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Deep Convolutional Neural Networks for Human
Action Recognition Using Depth Maps and Postures

Aouaidjia Kamel, Bin Sheng ~, Po Yang, Ping Li

Abstract—In this paper, we present a method (Action-Fusion)
for human action recognition from depth maps and posture data
using convolutional neural networks (CNNs). Two input descrip-
tors are used for action representation. The first input is a
depth motion image that accumulates consecutive depth maps
of a human action, whilst the second input is a proposed mov-
ing joints descriptor which represents the motion of body joints
over time. In order to maximize feature extraction for accurate
action classification, three CNN channels are trained with dif-
ferent inputs. The first channel is trained with depth motion
images (DMIs), the second channel is trained with both DMIs
and moving joint descriptors together, and the third channel is
trained with moving joint descriptors only. The action predictions
generated from the three CNN channels are fused together for
the final action classification. We propose several fusion score
operations to maximize the score of the right action. The experi-
ments show that the results of fusing the output of three channels
are better than using one channel or fusing two channels only.
Our proposed method was evaluated on three public datasets:
1) Microsoft action 3-D dataset (MSRAction3D); 2) University
of Texas at Dallas-multimodal human action dataset; and 3)
multimodal action dataset (MAD) dataset. The testing results
indicate that the proposed approach outperforms most of exist-
ing state-of-the-art methods, such as histogram of oriented 4-D
normals and Actionlet on MSRAction3D. Although MAD dataset
contains a high number of actions (35 actions) compared to exist-
ing action RGB-D datasets, this paper surpasses a state-of-the-art
method on the dataset by 6.84%.

Index Terms—Action recognition, convolutional neural
networks (CNNs), depth motion image (DMI), moving joints
descriptor (MJD).
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I. INTRODUCTION

UMAN action recognition is necessary for various
Hcomputer vision applications that demand infor-
mation about people’s behavior, including surveillance
for public safety, human—computer interaction applica-
tions, and robotics [1]-[6]. There are a variety of human
action recognition systems, such as video-based human action
recognition [7]-[10], wearable sensor-based human action
recognition [11]-[15], wireless sensor network-based
human action recognition [16], [17], etc. Among these stud-
ies, due to high recognition accuracy and easy deployment,
video-based human action recognition techniques have got
more research attention and been widely applied into lots of
industrial applications.

Traditionally, video-based human action recognition meth-
ods are mostly based on processing sequences of two-
dimension (2-D) RGB color images by utilizing classifiers
like HMM [18], KNN [19], template matching [20], dynamic
Bayesian network [21], SVM [7], etc., into global or local
representations like blob feature, motion energy image, optical
flow, etc. While these methods enable delivering up to 97%
accuracy in recognizing simple human actions like running,
bending, and hand waving on KTH dataset [22] for example
with a simple background, they are quite sensitive to influenc-
ing factors on the quality of RGB images, such as complex
background, illumination variation, and clothing color, which
makes it difficult to segment the human body in every scene.
Additionally, semantically equivalent actions can be performed
in various ways of body movements by each individual. On the
other hand, two different actions having a similar trajectory of
motion make it more difficult to distinguish correctly. The lack
of depth cues in colored images could lead to significant degra-
dation of discriminating capability of an action recognizer and
has a negative impact on recognizing the action, especially
when it is performed in the camera direction. In order to
overcome above limitations, recent human action recognition
technologies [23]-[27] have considered involving depth cam-
eras to provide three-dimension (3-D) depth data in a form of
RGB-D images with illumination invariant, uniform color, and
depth information that eases the ambiguity of human’s motion.
In order to accurately estimate the postures of the human body
skeleton joints and further recognizing human actions, several
human motion capture systems are built with multiple sensory
data from depth cameras, RGB cameras, or wearable devices.

Among these motion capture systems, due to the availability
of cost-effective devices like Kinect [28] and expressive
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Fig. 1.

Our proposed three channels CNN model for action recognition. Gray layers represent the feature maps outputs after applying convolutional and

max-pooling operations. The size of the output feature maps is shown on the top of layers. STD: stride, PAD: padding.

features provided by depth maps and body postures,
using depth maps or body postures to represent the human
motion for action recognition became quite popular. But they
also have some limitations on existing techniques. First of
all, traditional depth map data-based human action recogni-
tion usually needs to build up multiview depth map dataset
and extract a large volume of features in order to provide a
distinctive representation of each human action for classifi-
cation. For instance, two actions may look similar from the
front view, but they have a different appearance from side
views. While utilizing some feature extraction [29] from mul-
tiview, it might be possible to identify these two actions. The
process of building up multiview camera and collecting suffi-
cient features is quite time-consuming. Second, using human
body posture data for human action representation is quite
sensitive to the joints movement. It is very difficult to find
two human actions that have similar joints coordinates during
their motion, which may reflect on recognizing two seman-
tically equivalent actions as different actions when they are
performed in a slightly different way. Finally, existing methods
of using depth maps or body postures data usually adapt tra-
ditional classifiers like SVM, which requires handcraft feature
extraction. However, recently, deep learning and especially
convolutional neural network (CNN) which was inspired by
the human visual cortex hierarchic processing, have made a
huge success in image classification [30], [31]. Consequently,
regarding above considerations, this paper motivates to inves-
tigate a new method of fusing single depth map and body
postures for achieving more cost-effective and accurate human
activity recognition.

