fig. 3. This picture illustrates overlapping case in blur rectangle region.
We need to estimate the hidden pixels behind front layer in yellow.

Fig. 2. Framework of our proposed DOF rendering approach. We first calculate the RCoC map and the layer map based on the depth map. Then we
use adaptive PatchMatch method to fill the blocked pixels near the boundary. By applying multilayer-neighborhood optimization (M-N optimization
in figure) over the maximal weight map using weight as guidance, we obtain weight estimation map and use gathering filter to get the final result.

ZHANG ET AL.: DEPTH OF FIELD RENDERING USING MULTILAYER-NEIGHBORHOOD OPTIMIZATION 2549

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

contributions to those pixels in a closer layer. Besides, pixel
hidden behind in-focus plane like p0 might make contribu-
tions to image, too. Traditional methods ignore or approxi-
mate the colors of such pixels while we propose a new
patch-based approximating approach for estimating the
intensity of blocked pixels which will further be used in
weight estimation.

3.2.2 Intensity Estimation

As in Algorithm 1, we start our approach pixel by pixel.
Since the depth value df has been normalized between 0-
255, there are at most 256 layers. To preserve the continuity
of the surface, we first use SLIC superpixels segmentation
method [31] to partition the region into several small
regions. Original SLIC algorithm divides each input image
into superpixels by considering image texture. We adopt
SLIC method which groups pixels using five-dimensional
color and image intensity space to generate uniform
superpixels. Individual pixel is represented by a vector
ðl; a; b; x; y; dÞ where ðl; a; bÞ is the color vector and ½x; y�
is the space vector and d is the depth value. Then, it
clusters the pixels base on the similarity between such six-
dimensional vector.

In Fig. 5, we can see the segmented result. Although it
is not accurate enough, we proceed our approach pixel by
pixel based on its depth where segmentation result mat-
ters little. After we get the different layers of the depth,
we can consider the influence of pixels near the boundary
of two adjacent layers. As we have analyzed for Fig. 4,
we should estimate the potential contributions of blocked
pixels p0. The intuition behind this estimation is that
blocked pixels are most likely continuous both in inten-
sity and depth value. PatchMatch [33] is a fast searching
for find most similar patch in the source image in color
space. Inspired by this, we apply patch-based estimation
method inspired by Image Melding [34]. PatchMatch and
its generalized algorithm are efficient in finding similar
patches for image completion, retargeting and reshuffling
[35], [36]. We want to estimate both the intensity and
depth value of blocked pixels which are unknown pixels
near the boundary defined by above SLIC method. We
start with the input image in which there are holes near

the boundary. We want to optimize energy function
as follows:

EðT; SÞ ¼ Sq2T min
p2S
ðsðQ;P Þ þ �ðrQdepth;rPdepthÞÞ; (3)

where S denotes source input image with holes, T denotes
target reconstructed image. Q ¼ NðqÞ is a patch of size
w� w in source image S and pixel q lies in the top left corner
of patch. Similarly, NðpÞ is a patch of size w� w in target
image T . P ¼ fðNðpÞÞwhere f is a function including trans-
lation, scaling and rotation on a patch. s is a function that
calculates sum of square of differences between two
patches. P and Q only considers three color channels in
each image. rQdepth and rPdepth represents the relative
depth which is used to preserve depth coherence. And � is
used to control the ratio between intensity and depth differ-
ential. Furthermore, we consider depth value only for
(rDepthx,rDepthy), where

rDepthxði; jÞ ¼ Depthði; jþ 1Þ �Depthði; jÞ (4)

rDepthyði; jÞ ¼ Depthðiþ 1; jÞ �Depthði; jÞ (5)

is the relative depth information. Thus, T is the recon-
structed image which is the most similar to original source
image S both in color and depth space. If we can solve this
energy function. We are able to estimate the color intensities
and relative depth information for blocked pixels.

Eq. (3) describes the difference between source image S
and destination image T in color space and relative depth.
We want to find an output image such that S and T both are
similar in color and relative depth value. Here, we choose to
use relative depth instead of direct depth value as a con-
straint. Because the similar structures are translation invari-
ant. Besides, we calculate all the difference between most
similar patch in each image as a basic unit. In order to solve
this energy equation, we apply expectation-maximization
algorithm (EM algorithm) under multi-resolution to find
local optimal solution. First, we randomly initialize the

Fig. 4. This is a picture illustrating how the blocked points interacts with
other points. p0 is blocked by front plane while q is boundary point. q0 is
projected point in image plane. Rays between orange lines makes contri-
butions to blur.

Fig. 5. The first column is the result of applying SLIC segmentation on
the depth image. We group similar depth into same layers. The white
pixels are holes for the image in the middle column. And the last column
is the estimated intensity of holes.

2550 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

intensity of holes. Then, we iterate through two steps. We
use adaptive PatchMatch to find most similar patch to those
patches containing holes (Expectation Step). Then, for every
pixel in holes, we calculate weighted average of all the simi-
lar patches that contains holes as the initial value for next
iteration (Maximal Step). Here are the detailed discussions.

