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Abstract—Face sketch synthesis shows great applications in a lot of fields such as online entertainment and suspects identification.

Existing face sketch synthesis methods learn the patch-wise sketch style from the training dataset containing photo-sketch pairs.

These methods manipulate the whole process directly in the field of RGB space, which unavoidably results in unsmooth noises at patch

boundaries. If denoising methods are used, the sketch edges would be blurred and face structures could not be restored. Recent

researches of feature maps, which are the outputs of a certain neural network layer, have achieved great success in texture synthesis

and artistic image generation. In this paper, we reformulate the face sketch synthesis problem into a neural network feature maps

based optimization task. Our results accurately capture the sketch drawing style and make full use of the whole stylistic information

hidden in the training dataset. Unlike former feature map based methods, we utilize the Enhanced 3D PatchMatch and cross-layer cost

aggregation methods to obtain the target feature maps for the final results. Multiple experiments have shown that our approach imitates

hand-drawn sketch style vividly, and has high-quality visual effects on CUHK, AR, XM2VTS and CUFSF face sketch datasets.

Index Terms—Non-photorealistic rendering, face sketch synthesis, convolutional neural network (CNN), style transformation

Ç

1 INTRODUCTION

FACE sketch portrait has been proved to show awide range
of usages in lots of fields, e.g., instant message communi-

cations, and suspects identification. Especially in the process
of criminal investigation, public security organization needs
to draw a sketch of suspects according to the description of
witnesses. If a sketch dataset is built, the suspects could be
quickly identified by matching the sketches with the data-
set [1]. Generally, this is a non-photorealistic rendering (NPR)
problem [2], [3], [4], [5], [6]. The key to a successful NPR
design lies in how to express stylistic textures of target style,
while fully preserving contents information of original
images. Many researches have made a great attempt in such
fields [7], [8], [9], [10]. In all subfields of non-photorealistic art,
sketch might be a strongly attracting artistic form. A sketch is
defined as a kind of drawing using purely line strokeswithout
any color. It is an ancient art form and be carried forward by
famous artists like Leonardo da Vinci and Michelangelo dur-
ing the Renaissance. Famous sketch drawings include “Self
Portrait” by da Vinci and “Libyan Sibyl” by Michelangelo.
Researches on how an image transfer into a sketch would
help us understand the intrinsic essence of art.

However, the photo-to-sketch conversion is still a chal-
lenging problem in rendering [12] and synthesis [13], [14],
[15]. Intrinsically, the problem seems like a reconstruction
which needs both middle-level information (the object con-
tour such as nose, mouse, and eyes) from the photo, and
low-level texture information (the hair texture and the
shadow brush near chins) from the sketch. Existing state-of-
the-art face sketch synthesis methods are mainly exemplar-
based methods. Such methods [16], [17], [18], [19], [20], [21]
learn the whole texture and face contour information from a
dataset consisting of several pairs of sketch and face photo,
and could generate the synthesized sketch to various face
details. Nevertheless, exemplar-based methods are mostly
based on patches in raw RGB space [17], [18], [19], [21], and
based on the assumption that if two photo patches are simi-
lar, their sketch patches should also be similar. This assump-
tion brings a contradictory drawback: if the selected patch
size is big, the appearance of final sketch may not resemble
the target photo since two non-linear transformations have
been executed (one is from target photo to dataset photo, the
other is from dataset photo to dataset sketch); if the selected
patch size is small, the final sketch could be noisy since there
is no extra space to eliminate border effects.

In recent years, with the development of GPUs, the con-
volutional neural network (CNN) based models have
become a powerful solution to a wide range of tasks [22],
[23], [24], [25]. Compared with traditional models, CNN-
based models have a more potent features extraction capac-
ity, which stores the image information inside feature maps
over the whole layers. Fully convolutional network (FCN),
which predicts pixel-wise object, is also qualified for the
end-to-end image transformation [23], [26], [27]. In the face
sketch synthesis areas, Zhang et al. [27] applied an end-to-
end FCN to directly transform a face photo into a face
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sketch. However, the results from their work have blurred
edges and result in fuzzy visual perception, which is far
from a hand-drawn sketch quality. Besides FCN, another
image generation model has been introduced [11], [28],
where the final output images are treated as “weights” to be
optimized in a traditional convolutional network frame-
work, while a pre-trained network model such as VGG [29]
is responsible for features extraction. For a lightweight mis-
sion, making full use of an existing trained network is con-
firmed to be more efficient and convenient.

Our approach is a combination of style transfer model
[11] and patch-based model. In the first stage, we search for
patches in our off-line dataset to synthesize target feature
maps with our Enhanced 3D PatchMatch, which is a
strengthened variation of original PatchMatch [30]. In the
second stage, a cross-layer aggregated cost is utilized as the
metric for multi-scale consistency, which is proved to make
our results express more face sketch details (see Fig. 1). Our
work makes the following three main contributions:

� Combining traditional patch-based image synthesis
methods with the deep neural style transfer model;

� Using an Enhance 3D PatchMatch and cross-layer
cost aggregation to select best patch, which is proved
to be effective and could restore face sketch details;

� Better visual conceptions and detailed structures
than previous methods on CUHK and AR datasets.
User studies and statistics testified our superiority.

2 RELATED WORK

2.1 Previous Sketch Synthesis Methods

Exemplar-based face sketch synthesis originated from face
recognition. To overcome the modality gaps between photo
and sketch [31], [32], Tang and Wang [16] treated each face
sketch image as a reconstruction from eigenface in PCA
representation. This work also notices that a face photo and
its corresponding sketch has barely linear mapping relation
due to the difference existing in both textures and shapes.
Locally linear embedding [33] based method found that the
nonlinear relationship between photo and sketch could be
formulated as manifolds in different image spaces. Since
this work, the following sketch synthesises start to focus on
local patch learning rather than the global face learning.
Wang and Tang [17] further used a multi-scale Markov Ran-
dom Fields (MRF) model to select best patches and utilizes
the patches to mosaic the final sketch. The work enlightens
many follow-up researches. Zhou et al. [18] introduced
Markov Weight Fields (MWF) to synthesize patches that do
not exist in the training set. Their work also changes the

original NP-hard MRF problem into a standard quadratic
programming problem. Song et al. [19] improved the work
of [33] by applying a brand-new sketch denoising method
called Spatial Sketch Denoising (SSD). The advantage of this
work is the real-time performance on GPU.

Some new exemplar-based sketch synthesis methods
[34], [35], [36], [37] have sprung up and achieved good per-
formance. [34] exquisitely decomposed original patch distri-
bution in [17] into two parts and built two models to
estimate them. Their key contribution is combining the
MRF-based method [17] and MWF-based method [18] and
applying into neighbor selection model and weight compu-
tation model. [36] focused on fast sketch synthesis and
could generate a sketch within 1.5 seconds. Normally an
image patch has very high dimension, e.g., a H �W patch
would be represented by a vector of length WH. They
applied PCA to reduce such dimension and thus speeded
up distance computation greatly. The work effectively used
random neighbor patches to reconstruct centralized target
patch. The projection matrix is computed by random sam-
pled neighbor patches. The approach is basically an unpara-
meterized model with no need to learn global parameters.