In this paper, we propose a new method (Action-Fusion)
for human action recognition from depth maps and posture
data using three channels of a deep CNN model. CNN is a
powerful technique for both feature extraction and classifi-
cation, which can automatically learn discriminative features

from a training data. Using CNN as a tool for extracting fea-
tures from action representations would be of a great advantage
for action recognition. As a matter of fact, depth maps features
are convenient to classify semantically equivalent actions when
they are performed in a slightly different way. The previous
analysis inspires as to think that a better approach for action
recognition should be based on using the two types of data
to balance the use of features by strengthen the weak part in
each type by the strong part in the other, and come up with a
robust action representation that can be used to classify actions
accurately.

In this paper, two descriptors are used to represent the
human actions, depth motion image (DMI) descriptor to rep-
resent the depth maps sequence and moving joints descriptor
(MJD) to represent body postures sequence. The DMI descrip-
tor is employed in a different way from the one in [29]. In
their work, they calculated the descriptor from the front view
and side view, then the results are used to calculate another
two descriptors. However, in this paper, we prove that using
the descriptor from the front view only with the help of MJD
is enough to generate state-of-the-art results and hence, with
less computation complexity. The DMI assembles depth maps
of an action in order to capture the changing in depth of
human motion. Our computation method is based on calculat-
ing the changing in depth of all the action frames at once rather
than calculating it between two frames sequentially. MJD is
inspired by [32]. In their work, they used Cartesian coordinates
representation, however, in this paper, we propose a robust
representation of the body joints movement over time using
spherical coordinates instead of directly using Cartesian coor-
dinates. The motivation behind choosing spherical coordinates
for modeling the motion is that the human body joints gen-
erally move around a fixed point of the body hip center in
a circular manner. The changing in the angles provides fur-
ther information about the joints movement direction, unlike
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Fig. 2. MIJD. An example of draw circle action from the MSRAction3D
dataset. Left-Top: skeleton sequence. Left-Bottom: the creation of RGB MJD
image, where N is the total number of frames, s is the joint number, and n is
the frame number. Right: skeleton model shows the three spherical coordinates
of joint jg.

Fig. 3. DMI. An example of draw circle action from MSRAction3D dataset.
Left: depth maps sequence. Middle: DMI. Right: cropped ROI and resized to
112 x 112.

Cartesian coordinates representation that provides only the
changing in the joints position.

The action recognition process introduced in this paper
involves three CNN channels trained with DMI and MJD
descriptors for feature extraction and classification. The first
channel is trained with DMI, the second channel is a con-
nection between two subchannels. One subchannel is trained
with DMI and the other subchannel is trained with MJD. The
third channel is trained with MJD only. Each channel gener-
ates its own scores for the actions. Our experiments reported
that taking the maximum score value of the three CNN chan-
nels leads to low accuracy prediction on the testing data. In
order to maximize the score of the right action, five score
operations are proposed and analyzed to select the best oper-
ation that can predict the right action accurately. In general,
the proposed approach generates three outputs from the CNN
channels and five other outputs produced by fusion operations
between the three channels. The maximum action score value
of all the outputs is considered as the final action prediction
result. The results generated from fusing the three CNN chan-
nels are better than the ones generated using a single channel
or two fused channels only. In fact, each channel learns fea-
tures that cannot be seen in the other channels, which make
combining them together produce better results. The experi-
mental results of the proposed approach are compared with the
state-of-the-art methods on three public datasets: 1) Microsoft
Action 3-D dataset (MSRAction3D); 2) University of Texas at
Dallas-multimodal human action dataset (UTD-MHAD); and
3) multimodal action dataset (MAD) dataset. The comparison
outcomes proved that the action recognition accuracy is better
than most of existing methods, and proved also that the recog-
nition accuracy is stable even with a large number of actions,
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such as MAD dataset. The contributions of our proposed work
can be summarized as follows.

1) An effective three channels deep CNNs method is
proposed by using depth maps and posture data. This
method is beneficial to strengthen the weaknesses of
using one type of data for action recognition. A thorough
performance evaluation of the proposed method with
three general datasets has been carried out. The results
suggest that the proposed method can effectively and
efficiently recognize human actions with an improved
accuracy over existing state-of-the-art methods, such
as [23], [24], and [33].

2) A new MID descriptor is proposed to represent joints
movement in a form of spherical coordinates. The
descriptor provides essential information on joints
movement directions from the size of angles in addi-
tion to the changing in joints poses. A DMI descriptor
is also used to represent the changing in action depth
from the front view only rather than two views, such
as [29]. The MJD representation can replace efficiently
the missing side views with its informative represen-
tation that has a great influence on boosting whole
accuracy. Fig. 1 shows how the two descriptors pro-
cessed by the three CNN model channels. Figs. 2 and 3
illustrate the transformation of raw data to the MJD and
DMLI, respectively.

3) Score fusion operations are proposed for predicting the
right action from three CNN channels of the trained
model. Each of the three channels generates a score for
each action. Usually, the highest score action represents
the right action. It is possible to have two or three chan-
nels generate a highest score for different actions, and
we cannot decide which channel must be considered.
On the other hand, the right action may have a lower
score than the ones generated from the CNN channels.
The role of fusion operation is to maximize the score
of the right action whatever the prediction of the three
channels.