In Expectation step, we propose an adaptive generalized
PatchMatch approach for searching patches that are similar
both in intensity and color. We adopt following constraint:

DðP;QÞ ¼
X
x;y

ffiX
c2fr;g;bg

ðcx � cyÞ2 þ ðdx � dyÞ2
s

; (6)

where P is the patch that contains pixel p and the patch Q
contains pixel q of the same size w � w. x and y are the corre-
sponding pixels in two patches. cx, cy, dx, dy are the color
intensity and depth value for pixel x and y. We use this
function to evaluate the similarity between two patches
both in color and relative depth values and use this patch to
estimate the invisible pixels.

In Maximal step, for every pixel q in the destination
image, there are w� w patches containing this pixel.
Thus, optimal destination image T should satisfy follow-
ing constraint:

T ¼ arg min
I

DðI; T Þ þ �DðrIdepth;rTdepthÞ; (7)

where T and rTdepth are the same size as image I. Besides,
the intensity of point(i,j) is:

T ði; jÞ ¼ Sk;l¼0...w�1
NNðQi�k; j� lÞðk; lÞ

w2
(8)

Tdepthði; jÞ ¼ Sk;l¼0...w�1
rNNðQi�k; j� lÞðk; lÞ

w2
; (9)

where NNðQi;jÞ is the most similar patch found in Expecta-

tion step. NNðQi;jÞðk; jÞ is the pixel at ðk; lÞ of this patch.

Therefore, T ði; jÞ calculates weighted sum of all the patches
that contains pixel q. It can be shown that solving this equa-
tion is equivalent to solving Discrete Screened Poisson
Equation. The pseudocode for one iteration is shown in
Algorithm 2. We iterate through the two steps until conver-
gence, and the result is shown in Fig. 5. Because the bound-
ary is narrow in the image, our method normally converges
in 10 to 15 iterations.

Algorithm 2. Single-Step for EM Algorithm

1: Input: the source image S and the target image T
2: Output: target image T after one iteration
3: Initialize T ¼ 0;
4: for each pixel q ¼ ði; jÞ � T do
5: for i

0 ¼ i� wþ 1 to i do
6: for j

0 ¼ j� wþ 1 to j do
7: P � GeneralizedPatchMatch(S, Qi

0
;j
0);

8: for each channel c do
9: T ði; j; cÞ ¼ T ði; j; cÞ þ P ði�i0 ;j�j0 ;cÞ

w2 ;
10: end for
11: end for
12: end for
13: end for

3.2.3 Weight Map Estimation

The reconstructed target image T contains our inference about
the intensity and depth value of blocked pixels. As shown in
Fig. 3, we estimate the blocked pixels behind yellow region.
We can render the DOF result using T directly. But the pixel
value calculated form solving Eq. (3) is not accurate and it is
themaximal estimation thatwe can get. Thus, it need to be fur-
ther fine-tuned to make it approach real values. After we
obtain the maximal estimation of the hidden pixels, we pro-
pose a new multilayer-neighborhood optimization to smooth
the pixel intensity using acquiredmaximal estimation as guid-
ance which is similar to method used in [38]. First of all, we
propose bilateral filter based method to iteratively update the
estimated contributions of hidden pixels. Then we apply a
scattering filter to get rid of the pixels in the foreground thus
avoids color leakage problem. As shown in Fig. 6, for each
pixel p, we gather all the colors scattered from neighboring
pixels as in Eq. (10) using the followingmaximal estimation:

ImaxðpÞ ¼
P

q2S1 IðqÞwðqÞ þ
P

q2S2 IðqÞwðqÞP
q2S1

S
S2
wðqÞ

¼ ð1�WmaxðpÞÞfðpÞ þWmaxðpÞfblockedðpÞ;
(10)

where, we divide maximal intensity obtained for pixel p into
two parts: those influenced by existing pixels and those
influenced by estimated pixels. S1ðpÞ as set of points away
from the boundary whose CoC contains pixel p. S2ðpÞ as set
of points that within the boundary and whose CoC contains
pixel p. WmaxðpÞ is the maximal contribution of blocked
pixel p. fðpÞ denotes the average color intensity of exist pix-

els and fblocked denotes average color intensity of blocked
pixels Since the actual contributions of blocked pixels are
unknown. But with the estimated blocked pixel intensity
above, we can start with the maximal contributions of
occluded pixels and then apply edge-preserving multilayer-
neighborhood optimization on it to give a reasonable guess
of its contributions. Thus, the maximal contribution of
blocked pixels can be given in following form:

WmaxðpÞ ¼ cardðS2Þ
cardðS1Þ þ cardðS2Þ ; (11)

Fig. 6. Illustration of the gathering concept. For every pixel p, we gather
all the colors from neighboring pixels in the CoC of p. q is in the CoC of p,
therefore the intensity of q is added to p. q0 is not in the CoC of p, there-
fore q0 makes no contribution to p.