The above methods focus mainly on the difference
between raw image and sketch spaces. According to the
manifold theory, the photo-sketch pair is considered as a
transformation with same contents or geometry structures.
This assumption has some rationality, but sketches drawn
by artists have shown that sketch faces has more exaggera-
tion than photo faces. If the sketch needs to resemble vividly
with the original photo, the contents information should be
learned directly from the original photo while the local
strike containing texture information should be learned
from the sketch dataset. A neural style transformation
method [11] has achieved marvelous effects. With a pre-
trained neural network, the contents and style information
could be extracted richly in each layer’s feature maps. In
this way, Gram matrix of each layer’s feature map provides
a metric of image’s overall style. Instead of using Gram
matrix, [28] combines traditional MRF model with the style
transfer model [11] to synthesize an artistic image, which is
more visually consistent with original style image.

2.2 Dig Texture Information in Neural
Representations

From [11], we could confirm that, in a specific network for
classification such as VGG19 [29], higher layers (such as
conv4 2) contain almost all object information for input
image. In [11] and [28], the synthesis results show that, by
using only one higher layer feature map as content loss, the
overall structure could be restored perfectly. Thus, the key
point lies in texture part. [11] uses Gram matrix as the style
measurement. To compute Gram matrix for each layer, the
method flattens the feature map along both height and
width dimensions, while reserves the channel dimension.
From probability theory, we could find that the diagonal
terms of Gram matrix are variance of particular channels of
feature maps, and the off-diagonal terms are covariance
between different channels. If we consider the feature maps
of the output image as random variables, the purpose of
minimizing such style loss is to make the output image
“like” the style image in an overall view, rather than exactly

Fig. 1. Improvements for style transformation [11] with our proposed
approach for face sketch synthesis. (a) Target photo. (b) Style image
drawn by artist and serves as style image in [11]. (c) Synthesis sketch
by [11]. (d) Synthesis sketch by our proposed approach.
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imitating the style image. [28] improves such metric by
using cross-correlation metric in patch selection. For a spe-
cific neural patch, this method first selects nearest patch by
normalized cross-correlation. After that, a standard euclid-
ean norm loss are summed over all patches. Compared
to [11], the target featuremaps aremade up of neural patches
selected from style image, which makes the synthesis share
more similar texture as style image. However, the neural
patches in [28] could only be searched within one feature
map, which reduces the diversity of texture richness. In our
method, neural patches are searched along a training set so
that they could reflect sketch texturesmore accurately.

Since our approach is based on patch matching, with
respect to comparing metric between patches, we compare
regular L2-norm and normalized cross-correlation used
in [28]. In Fig. 2, we could find that normalized cross-
correlation is not suitable for a subtle synthesis task like
face sketch synthesis. In the upper part of Fig. 2, feature
maps generated by cross-correlation metric truly choose
some “similar” patches with respect to the input photo, but
are much less accurate compared to L2-norm metric. We
could see that photo background regions are matched to
face regions in sketch dataset, which results in an odd global
visual perception. Thus, we choose to use L2-norm metric in
our synthesis approach. Another important difference in
our method lies in that we abandon the content loss used
in [11] and [28]. Content loss is aimed to ensure the output
image has general same object shape with the input image.
Since our approach uses neural patches to piece together
feature maps in dominant neural layers, face structures can

be restored via those feature maps. We utilize all training
photos in dataset to find the best match, then apply training
sketches in dataset for the synthesis of target feature maps.
Since the sketch image feature maps contain abundant infor-
mation from low level to high level after convolution, they
are responsible for the final target featuremaps generation.

3 APPROACH OVERVIEW

Our overall framework is shown in Fig. 3. As explained
before, using neural style transformation into face sketch
synthesis directly like [11] does has a fatal drawback: only
one sketch in dataset could offer style information, while
ample texture information inside whole dataset cannot be
used. In Fig. 1, we can see that the result by [11] has an over-
all sketch style like input style image, but large parts of the
face textures are smeared. This is because the Gram matrix
used in [11] could not reflex position information for face
organs. We could say that using Gram matrix is not suitable
for our tasks. In neural representations, position informa-
tion is fully preserved since convolutional filters do not
change the overall space structures. To synthesize a face
sketch with detailed texture information, the training sketch
database should be fully used. Our main contributions lie in
integrating neural representations with patch-based synthe-
sis methods. We search for the best feature map patches for
output image in several network layers. We utilize our
Enhanced 3D PatchMatch to do the global search in the
whole face photo feature maps to find the closest region
which resembles input face patches. This is our first stage
searching. Then, we search in such object region via a cross-
layer cost aggregation to find the most closest neural patch
still in face photo training space. This is our second stage
searching. Finally, we perform patch voting to synthesize
target feature maps using neural patches from face sketch
training dataset. Through such two stage searching, the
nearest feature map patches with texture similarity could be
selected. Our approach has achieved high-quality visual
effects on CUHK, AR, XM2VTS and CUFSF datasets.

4 FACE SKETCH SYNTHESIS

4.1 Neural Representation Guided Synthesis

In our overall framework (Fig. 3), assuming that a input tar-
get photo image xc 2 RH�W is given, and a set of feature
maps MlðxcÞ 2 RHl�Wl�Cl , l ¼ fconv1 1; . . . ; fc7g for each
layer is obtained. We then apply layers L ¼ fconv1 1;
conv2 1; conv3 1; conv4 1g as feature map constraint for our
final output x. Our goal sketch image is x� 2 RH�W , and it is
optimized as:

x� ¼ argmin
x

ET ðx; xcÞ þ aESðxÞ; (1)

where, a is a coefficient to control overall style contribution.
On right side of Eq. (1), ET ðx; xcÞ stands for texture feature
map loss, which computes the distance between feature
maps of output image and objective feature maps in specific
layers L. The target texture feature maps are blended by
neural patches searched from dataset according to xc. ESðxÞ
is the global style loss which serves as a constraint to make
the whole pixel distribution resemble dataset sketches. Our
sketch optimization process is similar to the training of a

Fig. 2. L2-norm metric and cross-correlation metric comparison in patch
matching. Columns of both upper and lower part show target style fea-
ture maps extracted from different layers with same input photo. The
used network is VGG19 [29], and all feature maps are embedded in
three dimensional PCA representation. The size of patches is 3� 3.
Lower part shows global search with L2-norm. The upper part shows
searching results using cross-correlation metric, which is the metric
used in [28]. We could find that feature maps selected by L2-norm pre-
serve style information better than those selected by cross-correlation.
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neural network. The random noise image x is similar to the
random initialized weights of a neural network. Eq. (1)
gives out the overall optimization target. Once the texture
feature maps are computed by ET ðx; xcÞ and style feature
maps are computed by ESðxÞ, the final output face sketch x�

can be optimized from a random noise image x.
Removal of Content Loss Contribution. In the optimization

object of [11] and [28], content loss is added to reconstruct
the content of input photo. Suppose that xc denotes input
face photo and x denotes final result. MlðxcÞ and MlðxÞ are
feature maps for xc and x in layer l. Content loss is usually
the high layer loss between MlðxcÞ and MlðxÞ, and can be
defined as:

ECðx; xcÞ ¼
X
l2L0

1

2
kMlðxÞ �MlðxcÞk2; (2)

where, L
0 ¼ fconv4 2g. In our case, the background of

sketch is pure white, while the background of the face photo
is blue curtain. If we bring in the content loss into Eq. (1), the
background of the final result will be impure and the tone
will totally deviate from the sketch style. Bringing in content
loss would also make the final synthesis result resemble
more face photo rather than face sketch. A simple compari-
son between the existence of content loss contribution is
shown in Fig. 4. Therefore, we do not use the content loss in
our optimization framework.