4) A large training data is one of the key success factors for
a CNN model prediction accuracy. Due to the lack of a
large RGB-D action recognition dataset, the two action
representations help to reinforce the learning process
on a small amount of data, which reflects less training
computation time with a high learning accuracy.

II. RELATED WORK

Recently, action recognition in the robotic domain has
become popular because of the need for human-robot
interaction. It requires using different types of features for
action representation due to the diversity of human actions
in the wild. The work in [34] investigated the problem of
first-person interaction activity recognition using a dataset col-
lected with a robot during the interaction with humans. Their
method concatenated different types of descriptors to recog-
nize human activities. Ryoo et al. [35] extended the dataset
presented in [34] for early activity recognition to avoid harmful
actions during the interaction with the robot. Gori et al. [36]
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applied state-of-the-art action recognition methods to clas-
sify challenging human actions of a dataset collected with a
moving robot in the wild, which includes actions performed
spontaneously in different scales, with occlusion, and with
multiple people. Duckworth et al. [37] also used a mobile
robot for activity recognition from long-term observation by
encoding sequences of skeleton joints to a qualitative spatial
representation.

Several recent depth-based approaches have been reported
to improve human action recognition accuracy. An action
graph based on a sampled 3-D representation from depth
maps to model the human motion is proposed in [25]. Several
four-dimension (4-D) descriptors have been used to represent
human actions. In [23], a histogram of oriented 4-D normals
(HON4D) is used in order to describe the action in 4-D space,
including spatial coordinates, depth, and time. Vieira ef al. [38]
also represented the depth sequence in 4-D grids by dividing
the space and time axis into multiple segments. Another 4-D
descriptor proposed by [39] called random occupancy pattern,
which deals with noise and occlusion to increase the robust-
ness. Action recognition from different views has been applied
to gain more discriminative features. Kim et al. [29] generated
a side view from the front view of a depth map. Both views are
transformed into depth motion appearance and depth motion
history (DMH) descriptors, then SVM is trained with the two
descriptors to classify the action. Recently [40] generates top
and side views by rotating 3-D points from the front view.
The three views are used as inputs to three CNN models for
feature extraction and classification.

In parallel to depth-based approaches, skeleton-based meth-
ods also have a huge contribution to action recognition
research. In [24], each joint is associated with a local occu-
pancy pattern descriptor, which is translation invariant and
provides highly discriminative features. They also proposed a
temporal motion representation called Fourier temporal pyra-
mid in order to model the joints movement. EigenJoints is a
new type of features in [41] to combine action information,
including static postures, motion, and offset features. A frame-
work based on sparse coding and temporal pyramid matching
is proposed in [42] for better 3-D joint features representa-
tion. A histogram of 3-D joint location called HOJ3D in [26]
represents the human joints locations, then posture words are
built from HOJ3D vectors and trained using a hidden Markov
model to classify the actions. In [27], a framework is proposed
for online human action recognition using a new structured
streaming skeletons feature, which can deal with intraclass
variations, including viewpoint, anthropometry, execution rate,
and personal style. Zanfir er al. [43] proposed nonparametric
moving pose (MP) for low-latency human action and activity
recognition, the framework considers pose information, speed,
and acceleration of the joints in the current frame within a
time window. A hierarchical dynamic framework was reported
in [44] based on using deep belief networks for feature extrac-
tion and encoding dynamic structure into an HMM-based
model. Wang et al. [45] addressed the action recognition in
videos by modeling the spatial-temporal structures of human
poses. The method improves the pose estimation first, then
groups the joints into five body parts and applies data mining
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techniques to get spatial-temporal pose structures for action
representation. Du er al. [32] and Ke et al. [46] transformed
the joint coordinates into a 2-D image descriptor to classify the
actions using CNNs. Very recent works (SOS) [33] and joint
trajectory maps [40] propose a new approach which trans-
forms the skeleton joints trajectories shapes from 3-D space
into three images that represent the front view, the top view,
and the side view of the joints’ trajectory shapes. Three CNNs
are used to extract features from the three images to classify
the actions.

CNN [47] is a powerful technique for feature extraction and
classification. Recent action recognition approaches started
to focus more on using CNN for action classification rather
than using SVM. Researchers in deep learning try always to
come up with new techniques to improve the CNN archi-
tectures and enhance the performance of feature extraction,
classification, and computation speed. Gu et al. [48] sum-
marized recent advances in CNNs in term of regularization,
optimization, activation functions, loss functions, weight ini-
tialization, etc. Recent CNN-based action recognition methods
are based on using multiple action representations that employ
many CNN channels for the processing. In [49], many fea-
ture concatenation architectures are proposed in order to
improve the classification accuracy using multiple sources
of knowledge.

Although the previous approaches achieved good results, the
problem of action recognition is still open and requires more
robust action representation and feature extraction techniques
to improve the accuracy and overcome the weaknesses of the
previous methods. To this end, the proposed work in this paper
investigates the use of both types of data: depth maps and
postures to enhance the action recognition throw using CNN
for feature extraction and classification.