ZHANG ET AL.: DEPTH OF FIELD RENDERING USING MULTILAYER-NEIGHBORHOOD OPTIMIZATION 2551

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

where cardðSÞ calculates number of elements in the set S.
Here, cardðS1Þ and cardðS2Þ compute the number of original
pixels and number of blocked pixels near the boundary,
respectively. We calculate the ratio between the number of
pixels within the boundary and number of pixels whose CoC
contains pixel p as themaximal weight of blocked pixel.

But the real contribution of p should be not greater than
Imax. Therefore, an estimate of real contribution is needed.
We apply multilayer-neighborhood optimization to obtain
the final blur pixelW 0ðpÞ as following formula:

W 0ðpÞ ¼
P

q2S1
S

S2
Fðp; qÞGðWmaxðpÞ;WmaxðqÞÞWmaxðqÞP

q2S1
S

S2
Fðp; qÞGðWmaxðpÞ;WmaxðqÞÞ ; (12)

where F and G are Gaussian. F denotes the distance
between p and q while G denotes the intensity distance.
S1

S
S2 is the set of pixels where CoC contains pixel p

including estimated blocked pixels. W 0ðpÞ is the estimated
weight of blocked pixels using WmaxðpÞ as guidance. From
this equation, we start from the estimated maximal weight
map Wmax and propagate the value from Wmax to potential
weight map W 0. Besides, it is an edge-aware filtering func-
tion which will preserve the boundary of the blurred image.
Thus, it can handle color leakage. Finally, we recursively
apply Eq. (12) on the output map to get final estimation
result. Normally speaking, we stopped the algorithm at fifth
iterations. The results are shown in Fig. 7. The right column
is the enlarged filtered weight map. From this picture, we
can see that our proposed method gives an estimation
between maximal weight and minimal weight while pre-
serving edge during iteration.

After applying same procedure for five times, we can see
that the estimated weights are smooth in the center region
while preserving edges. Then we simply calculate weighted
sum of the blocked pixels intensity as IestimatedðpÞ. As shown
in Fig. 6, for each pixel p, we gather all the colors scattered
from neighboring pixels. If p is in the CoC of its neighboring
pixel q, i.e., the distance dðp; qÞ between p and q is smaller
than RCoC , we add a portion of q ’s intensity to p. Otherwise
we do nothing. The intensity of the color scattered from a
pixel is inversely proportional to its CoC area SCoCðqÞ in

accordance with the intensity conservation condition. Thus,
we use this weight to estimate the final pixel intensity using
following equation.

I 0ðpÞ ¼
P

q2SðpÞ IðqÞ � wðqÞ þW 0ðpÞ � IestimatedðpÞP
q2SðpÞ wðqÞ þW 0ðpÞ (13)

wðqÞ ¼ ð1�W 0ðpÞÞ=SCoCðqÞ; (14)

where SðpÞ ¼ qjdðp; qÞ < RCoCðqÞ denotes the set of pixels

whose CoC contains p. IðqÞ is the intensity of pixel q while
wðqÞ is the weight of pixel q. For pixels away from the
boundary, we assume uniform distribution of intensity
which means that every pixel shares the same weight which
is calculated as Eq. (14). We iterate throughout each pixel
using this equation to render the final depth of field effect.

4 EXPERIMENTAL RESULTS

We conducted experiments on an Intel Core 4.00GHz CPU,
nVidia Geforce GT 970 platform. Because our proposed
approach is depth-variant, it might be very slow. Fortunately,
PathMatch method and bilateral filtering have fast parallel
implementation [38], [39]. Therefore, it could be accelerated
via CUDAusing parallel computing power of GPUs.

4.1 Results and Discussions

We tested our method using various data. Test image
Squares is a computer-generated image with a manually-
assigned depth map. Test images Moebius and Plant are
from Middlebury stereo database [40] with depth map
acquired via stereo vision. The original depth maps are
incomplete and have small holes with no depth informa-
tion. Thus, we used inpainting [41] to obtain complete depth
maps. Test images StillLife are from Heidelberg datasets
[42], whereas tested images Statue and Mansion are from
[43]. We set � ¼ 0:2 in Eq. (3) for all our experimental results
following the setting in [34] for hole filling. Our experiments
show that it is a proper choice for adjusting the weight
between color difference and depth difference in patches.
Our approach uses five parameters in order to present a sat-
isfying result: a, the blurriness, controls the degree of DOF
effects. df , the focused depth, can change the focus point of
the rendered image, ss and sw, controls the degree of esti-
mated weight of block pixels, w, patch size parameter con-
trols the degree of blocked pixels. In practice, a and df are
determined by user-based on various requirements. There
are plenty of methods to obtain one-to-one corresponding
depth map such as stereo camera and image painting algo-
rithms. If there’re lots of holes in depth map acquired from
original device, it may impose inaccuracy and noises in
our experiment results. On the contrary, we demonstrate
that it can achieve promising results using depth map
that is inpainted with image inpainting algorithm. We set
ss ¼ 0:03, sw ¼ 0:08 and w ¼ 3 for our experiments. Fig. 8
compares our results with those obtained by state-of-the-art
DOF rendering methods: the mipmap interpolation method
proposed in [14], the gathering-based method proposed in
[12] and the Adobe Photoshop CC lens blur filter [37]. (The
methods proposed in [14] and [12] were implemented by us
and may therefore differ from their original results.)