Target Texture Feature Maps. The texture feature map loss
ET ðx; xcÞ is defined as follows:

ET ðx; xcÞ ¼
X
l2L

1

2
kMlðxÞ �FlðxcÞk2; (3)

where, target feature mapFlðxcÞ has the exact same size and
channels with MlðxcÞ, but is synthesized from the feature

maps of training sketches. Function F selects best patches
from the training face photo feature maps according to the
input photo feature maps, and then uses the corresponding
training sketch feature map patches to synthesize the target
feature maps, which is the core of our approach. Suppose
we have an existing sketch and face photo dataset fP1; S1g;
fP2; S2g; . . . ; fPN; SNg 2 fRH�W;RH�Wg, and their feature
maps are all computed off-line and stored for use. In each

Fig. 3. The overall framework of our neural representation guided face sketch synthesis approach. In the first stage of searching, we first match input
photo neural patch with off-line computed photo dataset feature maps using Enhanced 3D PatchMatch. The raw positions are called object regions.
We perform a cross-layer cost aggregation in such object regions, and neural patch for each position is selected from training sketch dataset.
Patches around central position perform patch voting to generate target feature maps. Finally, a random noise image is fed into the VGG19 network,
and gradient descent method is applied to optimize each pixel for the output face sketch.

Fig. 4. Comparison of effects via removal of content loss contribution in
Eq. (2). The upper row shows the input photo, the benchmark sketch,
the synthesized result with content loss and the result without content
loss, respectively. The lower diagram shows the histogram of the four
images. From the histogram below, we can find that the result with con-
tent loss has close tone distribution with gray scaled input photo. By
removing such loss, the synthesis result’s tone distribution improves
much better and has almost the same style with the benchmark.

SHENG ET AL.: DEEP NEURAL REPRESENTATION GUIDED FACE SKETCH SYNTHESIS 3219

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:10:12 UTC from IEEE Xplore.  Restrictions apply. 



pair, P stands for a face photo and S stands for the sketch of
the photo drawn by artist. For a certain patch size, the fea-
ture maps are segmented into m overlapping patches
fðkÞ; k ¼ 1; 2; . . . ;m. For a specified patch in a certain layer
l, we need to match the input photo feature map with the
training face photo feature maps of P1; P2; . . . ; PN , and
then use neural patches from sketch feature maps of
S1; S2; . . . ; SN to perform patch voting. Such tasks could
be converted into a Nearest Neighbor Field (NNF) problem.
We would discuss our approach in Section 4.2. After we
have selected the best match, the target texture feature
maps are constructed by patch voting, which averages the
intensity in one pixel from all patches covering the pixel.

Obviously, matching process along the whole image fea-
ture space is rather time-consuming. There are a lot of meth-
ods to speed up such process, and PatchMatch [30] is a
randomized method for fast nearest neighbor patch match-
ing. The speedup lies in that PatchMatch makes full use of
natural image consistency. Neural feature maps conserve
the space structure of original image and just extend from
one or three channels of natural image to multiple channels.
Thus, we revise the original PatchMatch into a third
dimension, and introduce our Enhanced 3D PatchMatch
approach. We use such approach to search in the first
stage. The raw position chose in the first stage is called
object region. Since we need to construct four level feature
maps, the inter-layer consistency is another key point to
be considered. By the enlightenment of Cost Aggregation
Algorithm [38], we utilize cost aggregation to achieve
more stable results.

Style Loss Contribution. For each artistic style, a sketch has
its own tone distribution. In [39], the authors conclude that
in general the tone distribution of a sketch is composed of
three tone layers, i.e., dark, mild-tone, and bright layers.
Each of them can be generalized by a certain distribution,
and the whole sketch tone is the sum of such three layers. In
our model, since the output is a sketch rather than a natural
image, we could not use the widely used total variation
defined in [40] as a prior to smooth the results. Using the
Gram matrix in [11] to give an overall visual enhancement
is our strategy. Noticing that the Gram matrix contains no
position information and just serves for a component for
overall style, we hence use the mean Gram matrix Gl of the
whole dataset as such prior:

ESðxÞ ¼ 1

4H2
l W

2
l C

2
l

kM 0
l ðxÞTM

0
l ðxÞ �Glk2; l 2 L; (4)

where, M
0
l ðxÞ 2 RHlWl�Cl is a reshape form of MlðxÞ. The

mean Gram matrix represents the mean of each Gram
matrix computed from the sketch dataset:

Gl ¼ 1

N

XN
i¼1

M
0
l ðSiÞTM 0

l ðSiÞ; (5)

where, M
0
l ðxÞ 2 RHlWl�Cl is also a flattened form of MlðxÞ.

By such style loss, pixel intensity distribution is well
constrained and whole pixel tone resembles true sketch
nicely.

4.2 Target Feature Maps Acquisition via Enhanced
3D PatchMatch and Cross-Layer Cost
Aggregation

Target feature maps FlðxcÞ, l 2 L in layers L ¼ fconv1 1;
conv2 1; conv3 1; conv4 1g serve as the constraint in our
optimization process, which significantly decide the synthe-
sis quality of the final results. Our approach is based on two
assumptions:

� To preserve simplicity of sketch textures, feature
maps in selected layers must be composed of patches
from feature maps of sketch dataset images rather
than photo dataset images.

� To restore inter-layer consistency, cross-layer cost
aggregation around best selected patch should be
done.

The simplicity of sketch texture is vital for our style
transfer framework. We select patches only from feature
maps of sketch dataset images to preserve such simplicity.
In [11] and [28], high layer feature maps of input images are
used in the optimization processes, which are called content
loss and have been mentioned in the above subsections. In
our work, feature maps of content image are only used to
serve as a reference for patch searching, rather than directly
serve as a loss term in the optimization process. For dense-
correspondence problem, one of the most efficient method is
PatchMatch [30], which is designed to quickly find approxi-
mate nearest neighbors. Although feature maps have much
larger channel dimension than natural images, yet they still
preserve the spatial information of original image, which is
vital for our extension to the original PatchMatchmethod.

In our training set, since there is a pair of photo and
sketch, we should use them fully by another assumption:

� The face photo and sketch in a pair describe the same
person, thus the same position neural patch from
feature maps of face photo and face sketch should be
viewed as a nonlinear mapping.