III. ACTION RECOGNITION METHOD

Our action recognition framework is shown in Fig. 4. We
use two types of data sequence for action representation:
1) depth maps and 2) body postures. Each of the two inputs
is transformed into a descriptor that assembles input sequence
in one image, namely DMI for depth maps and MJD for body
postures. A model of three CNN channels of the same struc-
ture is trained and tested with the two descriptors. We propose
several score fusion operations to get a high score of correct
action by combining the prediction scores of the three CNN
channels.

A. Data Preprocessing

1) Depth Motion Image: The DMI describes the overall
action appearance by accumulating all depth maps of the
action over time to generate a uniform representation that can
define each action with its own specific appearance from the
front view. It captures the changing in depth of the mov-
ing body parts. The DMI representation provides distinctive
features for each action which ease the feature extraction
task for the CNN model. The following equation illustrates
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Fig. 4. Framework of our proposed action recognition method. Depth maps
sequence is transformed into a DMI descriptor and postures sequence is trans-
formed into an MJD. A model of three CNN channels (Chl, Ch2, and Ch3)
extracts features from the descriptors. Score fusion operations are used to
maximize the score of the right action from the three CNN prediction outputs.

the calculation of DMI:

DMI(, j) = 255 — min(I/(i, j, 1))
vVt e [k..(k+N —1)] (1)

where I(i, j, 1) is the pixel position (i, j) of the frame I at
time ¢, DMI is a gray image (8 bits) that represents the depth
difference from frame k to k + N—I, and N represents the
total number of frames. The pixel value of DMI image is
the minimum value of the same pixels position of the depth
maps sequence. The resulting image is normalized by divid-
ing each pixel value by the maximum value of all pixels in
the image, then the region of interest (ROI) is cropped to get
rid of uninformative black pixels. Fig. 3 shows a draw circle
action sequence with its DMI and Fig. 5(top) shows seven
DMI actions samples created from the MSRAction3D dataset.

2) Moving Joints Descriptor: From the 20 joints of the
skeleton model provided by the datasets, only 12 most infor-
mative joints are selected. Fig. 2(right) shows the joints
selected for the processing. In order to make the hip center
joint O the origin of the system, we subtract its coordi-
nates from each of the 12 joints coordinates. The posture
data provided by the datasets are presented in a form of
Cartesian coordinates (x,y, z). However, the action repre-
sentation using Cartesian coordinates is sensitive to joints
movement, which may reflect on representing two semanti-
cally equivalent actions as different actions. The movement
of human body joints during the motion is subject to some
restrictions. They cannot move farther than a limited distance
from the hip center joint. Furthermore, each joint has a limited
range of angle to move. Those restrictions can be modeled by
spherical coordinates as presented in Fig. 6, which shows an
example of joints movement during a running action and its
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representation in spherical coordinates. The distance r repre-
sents how is the joint far from the hip center O. The angles
6 and ¢ are useful to indicate the movement direction of the
joint.

In order to construct the MJD from spherical coordinates,
the Cartesian coordinates of joints are transformed to spherical
coordinates with taking into consideration the hip center joint
O as the origin of the system. The transformation is described
in (2) and (3). In spherical coordinates system, the joint motion
is subject to three metrics, the angle 6 represents the vertical
angle of the joint with the z-axis, the angle ¢ represents the
horizontal angle with the x-axis, and the radius r represents
the distance between the origin and the joint. For the sake of
capturing the change in the spherical coordinates over time,
three gray images R, G, and B are constructed to represent
the motion of 6, ¢, and r, respectively. The rows number of
each image represents the joints number, the columns number
represents the frames number of the action, and the pixel value
is the coordinate of the joint J; in the frame n as illustrated
in (4). Finally, an RGB image is constructed by combining
the three gray images together to produce the finale descrip-
tor image. Fig. 2(left) illustrates the construction of MJD and
Fig. 5(bottom) shows seven MJD samples created from the
MSRAction3D dataset

Joints = {J1, ..., Jk,....J12}, Jk=(0,¢.,7) ()
r=./x2+y2 + 22, 9:arccos§, ¢:arctanX

r X

3)

R(Jy,n) =1{6 : 6 of the joint J; in frame n}
Gy, n) ={¢ : ¢ of the joint Jy in frame n}
B(Jg,n) = {r: r of the joint Jy in frame n}

MID=R+G+B “4)
where x, y, and z are the Cartesian coordinates. 6, ¢, and r
are the spherical coordinates. k = {1, 2, ..., 12} is the joint

number. R, G, and B are gray images, and MJD is the RGB
moving joints descriptor image.

B. Convolutional Neural Network Model

1) Model Description: After the data preprocessing task,
the two descriptors DMI and MJD are resized to 112 x 112
and used as inputs to the CNN model. The model is composed
of convolutional layers for feature extraction and pooling lay-
ers for dimensionality reduction. Thirty two convolutional
filters of size 7 x 7 are used in the first convolutional layer and
three 5 x 5 convolutional filters are used in the second, third
and the forth convolutional layers with 64, 128, and 256 filters
number, respectively. The last convolutional layer applies 512
filters with a size of 3 x 3. Each of the convolutional lay-
ers mentioned before is followed by a “network in network”
structure proposed by [50], which is based on using 1 x 1 con-
volutional filters with a larger number than the previous layer’s
filters. This structure makes the model deeper and has more
parameters without completely changing the network struc-
ture, and with cheap computation cost. However, in our CNN
model, we use the same number of 1 x 1 convolutional fil-
ters as the previous layer. During the training experiments, we
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Fig. 6.  Human body joints motion direction during a running action.
The joints motion is more subject to a rotation, which makes the spherical
coordinate system suitable to represent the joints movement.
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Fig. 7. Network block structure used to improve the CNN model performance
accuracy with less computation cost. H, W, and D refer to height, width, and
depth of the feature maps.

found that using 1 x 1 convolutional filters without increas-
ing the number, improves the accuracy without a noticeable
influence on the computation time. Fig. 7 shows how the two
1 x 1 convolutional layers are used. The size of the output
feature map after using two 1 x 1 convolution layers is the
same as the input size.