For the image Squares (first row of Fig. 8), the focused
depth is at the green square in the middle; the red square is
behind focus range, and the yellow square is before the
focus range. The artifacts primarily occur in the edges
between regions of different depths. The gathering-based
method suffers from color leakage in edges between the red

Fig. 7. The left picture is the result of maximal estimated weight while the
right picture is the result of applying multilayer-neighborhood optimiza-
tion for five times. The filtered weight lies between maximal weight and
minimal weight.

2552 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

and green squares. Photoshop lens blur and the gathering-
based method suffer from blurring discontinuity, which is
obvious at the corner of the blurred yellow square on top of
the green square. Our method produces a semitranspar-
ent soft edge for the blurred foreground object, which is
more realistic. In the details of image Moebius (second
row of Fig. 8), it is clear that our method produces a bet-
ter result than other methods. Because our method uses a
uniformly-distributed PSF that is closer to that of real
cameras than Gaussian distribution used in mipmap
interpolation method, the blurred region is closer to an
out-of-focus blur, than to an artificial Gaussian blur. For
image StillLife (third row of Fig. 8), the blur of the pear’s
stalk is not smooth in columns (c) and (e). Further, for
image Statue (last row of Fig. 8), it can be seen that color
leakage occurs in column (d).

As shown in Fig. 9, the image on the left shows the color
leakage artifact which is a common artifact in scatter
method [10], whereas the image on the right shows our
result without causing color leakage. Fig. 10 shows the

blurring in the foreground region. The image on the left has
an opaque blurring foreground region, and the partial
occlusion has not been dealt with due to lack of occluded
pixel information. In contrast, our result on the left, has a
semitransparent edge in the blurring foreground region
because we carefully handle the contributions of occluded
pixel for partial occlusion. Thus, our proposed method
could handle intensity leakage and blur discontinuity prob-
lem. Besides, the focused region and the degree of blur can
be easily controlled by parameters used in our method as
shown in Fig. 11. Fig. 12 shows the structural similarity
(SSIM) index [44] values and peak signal-to-noise ratio
(PSNR) of our results and the results of other methods using
the same parameters against the ground truth results. The
data shows the similarity of DOF rendering results and
the ground truth. The ground truth image was obtained
by DOF synthesizing a densely sampled 4D light field [42].

Fig. 8. Comparison of the experimental results for various methods. (a) Original image and corresponding depth map, (b) our results, (c) Photoshop
lens blur filter [37], (d) gathering based method [12], (e) mipmap interpolation method [14], and (f) pyramidal method from [20]. From top to bottom,
the images are: Squares,Moebius, StillLife, and Statue.

Fig. 9. Color leakage problems. The result of [10] on the left suffers from
color leakage in theadjacent area of focused region. In our result, on the
right, the problem has been rectified using scattering-based filter.

Fig. 10. The foreground blurring artifacts. The Photoshop lens blur result
on the left suffers from blurring discontinuity and lacks partial occlusion.
In our result on the right, the problem has been rectified by gathering fil-
ter in foreground region and an in-focus filter in the in-focus region.

ZHANG ET AL.: DEPTH OF FIELD RENDERING USING MULTILAYER-NEIGHBORHOOD OPTIMIZATION 2553

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

As shown in Fig. 12, our method outperforms other meth-
ods, and is much closer to ground truth.

Our proposed DOF rendering can be used in realistic
image rendering or be used as a hint to transfer the focus of
viewers. Besides, it can further be used in image editing and
information visualization which makes important data clear
and blur the unimportant data. Kosara et al. [45] proposed
Semantic Depth of Field for focus-and-context display of
information. Besides, DOF rendering can be used in practi-
cal medical area such as eye surgery. Fig. 13 shows the dif-
ferent rendered result using inpainted depth map and
original imperfect depth map. As we can see in the red rect-
angle region, the quality of image has great improvement

using inpainted depth map. Thus, we can use original depth
map with holes to generate a relatively good depth of field
rendering result using simple inpainted method. In Fig. 14,
since iPhone X provides pixel aligned depth map which can
be easily used in our proposed method, we can see that our
method can be incorporated in real life application.

4.2 Advantages over Single-Image Approaches

Our method uses a depth map and take the blocked pixels
into account, with the information obtained therefrom
resulting in an advantage for our method over other single-
image approaches. First, our approach is more accurate.
Traditional methods ignore the influence of blocked pixels,
therefore not realistic. Second, our method can handle com-
plex scene, whereas other single-image approaches cannot
segment scenes properly. Single-image approaches approxi-
mate the scene and depth information and can only produce
simple and inaccurate depth map. As a result, when the
image represents a complex scene, visual artifacts will arise.
Third, our method can properly render the DOF effects of
the image of different situations. We can focus at any depth,
background or foreground. We can also adjust the degree of
blurriness. Other single-image approaches do not consider
the different cases and thus can only be applied over a lim-
ited scope. Compared with multiple image approaches,
especially light filed approaches [25], which can resolve vis-
ibility problem in most cases due to more information on
the scene, our method relies on the accuracy of estimation
of intensity. We plan to combine the advantages of multiple

Fig. 11. Experimental results for image Statue, Moebius and Plant with various blurriness a. (a) Original all in-focus image and depth map, (b) a ¼ 5,
(c) a ¼ 10, and (d) a ¼ 20.