Based on such assumption, we first search patches in face
photo feature map space to determine the location, then we
use same position neural patches from face sketch feature
maps to synthesize the target feature maps.

Enhanced 3D PatchMatch to Find the Best Matching Position.
For a target face photo xc, we first perform PatchMatch
between the input face photo feature maps MlðxcÞ and the
training face photo feature maps MlðPn0 Þ, n0 ¼ 1; 2; . . . ; N ,
l 2 L. For a certain position k 2 R2 in MlðxcÞ, we could
define a Nearest Neighbor Field NNFlðkÞ after our Enhanced
3D PatchMatch search. Here, the NNFlðkÞ is a three dimen-
sional tuple ðn0; i0Þ, in which n0 2 R defines which training
face photo feature maps, and i0 2 R2 defines the position.
To compare the neural patch distance, we define the
following metric:

Cl
Pn0

ði0; kÞ ¼ kfMlðPn0 Þði0Þ � fMlðxcÞðkÞk
kMlðxcÞk ; l 2 L; (6)

where, fMlðPn0 Þði0Þ and fMlðxcÞðkÞ are neural patches center-
ing pixel i0 and k, respectively. kMlðxcÞk is an invariant for
specific target face photo, and can be used as a normaliza-
tion term. The cost defined in Eq. (6) is used not only as met-
ric in Enhanced 3D PatchMatch but also for cross-layer cost
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comparison. The Nearest Neighbor Field is a function
NNFl: k ! ðn0; i0Þ that records the best match patch position
for k through the whole ðn0; i0Þ. Suppose n indicates which
face photo feature map in dataset is selected, and i indicates
which patch in such face photo feature map is selected, then
the best patch fMlðPnÞðiÞ can be selected as:

ðn; iÞ ¼ argmin
ðn0;i0Þ

Cl
Pn0

ði0; kÞ; (7)

where, the ðn; iÞ is the optimum value of ðn0; i0Þ. To search
for the Nearest Neighbor Field of each position, we adopt
the so called Enhanced 3D PatchMatch algorithm, which is
described in Algorithm 1. Traditional PatchMatch defined
in [30] matches patches in a 2D plane and makes full use of
the space consistency of natural image. In our tasks, an
additional dimension n0 is introduced. To maintain the
intrinsic principle of original PatchMatch algorithm, we
revise the original third step of random search into different
training face photo feature maps, which is the third dimen-
sion besides the two space dimensions.

Fig. 5 shows our Enhanced 3D PatchMatch. Around the
patch fMlðPnÞðiÞ, the neighborhood Neiðn; iÞ is called object
region, which is considered as the most matching area for k
in MlðPn0 Þ. But we all know that the best match in feature
maps of face photo dataset does not mean it is the best
match in feature maps of corresponding sketch dataset.
With above considerations, we search in Neiðn; iÞ of Pn to
find the best match of sketch neural patches. We have col-
lected statistical information on the matched patches of all
the tested input face photos in different layers for the
CUHK and AR datasets. Table 1 shows the percentage of
patches matched in different layers. We can see from Table 1
that the neuro feature maps at layers conv2 1 and conv3 1
offers better matching results. The lower layer conv1 1
seems to have lower performance compared to the layers
conv2 1 and conv3 1 as it is too sensitive to visual variations.
Although the upper layer conv4 1 has low performance in
matching, yet it still could establish certain level of corre-
spondence (around 15 percent matched patches) between
query patches and candidate patches. Since the top layer
conv5 1 (resolution: 13� 16) loses too much discriminative
information, we do not apply this layer in our approach.
Our findings are also in accordance with [28], [41], which
show that middle layers are more suitable for recognition

purposes as they offer better discriminative performance
while being more robust to noises. Experiments shows that
our Enhanced 3D PatchMatch could drastically speed up
matching process compared to traditional PatchMatch [30]
and brutal force search. The comparison results are shown
in Fig. 6. All the four methods are implemented in naive
Python code without any parallel schemes. From Fig. 6, we
could find that our Enhanced 3D PatchMatch acquires fast-
est speed than the other searching schemes and makes a
good balance between synthesis speed and effects.

Algorithm 1. Enhanced 3D PatchMatch to Select Best
Neural Patch

Input: Target face photo xc, training photo feature maps
MlðPn0 Þ, n0 ¼ 1; 2; . . . ; N , l 2 L

Output:Nearest Neighbor FieldNNFl: k ! ðn; iÞ
1: for l 2 L do
2: Initialization:
3: for position k inMlðxcÞ do
4: Allocate NNFlðkx; kyÞ with random value ðn0; i0x; i

0
yÞ,

n0 2 ½1; N�, i0x 2 ½1;Wl�, i0y 2 ½1; Hl�;
5: end for
6: for iteration 2 ½1; 5� do
7: for position k inMlðxcÞ do
8: Propagation:
9: Suppose that ðt; qx; qyÞ ¼ NNFlðkx � 1; kyÞ;
10: if Cl

Pt
ððqx þ 1; qyÞ; kÞ < Cl

Pn0
ðði0x; i0yÞ; kÞ then

11: n0 ¼ t, i0x ¼ qx þ 1, i0y ¼ qy;
12: end if
13: Suppose that ðt; qx; qyÞ ¼ NNFlðkx; ky � 1Þ;
14: if Cl

Pt
ððqx; qy þ 1Þ; kÞ < Cl

Pn0
ðði0x; i0yÞ; kÞ then

15: n0 ¼ t, i0x ¼ qx, i
0
y ¼ qy þ 1;

16: end if
17: Random Search:
18: radius ¼ minðHl;WlÞ;
19: while radius > 0 do
20: Allocate ðt; qx; qyÞ with random value, t 2 ½1; N �,

qx 2 ½1; radius�, qy 2 ½1; radius�;
21: if Cl

Pt
ððqx; qyÞ; kÞ < Cl

Pn0
ðði0x; i0yÞ; kÞ then

22: n0 ¼ t, i0x ¼ qx, i
0
y ¼ qy;

23: end if
24: radius ¼ radius=2;
25: end while
26: end for
27: end for
28: end for

Cross-Layer Cost Aggregation in Object Region. Our cross-
layer cost aggregation is visualized and shown in Fig. 7.
More details are explained in Algorithm 2. Unlike the photo
feature map, sketch feature map has different encoding
method with input photo due to the style difference, espe-
cially in the lower layers. To find the best match, we use the

Fig. 5. Illustration of our Enhanced 3D PatchMatch. In the first initializa-
tion stage, we allocate random values to the whole Nearest Neighbor
Field (NNF). Then in the propagation stage, with a line-scanning way,
the NNF of position labeled by red square in this image is propagated by
its left and upper position. The third step is the random search, in which
the NNF of position for red square is optimized within a three dimen-
sional cube centering at its current position.