Three max-pooling layers of 3 x 3 filter size are used
for dimensionality reduction. Each convolutional layer in the
model is followed by rectified linear units activation func-
tion. A fully connected layer with a size equals the number
of actions is used as the result of feature extraction. Fig. 1
describes the network architecture, including layers output
sizes, and filters. A multinomial logistic loss function is
applied with stochastic gradient descent algorithm to update
the weights during the training process. The textures of the two
input descriptors make it difficult to capture distinctive fea-
tures when the convolutional operation is applied with small
filter size. For example, the application of 3 x 3 filters on
the input image at the very beginning is not efficient because
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Two hand wave

Preprocessing results of seven actions samples from the MSRAction3D dataset. Top: DMI descriptors. Bottom: MJD descriptors.

two images that represent different actions may have similar
features in a 3 x 3 region, which is the reason behind using
7 x 7 filters and 5 x 5 filters in the first convolutional layers.
Usually, CNN architectures end up with one or two fully con-
nected layers before the last classifier layer. However, in our
model, and according to the training experiments, we found
that using only one fully connected layer as a classifier after
the pooling layer generates better results. At the testing phase,
softmax regression layer is used to generate a score for each
class based on the trained weights.

2) Model Training: The CNN model described previously
is employed in three different training channels. We denote
channel 1 by Chl, channel 2 by Ch2, and channel 3 by Ch3.
The channel Chl is trained with DMI descriptors, the channel
Ch2 is trained with DMI and MJD descriptors together, and
channel Ch3 is trained with MJD only. The Channel Ch2 is a
composition of two others subchannels, Subl and Sub2. Each
of the two subchannels is trained with one kind of descrip-
tors, namely Subl is trained with DMI descriptors and Sub2
is trained with MJD descriptors. The two subchannels are
concatenated after the last pooling layer, which results in a
new layer of depth size equals the sum of the two previous
pooling layers outputs of the subchannels. The concatenation
operation was inspired by [49], which propose different con-
catenation methods based on fusing the last fully connected
layers. However, we found that the concatenation of pooling
layers outputs is more efficient in term of accuracy. The three
channels mentioned before are trained together at the same
time with the same parameters.

We initialized the learning rate with 0.01, the weight decay
with 0.0005 and the momentum with 0.9, which are the same
parameters used in AlexNet [30]. However, this initialization
caused unstable behavior in the loss function. Since the learn-
ing rate has a big impact on the training process, we fixed
the weight decay and the momentum, then we decreased the
learning rate several times until 0.0008, which generates a sta-
ble decrease in the loss function. A lower learning rate value
makes the loss still stable but with a slower decrease. We ini-
tialized the weights with [51], and we trained the model with
a batch size of 50 images for each of the two descriptors in all
the datasets. The number of iterations required for each chan-
nel to reach the minimum loss function value differs from one
channel to another depending on the input data features and
the dataset size. The network in Fig. 1 is designed, trained, and
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Fig. 8. Top: samples of feature maps generated from the layers of the
channel Ch2 of the CNN model (DMI features from subchannel Subl and
MID features from subchannel Sub2). Bottom: samples of trained 7 x 7
filters.

TABLE I
SCORE FUSION OPERATIONS ON THE THREE CNN CHANNELS
Fusion | Operation
Fusl | Prod(Sfm1,Sfm3)
Fus2 | Prod(Sfm1l,Sfm2)
Fus3 | Max(Sfmz2,Sfm3)
Fus4 | Prod(Sfm1l,Sfm2,Sfm3)
Fus5 | Prod(Prod(Sfml,Sfm2,Sfm3), Max(Sfml,Sfm3))

tested using caffe deep learning framework [52]. Fig. 8(top)
shows feature maps samples of an input pair of DMI and MJD
descriptors generated from the layers of the channel CH2, and
Fig. 8(bottom) shows samples of 7 x 7 trained filters of the
first convolutional layer.

C. Score Fusion

The output of softmax layer is a vector of length equals
the number of actions (5), where each element represents the
probability of the input image to be a specific action. When we
tested our trained model on the softmax output of each CNN
channel separately, we found that in most cases, the maximum
value corresponds to the correct action. However, for some
test samples, the maximum value does not represent the cor-
rect action. A lower probability value than the maximum may
correspond to the correct prediction. In order to improve the
prediction accuracy of the data samples that generate wrong
classification results, the softmax outputs of the three CNN
channels are fused. In the testing experiments, many fusion
alternatives have been tried, such as element-wise averaging,
maximum, addition, and product, but the maximum and prod-
uct operations which we denote Max and Prod generate better
results than the other operations.