Fig. 12. Comparison of SSIM index and PSNR for various methods with
different blurriness parameters. The results of our proposed method,
gathering based method [12], mipmap interpolation method [14] and the
original unprocessed image are compared with the ground truth result
from light field DOF synthesis.

2554 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

images and proposed framework in order to better solve
occlusion problem and reduce visual artifacts.

4.3 Limitation

Although our method can be applied to videos. But, video
processing is still the limitation of our method. We tried to
apply our framework on video in limited case. Fig. 15 shows
three frames resulting from DOF rendering of a video
sequence by our method. The dataset of the video sequence
with depth maps is from [43]. But it requires the scene to
move slowly so that the focus range will not change too
much. When we apply our method to other videos, we need
to adjust the focus range of each frame according to the
depth of the objects, which may result in flickering in the
video sequence. Therefore, we plan to improve our method
in the future by incorporating coherence of objects in videos
so that it can further be applied in other video sequences.

4.4 Discussions

SLIC segmentation can be used to divide each image into
superpixels by considering the similarity of color intensities
between pixels which is a good choice for segmenting depth
image into different layers. PatchMatch algorithm is used
widely in finding similar patches. Due to its potential use in
image completion, we tried applying PatchMatch to fill in
the holes which are further used for initial estimation of
occluded pixels’ influence. EM algorithm is great algorithm
for optimizing function iteratively. Due to the efficiency of
PatchMatch algorithm, it made it possible to solve this
energy function quickly. We tested the performance of our

Fig. 13. Difference between rendered results using inpainted depth map and imperfect depth map. (a) Input image, (b) inpainted depth map, (c) depth
map with holes, (d) rendered result using (b), (e) rendered result using (c), (f) amplified red region on (d), and (g) amplified red region on (e).

Fig. 14. A simple rendered depth of field result in iPhone X using default
depth camera and our proposed method. (a) Original focused image,
(b) depth map captured by iPhone X, (c) a ¼ 5, and (d) a ¼ 10.

ZHANG ET AL.: DEPTH OF FIELD RENDERING USING MULTILAYER-NEIGHBORHOOD OPTIMIZATION 2555

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

method with various images, resolutions, and parameters.
We performed each test ten times and obtained an average
time. The running time is related to the image’s depth map
complexity, resolution, and focus depth. As can be seen in
Table 1, the first section compares our method on images
with different resolution where focus depth and blurriness
are same. The resolution of the image has a major effect
on the execution time. Besides, weight calculation time
increases not rapidly as intensity estimation time as the
resolution increase. Because we apply a fast multilayer-
neighborhood optimization method on it. For the second
section, we test our method for same image with different
focus depth. It can be seen that the parameters of the
focus depth do not significantly affect the performance.
Finally, we exam our method on the same image with dif-
ferent blurriness value. The experiment has shown that
the greater the blurriness, the greater is the computation
time required.

The effects of our method rely on five parameters for con-
trol. Besides, the layer boundary generated by SLIC method
might influence the result because we only consider the
occluded pixels near such boundary. Thus, it burdens user
to adjust the result. In our experiments, we fix three param-
eters used for estimation of blocked pixels and provide two
parameters for user to adjust. It is a normal scenario when
user needs to adjust focus depth and degree of blur for vari-
ous scenes. First of all, we use GPU to parallel the

computing of PatchMatch algorithm. The bottleneck of
accelerating PatchMatch is the scan line process of propaga-
tion stage. We can use Jump Flood Propagation method to
replace original scan line propagation method to make it
easier for parallelism. Since the computation in the final
scattering filter is independent among every pixel. We can
use GPU to accelerate these two stages. Here, we define
nearest-neighbor field (NNF) as shown in [33] as a function

f : A 7! R2 which means that for each patch a in image A,
fðaÞ denotes the offset between patch a and its nearest
neighbor patch b in spatial coordinates. Patch matching not
only estimates color intensity but also depth of pixels. If we
use simple linear interpolationmethod, we can only estimate
the intensity of hidden pixels. But, with PatchMatch, we can
also estimate depth. Besides, simple diffusion interpolation
method does not consider the texture of surface and will
result in flat interpolation surface. While PatchMatch can
fill the missing intensities of holes more consistent than dif-
fusion interpolation. More implementation details can be
found in the supplementary material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TVCG.2019.2894627.

As shown in Fig. 16, our method fails in image shown in
the last row. A visible artifact is rendered near the ear of toy
due to similar intensity between background and in-focus
region. A higher weight is estimated for pixels near the
boundary which causes this artifact. In the first row, our

Fig. 15. Our DOF rendering approach applied to video ofMansion. Top row: Frames from original video and corresponding depth maps; Bottom row:
Frames from video rendered by our method.