TABLE 1
Percentage of Patches Matched in Different Layers

Layers conv1 1 conv2 1 conv3 1 conv4 1

Resolution 200� 250 100� 125 50� 63 25� 32
CUHK (%) 26:3% 30:4% 28:7% 14:6%
AR (%) 25:6% 29:5% 29:3% 15:6%
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cross-layer cost aggregation method used in [38] to consider
the consistency of different layers. In Eq. (6), we have
defined neural patch cost Cl

Pn0
ði0; kÞ in layer l for position k,

we can extend it to different layers. Our cross-layer cost
aggregation is based on the assumption: averaged cost com-
puted from current and upper layer would make the
selected patch more accurately. Suppose that the vector

a ¼ ½Cconv1 1
Pn

ði; kÞ; Cconv2 1
Pn

ði; kÞ;
Cconv3 1

Pn
ði; kÞ; Cconv4 1

Pn
ði; kÞ�T ; (8)

denotes the original normalized cost at each layer in posi-
tion i. Note that i is exactly the center of the object region
in the first searching stage. Then, we add a generalized
Tikhonov regularizer in the following optimization objec-
tive, which is aimed to average cost between the current
and upper layers:

â ¼ argmin
fzlgl2L

X
l2L

kzl � Cl
Pn
ði; kÞk2 þ �

X
l2L

kzl � zlupperk2
 !

; (9)

where, lupper is the upper layer of layer l. For layer conv1 1,
lupper denotes conv2 1. � is a coefficient to control consis-
tency between layers, the larger � is, the more consistency
between the two layers is considered in cost aggregation.
Eq. (9) is a convex optimization and has analytical solution.
Suppose that O is the objective function in Eq. (9), we set the
partial derivative @O

@zl
¼ 0 to derive:

ð1þ 2�Þzl � �zlupper � �zllower ¼ Cl
Pn
ði; kÞ; l 2 L; (10)

where, zllower stands for the lower layer of l, e.g., the lower
layer of conv2 1 is conv1 1. From Eq. (10), we can get similar
equations for l ¼ conv1 1 to l ¼ conv4 1. We hence have 4

linear equations in total, which can be expressed clearly as:
Sâ ¼ a. In our case, the aggregated cost vector â ¼
½Ĉconv1 1

Pn
ði; kÞ; Ĉconv2 1

Pn
ði; kÞ; Ĉconv3 1

Pn
ði; kÞ; Ĉconv4 1

Pn
ði; kÞ�T , and

the matrix S is a 4� 4 tridiagonal constant matrix, which
could be easily derived from Eq. (10). S is tridiagonal, the
inverse S�1 exists. Thus, we could solve â as:

â ¼ S�1a; (11)

Algorithm 2. Feature Maps Acquisition via Cross-Layer
Cost Aggregation in Object Region

Input: Target face photo xc, training photo feature maps and
sketch feature maps fMlðPn0 Þ;MlðSn0 Þg, n0 ¼ 1; 2; . . . ; N ,
l 2 L,NNFl: k ! ðn; iÞ

Output: Target texture feature maps FlðxcÞ, l 2 L
1: for l 2 L do
2: for position k inMlðxcÞ do
3: Select the nearest patch fMlðPnÞðiÞ according to the

input Nearest Neighbor Field NNFlðkÞ;
4: for j 2 Neiðn; iÞ do
5: Compute aggregated cost â using Eq. (11);
6: Select the best j with minimum aggregated cost

Ĉl
Pn
ðj; kÞ, training sketch neural patch fMlðSnÞðjbestÞ is

selected for position k and used finally for patch
voting;

7: end for
8: end for
9: for position k inMlðxcÞ do
10: Do patch voting to get FlðxcÞ: average all selected neu-

ral patches fMlðSnÞðjbestÞ arounding location k;
11: end for
12: end for

In the object region around central pixel i, the cross-layer
cost aggregation is done for each pixel j in such region, we
then select the best j according to their aggregated cost for
the patch voting:

jbest ¼ argmin
j2Neiðn;iÞ

Ĉl
Pn
ðj; kÞ; (12)

Fig. 6. Matching time and results comparison between different search-
ing schemes. All four methods are implemented in naive Python code
without any parallel schemes. The above diagram shows the matching
time of our Enhanced 3D PatchMatch, traditional PatchMatch [30], and
brutal force search. Note that the x-axis of the diagram used natural log-
arithm of minutes (ln min) to rescale the ratio of different methods. The
lower four sub-images show synthesized examples of a same person.
We could find that: without searching process (whole training sketch
patches used) cannot compare the matching time, and the results are
inaccurate; PatchMatch and brutal force search did improve some local
details than Enhanced 3D PatchMatch, but the two methods consume
too much time and are unpractical for quick sketch generation tasks.

Fig. 7. Visualization of our cross-layer cost aggregation approach. Patch
fMlðPnÞðiÞ is selected by Enhanced 3D PatchMatch and denotes the
patch in location i of nth candidate feature map in the face photo data-
set. The green region denotes the object region, where we do cross-
layer cost aggregation for each pixel around the neighborhood of patch
fMlðPnÞðiÞ. After that, the patch with minimum aggregated cost is
selected for patch voting of target feature maps in the layer.
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After we have selected jbest for each position for target fea-
ture map FlðxcÞ, we use the training sketch feature maps to do
patch voting. Note that all the above selecting algorithms
are based on training photo feature maps. But since we assume
the two kinds of feature maps have one-to-one correspon-
dence, we use neural patches in position jbest fromMlðSnÞ to
synthesize our final target feature maps.

4.3 Implementation Details

Apparently, the optimization method plays a huge role in
the synthesis speed. We set the whole iteration number for
a single input photo as 512 so as to make sure the output
converges to a visually acceptable state. The optimization
method used here is L-BFGS-B [42]. a in Eq. (1) is set to 100
so as to make the overall style of synthesis result resemble
true sketch. � in Eqs. (9) and (10) is set to 0.3.

4.4 Algorithm Verification and Parameter Setting

Effects of Cross-Layer Cost Aggregation. Here, we display a
simple experiment to show the effects of our cross-layer
cost aggregation (see Fig. 8). Neiðn; iÞ is the set of neighbor-
hood positions in object region. jNeiðn; iÞj is the cardinality
of set Neiðn; iÞ. We change the size of Neiðn; iÞ to get final
neural patch fMlðSnÞðjbestÞ for position k. Suppose that
jbest � k ¼ ðoffx; offyÞ is the offset from k to jbest. Then, we
define the following offset distance as:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
off2

x þ off2
y

q
: (13)

In our offset map, the larger offset distance is, the lighter the
blue component is for specific position (see the down-left
sub-figure in Fig. 8). We compare the distance between
selected neural patch and benchmark sketch neural patch in
this position. If the distance exceeds a certain threshold, the
position is marked with pure red. In Fig. 8, we can see
clearly that, when cross-layer cost aggregation is used, the
selected neural patch resembles benchmark sketch neural
patch more. But using a larger size of object region has no
obvious improvement. The reason lies in that our Enhanced
3D PatchMatch has already selected a relevantly accurate

neural patch. The second stage searching around object
region could be viewed as a kind of fine-tuning. In this way,
larger size of object region could not improve synthesis
results too much, however, it would be a waste of synthesis
time. Thus, we set the window size of such regions to 5� 5.