As we will see in the experimental results section, the clas-
sification accuracy does not only depends on the operation
Max or Prod, but it also depends on the channels involved
in the computation. For example, the result of Prod operation
between softmax output Sfml of channel Chl and Sfm2 of
channel Ch2 is different when it is performed between Sfml
of channel Chl and Sfm3 of channel Ch3, or between the three
channels outputs, Sfm1, Sfm2, and Sfm3. While the accuracy
varies according to operation types and channel types, differ-
ent fusion operations are proposed and summarized in Table I.
In total, we have eight possible predictions in our proposed
approach: three from the CNN channels (Sfm1, Sfm2, Sfm3)
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and five from the fused channels (Fusl, Fus2, ..., Fus5). The
final classification result is the maximum value of the eight
outputs as shown in (6).

The motivation behind the model fusion architecture
described in Fig. 1 is that the channel Chl provides features
related to the overall action appearance, which is useful to
recognize the action even when it is performed slightly in a
different way. While the channel Ch3 features are sensitive to
the joints movement, it is rare when we find two actions have
similar features, even when they are semantically equivalent.
The channel Ch2 provide features that balance between the
two representations. Additionally, in the case when some of the
joints are missed because they are not captured by the system,
which will be reflected on missing features in the MJD, the
fusion of MJD and DMI features could help the network to rec-
ognize the actions even though some MJD features are missed.
In fact, the DMI features compensate for the missing features
of MID

Sfml = {pll,...,pcla,...,pm}
Sfm2 = {pzl, <« s Peras ...,pzA}
Stm3 = {p31, ..., Pesas - -+ P34} 5)

where Sfml, Sfm2, and Sfm3 are the softmax layer outputs
of channel Chl, Ch2, and Ch3, respectively. p¢,a, Peya, and
Pesa Tepresent the probability of an action a to be the correct
class in channel Chl, Ch2, and Ch3, respectively. A is the total
number of actions

Action = Max(Sfm1, Sfm2, Sfm3, Fusl, ..., Fus5) (6)
@)

where Action represents the action of the highest score, which
is the final classification result.

IV. EXPERIMENTAL RESULTS

As most commonly used RGB-D human action recogni-
tion datasets [53], we chose three datasets to evaluate the
performance of our proposed method, MSRAction3D [25],
UTD-MHAD [54], and MAD [55]. The datasets provide depth
maps and posture data which are suitable to construct the DMI
and MJD descriptors. We follow the same testing settings of
the state-of-the-art methods to compare our proposed approach
with the previous ones. A set of testing experiments were con-
ducted on the three CNN channels, including the evaluation of
each channel separately and the combination of the channels
together based on the fusion operations. Although the results
of the fused channels vary from a dataset to another. Generally,
the classification results of using MJD in channel Ch3 are bet-
ter than using DMI in channel Ch1 on the three datasets, which
reflects the high performance of using posture representation
over depth representation. However, the performance of chan-
nel Ch2 using both representations DMI and MIJD is better
than Chl or Ch3.

Table II shows a recapitulation of the classification accuracy
of each CNN channel and the fusion operations on the three
datasets. In most cases, the Prod operation performs better than
the Max operation because it multiplies the scores together,
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TESTING RESULTS OF THE THREE CNN OUTPUTEAAEISET}IIIE FUSION OPERATIONS ON THE THREE DATASETS

Channels MSRACction3D UTD-MHAD MAD (Cross-validation : 5-fold)

(Cross-subject) | (Cross-subject) fold-1 fold-2 fold-3 fold-4 fold-5 Average
Sfm1 82.42% 50,00% 70.36%  65.71%  70,00% 68.21% 64.29%  67.71%
Sfm?2 87.91% 82.79% 86.10% 86.79%  87.50%  86.10% 91.79% 87.66%
Sfm3 84.99% 82.09% 86.79%  85,00%  82.50%  87.14%  83.93% 85.07%
Fusl 92.31% 85.17% 90.71%  87.14%  85.71% 88.57%  90.36% 88.50%
Fus2 87.91% 85.12% 8321% 8571% 87.14% 88.50% 91.07% 87.13%
Fus3 91.21% 85.34% 90.36%  90,00% 91.07% 88.93% 95,00%  91.07%
Fus4 93.41% 88.14% 89.64%  88.57%  92.14%  89.64%  95.35%  91.07%
Fus5 94.51% 87.67% 91.10%  90,00% 92.14% 90.71%  95.36%  91.86%
Max 94.51% 88.14% 91.10%  90,00%  92.14% 90.71%  95.36%  91.86%

——o— UTD-MHAD MAD TABLE III
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Fig. 9. Performance comparison of the fusion operations on the three datasets.

which not only maximizes the score of the correct class, but it
also maximizes the score of the class which is correct but its
score has a lower value than the maximum. Additionally, the
Prod operation between three channels (Fus4) generates better
results than the Prod between two channels (Fusl and Fus2)
because of the features diversity. Although the Max operation
does not generate the best results, the correct action often cor-
responds to the maximum of the channels scores. The fusion
operation Fus5 generates the best results in most cases because
it is calculated based on both operations Max and Prod, and it
involves all the three channels scores in the calculation. The
comparison with existing methods is based on taking the max-
imum accuracy of the fusion operations and the three channels
outputs. Fig. 9 shows the stability of the recognition behav-
ior of the fusion operations. If a fusion operation accuracy
is higher on one dataset, it is also higher on the two other
datasets as well.