TABLE 1
Performance of our Approach for Various Images and Resolutions, Focus Depth df , and Blurriness a

image resolution focus depth df blurriness a CPU time (s) GPU time (s) intensity estimation time (s) weight calculation time (s)

Moebius 463 � 370 120 10 0.467 0.0202 0.219 0.248
Room 640 � 480 120 10 0.923 0.0376 0.692 0.231
Plant 1000 � 800 120 10 2.152 0.1232 1.597 0.5550

Moebius 463 � 370 80 10 0.3668 0.0173 0.1876 0.1792
Moebius 463 � 370 120 10 0.475 0.0241 0.2046 0.2704
Moebius 463 � 370 180 10 0.531 0.0267 0.245 0.286

Moebius 463 � 370 120 5 0.3173 0.0164 0.1433 0.1740
Moebius 463 � 370 120 10 0.3456 0.0174 0.2046 1.410
Moebius 463 � 370 120 20 0.4623 0.0241 0.3219 0.1404

2556 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TVCG.2019.2894627
http://doi.ieeecomputersociety.org/10.1109/TVCG.2019.2894627

method achieve continuous boundary near the leaf while
there are jagged edges in other methods. In the second row,
you can see that the black pixels spread to background
regions leading color leakage problems while our method
keeps the intensity values and presents a clear edge near

the boundary. In the third row, our method can also achieve
visual-pleasing result in the edge of the book while other
methods fail to preserve the structure. Our method achieves
visual pleasing result with better image quality measured
with SSIM and PSNR. It might be solved by taking the

Fig. 16. Comparison of different methods. (a) Our method, (b) pyramid method from [20], (c) light field method [25], and (d) mipmap interpolation
method [14]. The final row shows a bad example using our method.

ZHANG ET AL.: DEPTH OF FIELD RENDERING USING MULTILAYER-NEIGHBORHOOD OPTIMIZATION 2557

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

intensity difference between different layers into account
which is our future direction.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new post-processing depth of
field rendering approach. Unlike previous DOF rendering
methods, which do not consider the influence of blocked
pixels directly, our work proposes a new patch-based
approach to estimate the depth and intensity of blocked pix-
els near the boundary. After that, we obtain the maximal
weight of blocked pixels. We further propose a multilayer-
neighborhood optimization, which takes the weight map as
input and recursively get an estimation of potential contri-
butions of blocked pixels. With the estimated weight map,
we calculate our blurring results which resolve both color
leakage and blur discontinuity problems as shown in vari-
ous experiments. In the future, we will further speed up
DOF rendering. Besides, we will also extend our estimation
methods for better estimating of the blocked pixels. Finally,
we will improve our method by incorporating temporal
relation into our framework and avoid adjusting focus
range for each frame for better results on various video
processing, e.g., avoiding flickering problem of video exam-
ple in Fig. 15.

ACKNOWLEDGMENTS

We thank the reviewers for their insightful comments and
suggestions. This work was supported in part by the National
Natural Science Foundation of China (61872241, 61572316), the
National Key Research and Development Program of China
(2017YFE0104000, 2016YFC1300302), the Macau Science and
Technology Development Fund (0027/2018/A1), the Science
and Technology Commission of Shanghai Municipality
(18410750700, 17411952600, 16DZ0501100), and the Ministry of
Science and Technology (107-2221-E-006-196-MY3), Taiwan.

REFERENCES

[1] D. Iwai, S. Mihara, and K. Sato, “Extended depth-of-field projector
by fast focal sweep projection,” IEEE Trans. Vis. Comput. Graph.,
vol. 21, no. 4, pp. 462–470, Apr. 2015.

[2] Y. Itoh, T. Amano, D. Iwai, and G. Klinker, “Gaussian light field:
Estimation of viewpoint-dependent blur for optical see-through
head-mounted displays,” IEEE Trans. Vis. Comput. Graph., vol. 22,
no. 11, pp. 2368–2376, Nov. 2016.

[3] H. Qin, M. Chai, Q. Hou, Z. Ren, and K. Zhou, “Cone tracing for
furry object rendering,” IEEE Trans. Vis. Comput. Graph., vol. 20,
no. 8, pp. 1178–1188, Aug. 2014.

[4] D. C. Schedl, C. Birklbauer, J. Gschnaller, and O. Bimber,
“Generalized depth-of-field light-field rendering,” in Proc. Int.
Conf. Comput. Vis. Graph., 2016, pp. 95–105.

[5] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,”
ACM SIGGRAPH Comput. Graph., vol. 18, no. 3, pp. 137–145, 1984.

[6] P. Haeberli and K. Akeley, “The accumulation buffer: Hardware
support for high-quality rendering,” ACM SIGGRAPH Comput.
Graph., vol. 24, no. 4, pp. 309–318, 1990.

[7] A.Veeraraghavan, R. Raskar,A.Agrawal, A.Mohan, and J. Tumblin,
“Dappled photography: Mask enhanced cameras for heterodyned
light fields and coded aperture refocusing,” ACM Trans. Graph.,
vol. 26, no. 3, pp. 69:1–69:12, 2007.