Patch Size in Our Enhanced 3D PatchMatch Algorithm. In
our sketch synthesis framework, the most import parameter
is the patch size for layers in L. Here, we perform a simple
experiment to show the reason of patch size selection. We
denote the sketch drawn by artist as benchmark sketches.
To evaluate the effects of different patch size, we compute
the FSIM value [43] between benchmark sketch and synthe-
sized sketch. Compared to SSIM [44], FSIM emphasizes
more on local structure details and is more qualified for the
assessment between benchmark sketch and synthesized
sketch. From Fig. 9, we can see clearly that, with a larger
patch size, the FSIM value between the benchmark sketch
and the synthesized sketch is closer. Considering that using
a larger patch size also means larger computation load, we
balance between speed and quality and choose the patch
size for layer conv1 1 as 24� 24. We set the patch size for
layers in L as conv1_1: 24� 24, conv2_1: 12� 12, conv3_1:
6� 6, conv4_1: 3� 3. Apparently, in our cross-layer cost
aggregation, the channels differ from layer to layer. And by
above patch size setting, the raw cost defined in Eq. (6) for
different layers has the same ratio relative to the whole fea-

ture map: (conv1_1 : conv2_1 : conv3_1 : conv4_1) = (24�24
W�H :

12�12
1
2W�1

2H
: 6�6
1
4W�1

4H
: 3�3
1
8W�1

8H
)= (1 : 1 : 1 : 1). This setting makes the

whole cost aggregation available.

Optimization Strategies Comparison. The optimization
strategies affect the synthesis speed. We compare the total
loss decedent with respect to iterations for different

Fig. 8. Effects of cross-layer cost aggregation. The down-left sub-figure
shows an example of conv1 1 offset map defined in Eq. (13) for a certain
input face. Note that, when the distance between selected neural patch
and neural patch of benchmark sketch feature map in the position
exceeds a certain threshold, the position is marked as red. We could see
that the pixel percentage of red regions decreases with cross-layer aggre-
gation being added (red and green lines). Results without cross-layer
aggregation (0� 0 ) have worse effects than those with it. But bigger
searching size (20� 20 compared to 5� 5) has no obvious improvement.

Fig. 9. FSIM value and matching time trade-off between different patch
size. Note that here the patch size denotes the patch size of layer
conv1 1. The upper diagram shows the increment of the FSIM value and
matching time with respect to different patch size. The lower part shows
the detailed synthesis result with respect to different patch size. Since
the FSIM value increases slower when patch size approaches 24� 24,
we choose 24� 24 as our final configuration.
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strategies. The result is shown in Fig. 10. Given same target
feature maps in the four main layers and an initial noise
image, we take down the overall loss of Eq. (1) with incre-
ment of iterations. From Fig. 10, we could see that the CG
method [45] and L-BFGS-B method [42] have obvious con-
vergence processes, while the TNC method [45] cannot con-
verge within 1000 iterations. Based on the experiments, we
choose L-BFGS-B as our optimization strategy.

5 EXPERIMENTAL RESULTS

5.1 Experiments Configuration

The experiments of our proposed approach are executed
mainly on two face datasets: CUHK Face Sketch Databaseand
AR Database. We set two kinds of comparison, which are
qualitative and quantitative verifications. For the inter-data-
base verification of CUHK database we use the default 88
faces for training and extract their feature maps off-line.
The rest 100 faces are used for testing. The AR database
has 123 pairs of face and sketch, and we take the leave-
one-out strategy to test our synthesis results. Since the
benchmark sketches from the CUHK Face Sketch Data-
base are cropped into 250� 200, we use this size for all
verification.

Methods Chosen for Comparison For face sketch synthesis
tasks, the state-of-the-art researches are mainly in three
frameworks, based on Markov Random Field [17], Markov
Weight Field [18], and Spatial Sketch Denoising [19]. MRF-
based sketch synthesis uses a multi-scale graph model and
converts synthesis task into solving a Markov Random
Field. This work enlightens several following researches,
including MWF method. The MWF method synthesizes a
patch via k patches selected from dataset and optimize the
weights for the k patches. The SSD-based method uses the
same k patches to synthesize a patch, but uses a novel
sketch denoising method to smooth results. In general,
MRF-based method has largest noise due to the direct use
of patches. The SSD-based method has lowest noise but
loses the sharp edges of pencil stroke, which makes results
deviate from sketch style. The MWF-based method main-
tains a balance between the other two methods and achieves
effective results for different samples.

5.2 Qualitative Comparisons

5.2.1 Synthesis Results of CUHK Database

Fig. 11 shows the comparison for CUHK database. The four
columns are random synthesis samples on CUHK face test
dataset. From the first column, we can conclude that the art-
ist are inclined to use hard strokes to draw chins in order to
highlight the outline of the face. In the neck regions around
face, the artist likes to use shadows to express light relation-
ship. From the comparisons, we find that our results have
the sharpest chins and best shadow effects around chins,
which gives them stereo perceptions. The MRF-based
results are the noisiest ones because such method only uses
small portions of patch to do belief propagation and seg-
ments boundaries between patches by graph cut. The seg-
mentation could not confirm smooth boundaries. In the
fourth row second column, the collar regions of the face
contains obvious inconsistency between patches. MWF-
based method improves such inconsistency between
patches greatly by using several patches instead of just one
patch to do inference. Through different weights, such
method could create patches that even do not exist in data-
set. In general, the MWF-based method is visually superior
to the MRF-based method, but patch blending to a certain
extent also brings the problem of blurring. The SSD-based
method has the most blurred synthesis. Lots of detailed
information loses, and the whole sketch cannot present pen-
cil-like stroke as artist does in the first row. Compared to
these methods, our approach achieves a balance between
detailed pencil stroke and moderate blurring. In the third
subject of the comparison, the forehead hair is sparse
and its color merges with forehead skin. The other three
methods could only simulate such color merging by blur-
ring (SSD) or inconsistency (MRF and MWF). Our result

Fig. 10. Loss descendant comparisons between different optimization
strategies. Target feature maps are fixed and an initial noise image are
fed into VGG19 network. The diagram gives the overall loss defined in
Eq. (1) according to different iterations. The right part of this diagram
gives midterm synthesis results after same iterations given different opti-
mization strategy. We could find that L-BFGS-B [42] prevails CG [45]
and TNC [45], which is the reason why we choose such method.

Fig. 11. Face sketch synthesis results using different methods on the
CUHK face sketch database. The first column shows benchmark
sketches, which is drawn by artist according to face photos. The second
column shows synthesis results by MRF [17]. The third column shows
results by MWF [18]. Fourth column shows results by SSD [19]. The last
column is the results produced by our approach.
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perfectly restores benchmark sketch’s style. Shadow effects
are also our advantages. In noses and chins, our results show
the most obvious shadow effects compared to other three
methods. Our results’ face contours are also the most full
and sharp, which give best pencil-like visual conceptions.