A. MSRAction3D

MSRACction3D dataset is captured by Microsoft Kinect vl
depth camera, the dataset contains 20 actions, “high arm wave,
horizontal arm wave, hammer, hand catch, forward punch,
high throw, draw x, draw tick, draw circle, hand clap, two
hand wave, side-boxing, bend, forward kick, side kick, jog-
ging, tennis swing, tennis serve, golf swing, pick up, and
throw” performed by ten subjects, each subject repeated the

COMPARISON OF OUR PROPOSED METHOD WITH EXISTING
DEPTH-BASED METHODS ON MSRACTION3D DATASET

Method Accuracy
HON4D [23] 88.89%
SNV [57] 93.45%
Range-Sample Feature [56] 95.62%
Random Occupacy Pattern [39] 86.50%
Bag-of-3D-Points [25] 74.70%
STOP [38] 84.80%
DSTIP [58] 89.30%
Proposed (Action-Fusion) 94.51%

action two or three times. In order to have a fair compari-
son, the testing settings used by [24] are followed to evaluate
our method on the MSRAction3D dataset. Precisely, the cross-
subject protocol, odd subjects are used for training (1, 3, 5, 7,
and 9) and even subjects (2, 4, 6, 8, and 10) are used for test-
ing. Table II (Row 2: MSRAction3D) shows the classification
accuracy results of each CNN channel and the fusion opera-
tions. The fusion score Fus5 achieved the best classification
accuracy on this dataset, followed by Fus4. The classification
results of the second channel Ch2 are better than the ones of
Chl or Ch3. However, the fusion operations results are better
than the three CNN channels results. The maximum value of
the results obtained from the fusion operations and the three
CNN channels is Fus5 by 94,51%, which we consider for the
comparison with existing methods.

Table III shows the comparison results with existing state-
of-the-art methods that are based on using depth map data
only. The accuracy of our proposed method is better than most
existing depth-based approaches except [56]. In spite of the
fact that the experiments setting of [56] on MSRAction3D
dataset are not mentioned, we also compared our results with
their results. Table IV shows the comparison results with exist-
ing state-of-the-art methods that are based on using posture
data only. The proposed method accuracy is also better than
existing skeleton-based methods except [42] which is based
on sparse coding and temporal pyramid matching. Generally,
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COMPARISON OF OUR PROPOSED METHOD WITH EXISTING
SKELETON-BASED METHODS ON MSRACTION3D DATASET

Hammer 100%
Horizontal arm wave E
High arm wave 100%

=
]
D -
=
High arm Horizontal Hammer
wave arm wave
Fig. 12. Classification accuracy of three different actions presented in the

confusion matrix of MSRAction3D dataset (Fig. 10), which look semantically
equivalent in appearance.

TABLE V
COMPARISON OF OUR PROPOSED METHOD WITH EXISTING
METHODS ON UTD-MHAD DATASET

Method Accuracy
EigenJoints [41] 81.40%
Actionlet Ensemble [24] 88.20%
DL-GSGC [42] 96.70 %
HOJ3D [26] 78.97%
SSS Feature [27] 81.70%
MP Descriptor [43] 91.70%
High-level Skeleton Feature [44] 82.00%
Pose Set [45] 90.00%
Proposed (Action-Fusion) 94.51%
high arm wave 1
horizontal arm wave 2 0.92 0.08
hammer 3
hand catch 4 |0.08 017
forward punch 5 0.91 0.09
high throw 6 [0.09
drawX 7 |0.23 023 (13 0.08
drawtick 8
draw circle 9
hand clap 10 1,00
two hand wave 11
side boxing 12
bend 13
forward kick 14 1,00
side kick 15 mm
jogging 16
tennis swing 17
tennis serve 18 0.13
olf swing 19
pickup:ndmmug, 20
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Fig. 10. Confusion matrix of our approach for the MSRAction3D dataset.
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Fig. 11. Fusion operations accuracies of the MSRAction3D dataset.

the performance of our method over skeleton-based and depth
based methods is due to the incorporation of depth features
and posture features. Fig. 10 shows the confusion matrix of the
proposed method for the MSRAction3D dataset and Fig. 11
shows the difference between the fusion operations accuracies
for the MSRAction3D dataset. In Fig. 12, we present the DMI
and MJD of three actions: 1) high arm wave; 2) horizontal arm
wave; and 3) hammer associated with the classification accu-
racy shown in the confusion matrix (Fig. 10). In spite of the
fact that the DMI appearances are almost equivalent, the MJD
has different features which helps to recognize the actions even
when they are performed in almost similar ways.

Method Accuracy
Kinect and Inertial [54] 79.10%
SOS [33] 86.97%
Joint Trajectory Maps [40] 87.90%
Proposed (Action-Fusion) 88.14%

B. UTD-MHAD

UTD-MHAD was captured using a fusion of depth and
inertial sensor data, it consists of 27 actions performed by
8 subjects. Each subject repeats the action four times. The
actions are “right arm swipe to the left, right arm swipe to
the right, right hand wave, two hand front clap, right arm
throw, cross arms in the chest, basketball shoot, right hand
draw x, right hand draw circle (clockwise), right hand draw
circle (counter clockwise), draw triangle, bowling (right hand),
front boxing, baseball swing from right, tennis right hand fore-
hand swing, arm curl (two arms), tennis serve, two hand push,
right hand knock on door, right hand catch an object, right
hand pick up and throw, jogging in place, walking in place,
sit to stand, stand to sit, forward lunge (left foot forward) and
squat (two arms stretch out).” The evaluation settings used for
this dataset follow the cross-subject protocol, odd subjects for
training and even subjects for testing, same as settings of [54].