[8] S. Kuthirummal, H. Nagahara, C. Zhou, and S. K. Nayar, “Flexible
depth of field photography,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 1, pp. 58–71, Jan. 2011.

[9] A. Levin, S. W. Hasinoff, P. Green, F. Durand, and W. T. Freeman,
“4D frequency analysis of computational cameras for depth of
field extension,” ACM Trans. Graph., vol. 28, no. 3, pp. 1–14, 2009.

[10] M. Potmesil and I. Chakravarty, “A lens and aperture camera
model for synthetic image generation,” ACM SIGGRAPH Comput.
Graph., vol. 15, no. 3, pp. 297–305, 1981.

[11] M. Shinya, “Post-filtering for depth of field simulation with ray
distribution buffer,” in Proc. Graph. Interface, 1994, pp. 59–66.

[12] C.-Y. Yan, M.-C. Tien, and J.-L. Wu, “Interactive background
blurring,” in Proc. 17th ACM Int. Conf. Multimedia, 2009, pp. 817–
820.

[13] P. Rokita, “Generating depth-of-field effects in virtual reality
applications,” IEEE Comput. Graph. Appl., vol. 16, no. 2, pp. 18–21,
Mar. 1996.

[14] S. Lee, G. J. Kim, and S. Choi, “Real-time depth-of-field rendering
using anisotropically filtered mipmap interpolation,” IEEE Trans.
Vis. Comput. Graph., vol. 15, no. 3, pp. 453–464, Jun. 2009.

[15] T. Zhou, J. X. Chen, and M. Pullen, “Accurate depth of field
simulation in real time,” Comput. Graph. Forum, vol. 26, no. 1,
pp. 15–23, 2007.

[16] F. L. Zhang, J. Wang, E. Shechtman, Z. Y. Zhou, J. X. Shi, and
S. M. Hu, “PlenoPatch: Patch-based plenoptic image manipula-
tion,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 5, pp. 1561–1573,
May 2017.

[17] Z. Zhu, H. Z. Huang, Z. P. Tan, K. Xu, and S. M. Hu, “Faithful
completion of images of scenic landmarks using internet images,”
IEEE Trans. Vis. Comput. Graph., vol. 22, no. 8, pp. 1945–1958,
Aug. 2016.

[18] T. Rhee, L. Petikam, B. Allen, and A. Chalmers, “MR360: Mixed
reality rendering for 360	 panoramic videos,” IEEE Trans. Vis.
Comput. Graph., vol. 23, no. 4, pp. 1379–1388, Apr. 2017.

[19] B. A. Barsky, M. J. Tobias, D. P. Chu, and D. R. Horn, “Elimination
of artifacts due to occlusion and discretization problems in image
space blurring techniques,” Graphical Models, vol. 67, no. 6,
pp. 584–599, Nov. 2005.

[20] M. Kraus and M. Strengert, “Depth-of-field rendering by pyrami-
dal image processing,” Comput. Graph. Forum, vol. 26, no. 3,
pp. 645–654, 2007.

[21] S. Lee, E. Eisemann, and H.-P. Seidel, “Depth-of-field rendering
with multiview synthesis,” ACM Trans. Graph., vol. 28, no. 5,
pp. 134:1–134:6, 2009.

[22] C. Lu, Y. Xiao, and C.-K. Tang, “Real-time video stylization using
object flows,” IEEE Trans. Vis. Comput. Graph., vol. 24, no. 6,
pp. 2051–2063, Jun. 2018.

[23] M. McGuire, E. Enderton, P. Shirley, and D. Luebke, “Real-time
stochastic rasterization on conventional GPU architectures,” in
Proc. Conf. High Perform. Graph., 2010, pp. 173–182.

[24] S. Lee, E. Eisemann, and H.-P. Seidel, “Real-time lens blur effects
and focus control,” ACM Trans. Graph., vol. 29, no. 4, pp. 65:1–
65:7, 2010.

[25] X. Yu, R. Wang, and J. Yu, “Real-time depth of field rendering via
dynamic light field generation and filtering,” Comput. Graph.
Forum, vol. 29, no. 7, pp. 2099–2107, 2010.

[26] B. A. Barsky and T. J. Kosloff, “Algorithms for rendering depth of
field effects in computer graphics,” in Proc. WSEAS Int. Conf. Com-
put., 2008, pp. 999–1010.

[27] S. Lee, G. J. Kim, and S. Choi, “Real-time depth-of-field rendering
using point splatting on per-pixel layers,” Comput. Graph. Forum,
vol. 27, no. 7, pp. 1955–1962, 2008.

[28] W. Xue, X. Zhang, B. Sheng, and L. Ma, “Image-based depth-of-
field rendering with non-local means filtering,” in Proc. IEEE Int.
Conf. Multimedia Expo Workshops, 2013, pp. 1–6.

[29] T. J. Kosloff and B. A. Barsky, “An algorithm for rendering gener-
alized depth of field effects based on simulated heat diffusion,” in
Proc. Int. Conf. Comput. Sci. Appl. - Vol. Part III, 2007, pp. 1124–
1140.