5.2.2 Synthesis Results of AR Database

The AR database has more complicated face structures than
CUHK database, which could be used to test the robustness
of our approach. We choose four typical faces for the test,
two of them wear glasses. As mentioned before, we adopt
the leave-one-out strategy for the AR faces comparison,
which is using 122 face-sketch pairs of the whole 123 pairs

as training data except the one to be synthesized. Fig. 12
shows the results comparison between MRF [17], MWF [18],
SSD [19], and our method. In the second, third rows of
Fig. 12, face regions with glasses are hard to process. We
can see clearly that eyes and glass borders are inconsistent
or mixed together. Due to global search processes, our
approach is able to distinguish eyes and glass borders per-
fectly and maintains sharp edges for round shape of glasses.
From Figs. 11 and 12, we could see clearly that our approach
outperforms other methods in different databases and pre-
serves face details best among all existing methods.

5.2.3 Detailed Synthesis Examples Citing

Fig. 13 gives some detailed synthesis examples to prove the
advantages of our face sketch synthesis. First subject of
Fig. 13 is a girl with big eyes and obvious double-fold eye-
lids. From the comparison of enlarged view of the right eye,
we could see that only our synthesis gives clear outline of
this double-fold eyelids. But all the four methods have a
common drawback that the actual eye shape is rounder
than any of synthesis sketch eyes. However, our approach
still could not exactly restore the shape of small face compo-
nents and this would be reserved for further researches.
The second row first column shows a man with red collar,
and we select a region with junction of neck, collar and
background. From the enlarged view, we could see clearly
that our approach has the best detailed expression in junc-
tion of different components. All the other three methods
could not express such junction and merge all edges
together. The third subject is a man and the magnification
region is his mouth. Since the colors of the skin and mouth
are close, the former three methods have inconsistency
around edges of the mouth. Last control group shows that
our approach has a certain ability to handle regions with
light reflections. The forth subject wears glasses and his
right eye hides behind the glass with reflections. All the
former three methods could not restore the eye but just
mix it with the glass. Our approach perfectly expresses
the eye despite the light reflections of glasses, which
shows the robustness.

Fig. 12. Face sketch synthesis results using different methods on the AR
face sketch database. The first column shows benchmark sketches,
which is drawn by artist according to face photos. The second column
shows synthesis results by MRF [17]. The third column shows results by
MWF [18]. The fourth column shows results by SSD [19]. The last col-
umn is the synthesis results by our approach.

Fig. 13. Qualitative evaluation on different methods with local detail magnification. (a) Input face photos. (b) Synthesis results by MRF [17]. (c) Syn-
thesis results by MWF [18]. (d) Synthesis results by SSD [19]. (e) Our synthesis results. This picture is better for watch with color version.
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5.2.4 Comparison with CNN-Based Models

In [27], a fully convolutional network is trained for photo-
sketch mapping, which is composed of six convolutional
layers, and small size filters (3� 3 and 1� 1) are defined for
each layer. The comparison between this work and ours is
shown in Fig. 14. There are two main shortcomings in this
method. One is the lack of training pairs. The CUHK face
sketch training set has 88 training pairs, which is inadequate
for such a complicated photo-sketch mapping. From Fig. 14,
we could find that the result of [27] seems like a gray ver-
sion of original color face image and has little sketch attri-
bute, which indicates that the trained network still cannot
capture core differences between photo and sketch. Another
shortcoming lies in that the synthesis quality in [27] is
dependent on input image size. CNN convolves input
image in each layer and serves as a kind of smooth filtering.
The value of each pixel is influenced by large region of
image’s other parts. This explains why the result of [27] is
blurred too much. Our approach also can accurately restore
sketch strokes and avoid general blurring effects.

Recently, a lot generative adversarial network (GAN)
based models [46], [47] has been released. The methods
could map a set of images directly into another category of
images by training a discriminator and a generator at the
same time. We also make comparison with CycleGAN [46]
in Fig. 14. We use the 88 training pairs of CUFS to train a
CycleGAN model with 400 epochs, then the generator is
used to generate face sketch from a probe photo. From
Fig. 14d, we may say that the state-of-the-art GAN-based
model did quite well in shape reconstruction. Compared
to Fig. 14b, results of Fig. 14d solve the blurring effect
and have sharp edges. However, our method in Fig. 14c
still prevails GAN-based method in two points: (1) our
results have more pencil-like style than the results by
CycleGAN [46]. Our method does not map original photo
pixel-wisely into a sketch and thus is closer to human-
like pencil drawing art; (2) In some complex small face
area, GAN-based model still has lots of noise, while our
method could overcome that. In the nose area of sketches

in Fig. 14d, large parts of noise pixels exist, while in our
results there are no such drawback.

5.3 Quantitative Comparisons

5.3.1 SSIM and FSIM Evaluation

Table 2 gives the quantitative comparisons of different
methods. We use SSIM (Structural Similarity) and FSIM
(Feature Similarity) [43] to measure our approach. We com-
pute the whole mean SSIM and FSIM between benchmark
sketches and synthesis results via different methods. For
SSIM computation, we use default configuration of image
processing library scikit-image. For FSIM, we use the
default code from author’s page [43]. In Table 2, we find that
our approach has no advantage in SSIM scores, but has
advantages in FSIM scores. SSIM metric is based on the sta-
tistical information of images. It measures the overall struc-
ture difference of two images. Since the MRF [17], MWF [18]
and SSD [19] methods directly use patches from training set,
their overall structure information may be better preserved.
Compared to SSIM, FSIM also considers phase consistency
in Fourier components and gradient magnitudes under dif-
ferent operators. Generally, FSIM may measure the regional
structural similarity such as contours and hair better than
SSIM. In actual conceptions, the MWF results did appears
better than MRF and SSD. And our results outperform the
MRF, MWF, and SSD based methods, where our approach
preserves regional strokes informationmuch better.

5.3.2 PCA-Based Recognition Rate Evaluation

To further validate our synthesis results quantitatively, we
use the same recognition rate method used in [48] to com-
pare the cumulative curves of different methods. Like [48],
we use PCA recognition method[49] to evaluate whether a
synthesized sketch similar to hand-drawn sketch. The
results are shown in Fig. 15. It can be seen clearly from

Fig. 14. Comparisons between our proposed method and two different
CNN-based generative models. (a) Input face photo. (b) Synthesis
results by [27]. (c) Synthesis result by our approach. (d) Synthesis
results by [46]. (e) Benchmark sketches drawn by artist.

TABLE 2
SSIM and FSIM Evaluation between Different Methods

Database Metric MRF [17] MWF [18] SSD [19] Ours

CUHK SSIM 0.6951 0.7132 0.7167 0.6939
FSIM 0.7236 0.7329 0.7169 0.7345

AR SSIM 0.7105 0.7404 0.7407 0.7108
FSIM 0.7496 0.7579 0.7441 0.7932

Fig. 15. Cumulative curve comparisons on different datasets. We com-
pared cumulative curve for PCA recognition method [49] between results
from five state-of-the-art synthesis methods. The five methods are
MRF [17], MWF [18], SSD [19], SGRS [48], and ours. (a) The cumulative
curve for CUFS dataset. (b) The cumulative curve for AR dataset.
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Fig. 15 that our proposed method has high-quality perfor-
mance compared to the state-of-the-art methods.