[30] Z. Xiao, H. Chen, C. Tu, and R. Klette, “An effective graph and
depth layer based RGB-D image foreground object extraction
method,” Comput. Visual Media, vol. 3, no. 4, pp. 387–393, 2017.

[31] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. S€usstrunk,
“SLIC superpixels compared to state-of-the-art superpixel meth-
ods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11,
pp. 2274–2282, Nov. 2012.

[32] B. A. Barsky, D. R. Horn, S. A. Klein, J. A. Pang, and M. Yu,
“Camera models and optical systems used in computer graphics:
Part I, object-based techniques,” in Proc. Int. Conf. Comput. Sci.
Appl.: PartIII, 2003, pp. 246–255.

[33] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“PatchMatch: A randomized correspondence algorithm for struc-
tural image editing,” ACM Trans. Graph., vol. 28, no. 3, pp. 24:1–
24:11, 2009.

2558 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 8, AUGUST 2020

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

[34] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen,
“Image melding: Combining inconsistent images using patch-
based synthesis,” ACM Trans. Graph., vol. 31, no. 4, pp. 82:1–82:10,
2012.

[35] C. Barnes and F.-L. Zhang, “A survey of the state-of-the-art in
patch-based synthesis,” Comput. Visual Media, vol. 3, no. 1, pp. 3–
20, 2017.

[36] R. Giraud, V.-T. Ta, A. Bugeau, P. Coup�e, and N. Papadakis,
“SuperPatchMatch: An algorithm for robust correspondences
using superpixel patches,” IEEE Trans. Image Process., vol. 26,
no. 8, pp. 4068–4078, Aug. 2017.

[37] Adobe, “Adobe Photoshop CC,” 2017. [Online]. Available: http://
www.adobe.com/products/photoshop.html

[38] Q. Yang, S. Wang, and N. Ahuja, “Real-time specular highlight
removal using bilateral filtering,” in Proc. 11th Eur. Conf. Comput.
Vis.: Part IV, 2010, pp. 87–100.

[39] P. Yu, X. Yang, and L. Chen, “Parallel-friendly patch match based
on jump flooding,” in Proc. Adv. Digit. Television Wireless Multime-
dia Commun., 2012, pp. 15–21.

[40] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps
using structured light,” in Proc. IEEE Comput. Society Conf. Com-
put. Vis. Pattern Recognit., 2003, pp. 195–202.

[41] A. Telea, “An image inpainting technique based on the fast
marching method,” J. Graph. Tools, vol. 9, no. 1, pp. 23–34, 2004.

[42] S. Wanner, S. Meister, and B. Goldluecke, “Datasets and bench-
marks for densely sampled 4D light fields,” in Proc. Int. Workshop
Vis. Modeling Vis., 2013, pp. 1–8.

[43] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. Gross,
“Scene reconstruction from high spatio-angular resolution light
fields,” ACM Trans. Graph., vol. 32, no. 4, pp. 73:1–73:12, 2013.

[44] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,”
IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[45] R. Kosara, S. Miksch, and H. Hauser, “Semantic depth of field,” in
Proc. IEEE Symp. Inf. Vis., 2001, pp. 97–104.

Benxuan Zhang received the BEng degree in
computer science from Shanghai Jiao Tong Uni-
versity, Shanghai, China. He is currently working
toward theMEng degree in computer science in the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China.
His current research interests include image/video
processing, depth of field rendering, deep learning,
and computer graphics.

Bin Sheng received the PhD degree in computer
science and engineering from The Chinese Uni-
versity of Hong Kong, Hong Kong, China. He is
currently an associate professor with the Depart-
ment of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China.
His current research interests include image-
based rendering, machine learning, virtual reality,
and computer graphics.

Ping Li received the PhD degree from The
Chinese University of Hong Kong, Hong Kong,
China. He is currently an assistant professor with
the Macau University of Science and Technology,
Macau, China. His current research interests
include image/video stylization, big data visuali-
zation, GPU acceleration, and creative media.
He has one image/video processing national
invention patent, and has excellent research proj-
ect reported worldwide by ACM TechNews.

Tong-Yee Lee received the PhD degree in com-
puter engineering fromWashingtonStateUniversity,
Pullman, in May 1995. He is currently a chair profes-
sor with the Department of Computer Science and
Information Engineering, National Cheng-Kung Uni-
versity, Tainan, Taiwan, ROC. He leads the Com-
puter Graphics Group, Visual System Laboratory,
National Cheng-Kung University (http://graphics.
csie.ncku.edu.tw). His current research interests
include computer graphics, non-photorealistic ren-
dering, medical visualization, virtual reality, and

media resizing. He is a senior member of the IEEE and a member of
theACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: DEPTH OF FIELD RENDERING USING MULTILAYER-NEIGHBORHOOD OPTIMIZATION 2559

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:07:40 UTC from IEEE Xplore. Restrictions apply.

http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop.html
http://graphics.csie.ncku.edu.tw
http://graphics.csie.ncku.edu.tw

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