5.3.3 User Study Evaluation I

First, we design two quantitative variables to evaluate the per-
formance of synthesis results. The first is the recognition
speed (s) for the users. For each query photo, the users are pre-
sented with five different face sketches then we record the
time used for users to identify exactly the person of the photo.
The second variable is the retention percentage of users. After
a certain time, the users are presented those sketches again to
test if they could remember those identities. We measure the
mean value of these two variables.We also ask users which of
the following three words best describe the sketch presented
before them for attractiveness: “Low”, “Medium” and
“High”. The above two variables (recognition speed, and
retention) are measured in a short term and a long term. Short
termmeans the first timewe conduct such experiments. Long
termmeans the same experiment conducted ten days later. In
normal sense, long term test ismore challenge than short term
test. We conduct three sets of such test sketches and each set
contains five different sketches. The details are shown in
Table 3. From Table 3, we could find that our results outper-
form MWF and SSD methods in both recognition speed and
retention no matter in short term or in long term. Our results
also achieve highest score in “Attractiveness” in user study.

5.3.4 User Study Evaluation II

To evaluate the quality of our synthesis sketch subjectively,
we also conduct another user study. We invite 50 users, half

of which have artistic background, and the rest half do not.
There are two sets of questions. The first set is to evaluate
howmuch the synthesized sketches reflect the face structure
of original face photo. The other set of questions is to find
out how much the synthesized sketches resemble the stylis-
tic style of sketch drawn by artist. As previously demon-
strated, the MRF-based synthesized sketch has noisier
edges and worse visual conception than the MWF and SSD
based synthesized sketch, thus we choose only MWF and
SSD as methods for comparison. We invite 50 volunteers to
join in our user study. Each participant is asked to grade the
structure similarity and stylistic similarity of six sampled
sketches using 9-point scale (with 9 points being the highest
level). The results are shown in Tables 4 and 5.

From the statistics of Tables 4 and 5, we could see that
our synthesis sketch has the highest scores in both struc-
tures similarity and stylistic similarity. In other words, our
sketch preserves the best face structures compared to the
original photo and presents best sketch style. The MWF-
based sketch has overall lower score than the SSD-based
sketch, and it makes sense since SSD preserves face struc-
ture better. Note that our approach also has the smallest
standard deviation, which means the study participants
have least divergence for the synthesis quality of our syn-
thesis results.

5.4 Extending Synthesis Results

Since our method’s key advantages lie in that we utilize
neural networks to extract features, robustness would be
maintained and our framework is adapted for face photos

TABLE 3
Quantitative User Study

Sketch
group (No.) Methods

Short term
recognition speed (s)

Short term
retention (%)

Long term
recognition speed (s)

Long term
retention (%) Attractiveness

1
MWF [18] 1.8 52 3.5 44 Medium
SSD [19] 2.3 46 3.9 39 Medium
Ours 1.6 83 2.2 62 High

2
MWF [18] 1.9 55 3.3 43 Medium
SSD [19] 2.4 31 4.2 40 Medium
Ours 1.8 67 2.5 66 High

3
MWF [18] 2.0 42 3.8 36 Medium
SSD [19] 2.2 41 4.1 33 Medium
Ours 1.9 69 2.4 59 High

TABLE 4
Synthesis Performance Study with Artistic Background

Survey item Methods m s

95% confidence
interval

Lower
Bound

Upper
Bound

Structure
MWF [18] 5.48 1.92 5.22 5.76
SSD [19] 5.44 1.65 6.21 6.67
Ours 7.81 0.83 7.69 7.92

Stylistic
MWF [18] 4.91 1.33 4.72 5.10
SSD [19] 4.81 1.23 4.63 4.98
Ours 7.98 1.11 7.82 8.13

TABLE 5
Synthesis Performance Study without Artistic Background

Survey item Methods m s

95% confidence
interval

Lower
Bound

Upper
Bound

Structure
MWF [18] 5.81 2.15 5.57 6.06
SSD [19] 5.92 1.94 5.70 6.14
Ours 6.81 1.83 6.60 7.02

Stylistic
MWF [18] 5.23 2.05 5.00 5.46
SSD [19] 5.61 1.95 5.39 5.83
Ours 6.92 1.89 6.71 7.14
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under different poses and lighting conditions. In Fig. 16, we
compare different synthesis methods for face with poses
variation. We could find that our approach outperforms
other methods in detailed expression. Especially in nose,
eyes and mouth regions, our results maintain sharp edges
compared to other methods. However, there are some
drawbacks in our results, one of which lies in that our
method could not contain face contours when input face
has pose variation. The reason may be that in the training
dataset, all of the boundaries between background and faces
have a certain lighting direction. When matching with front
face that lighting direction can be correctly considered. As
respect to different poses, the lighting conditions have
changed to difficult situations, which result in inaccurate
matching between neural patches. In our following work,
we plan to enhance on more complicated poses and light
conditions. In addition, we have used more datasets to test
our approach, i.e., XM2VTSand CUFSF. The two datasets
contain sketches with shape exaggeration drawn by artists.
The XM2VTS database has 295 pairs of face and sketch, and
the CUFSF database has 1194 pairs of face and sketch. We
apply the leave-one-out strategy to test our synthesis results
on each of the dataset. Fig. 17 shows our more results on the
XM2VTS dataset and CUFSF dataset. From Fig. 17, we can
see that our results are with good visual effects. Please note
that the artists’ sketch drawing style for the CUFSF dataset
are quite different from the CUHK Student, AR and
XM2VTS dataset. Thus, the result style of Fig. 17b may look
differently from results on other three datasets.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a neural representation based face
sketch synthesis framework. The proposed framework
pieces neural patches together in key layers, and utilizes
them to serve as target feature maps. By the guidance of the
target feature maps, an input noise image is gradually opti-
mized to a face sketch image. Our approach utilizes the
Enhanced 3D PatchMatch to search in training photo

feature map spaces in the first stage. Then, the cross-layer
cost aggregation in object regions is used in order to find
the best match with inter-layer consistency for query neural
patch in the second stage. Since our method synthesizes
image based on neural patches rather than RGB patches,
our results could express sharp sketch edges and avoid
mosaic effects at the same time. Compared to former feature
maps based methods, the removal of content loss and add-
ing of style loss term stabilize the general sketch tone of
results, and make their histogram resemble true pencil
sketch’s. Our approach is also previous to end-to-end CNN-
based model [27] in that our results have much sharper
edges and look like be made up of sketch strokes. In conclu-
sion, our approach makes a perfect balance between vivid
sketch artistic style and accurate face structure. Our work
still has its limitations. The results produced by our method
may not be fully satisfactory when the face poses or light
conditions are too complicated. We will work on to address
such complications as our future work. We will also work
on incorporating latest face registration techniques into our
Enhanced 3D PatchMatch to ensure the spatial correspon-
dence between patches in the training face photo and face
sketch pairs to open our method for more general datasets.
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