Table II (Row 3: UTD-MHAD) shows the classification
results of the three CNN channels and the fusion operations.
In this dataset, the Fus4 achieved the highest classification
accuracy by 88.14%. Similar to the MSRAction3D dataset,
the classification results of the second channel Ch2 are better
than the classification results of Chl or Ch3. As the maxi-
mum accuracy value is generated from the fusion operation
Fus4, it is considered for the comparison with existing meth-
ods that have been tested on the UTD-MHAD dataset. Table V
shows the comparison results with the state-of-the-art meth-
ods and Fig. 13 shows the confusion matrix evaluation of each
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Fig. 13. Confusion matrix of our method for the UTD-MHAD dataset.
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Fig. 14. Fusion operations accuracies of the UTD-MHAD dataset.

action. Although there is no many works have been tested on
this dataset like MSRAction3D, the proposed method achieved
better results than one of the recent methods [40]. Fig. 14
shows the difference between the fusion operations accuracies
on the UTD-MHAD dataset and Fig. 15 presents three dif-
ferent actions which look semantically equivalent, clap, arms
cross, and boxing. As it is shown in the confusion matrix
(Fig. 13), the clap action is 13% recognized as arm cross
and 6% as boxing due to its similar appearance to the two
other actions. However the recognition accuracy still 81%, it
proves the performance of the proposed method to classify
actions even when there is a very small difference in their
motions. The arms cross action is fully recognized because it
is relatively different from clap and boxing actions.

C. MAD

The MAD dataset is one of largest RGB-D action recogni-
tion datasets in term of actions number. It contains 35 actions
performed by 20 subjects, each subject performs the action
twice. The actions are “running, crouching, jumping, walking,
jump and side-kick, left arm swipe to the left, left arm swipe
to the right, left arm wave, left arm punch, left arm dribble,
left arm pointing to the ceiling, left arm throw, swing from
left (baseball swing), left arm receive, left arm back receive,
left leg kick to the front, left leg kick to the left, right arm
swipe to the left, right arm swipe to the right, right arm wave,
right arm punch, right arm dribble, right arm, pointing to the
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Fig. 15. Classification accuracy of three different actions presented in the

confusion matrix of UTD-MHAD dataset (Fig. 13), which look semantically
equivalent in appearance.

TABLE VI
COMPARISON OF OUR PROPOSED METHOD WITH
EXISTING METHODS ON MAD DATASET

Method Accuracy
Event Transition [59] 85.02%
Proposed (Action-Fusion) 91.86 %
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Fig. 16. Fusion operations accuracies of the MAD dataset.

ceiling, right arm throw, swing from right (baseball swing),
right arm receive, right arm back receive, right leg kick to the
front, right leg kick to the right, cross arms in the chest, bas-
ketball shooting, both arms pointing to the screen, both arms
pointing to both sides, both arms pointing to right side, both
arms pointing to left side.”

Unlike the two previous datasets, MAD dataset requires
background removing to construct the DMI descriptor. Since
the subjects are standing far from the background, we removed
the background based on a depth threshold. The evaluation
protocol used for this dataset is fivefold cross-validation, which
is the same as protocol described in [59]. It is based on using
4/5 of subjects for training and 1/5 for testing, then another
new 4/5 of subjects are chosen for training (including 1/5 that
previously used for testing) and the rest 1/5 is used for test-
ing. This process should be performed five times to involve
all the data in the training and the testing process. The final
recognition accuracy is the average of the fivefold results.
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Fig. 17. Confusion matrix of our proposed method for the MAD dataset.
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Fig. 18. Classification accuracy of four different actions presented in the con-
fusion matrix of MAD dataset (Fig. 17), which look semantically equivalent
in appearance.

Table II (rows 4-9: MAD) shows detailed classification
results of the three CNN channels outputs and the fusion oper-
ations for each fold and for the average of the fivefold. The
maximum accuracy value of the results is generated from the
fusion operation Fus5 by 91.86%. To our knowledge, there
is only one work tested on the MAD dataset [59]. Table VI
shows the comparison results with [59], and Fig. 16 shows
the difference between the fusion operations accuracies on the
MAD dataset. The confusion matrix of the proposed method
on the dataset is shown in Fig. 17. Four different actions are
shown in Fig. 18, which look almost semantically equivalent,
left arm wave, left arm pointing to the ceiling, left arm punch,
and left arm throw. While the four actions performed with a
left hand to the top, the DMI descriptors look relatively similar.
However, the MJD carries different features. The classification
results of the four actions vary from 85% to 95% as presented
in the confusion matrix (Fig. 17), which reflects the efficiency
of combining depth and posture data for action recognition.

D. Computation Complexity

1) Preprocessing Time: The preprocessing time includes
the computation of DMI and MJD descriptors. The calcu-
lation of DMI descriptor requires assembling a sequence of
raw depth maps of size equals 320 x 240 in one 112 x 112
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Fig. 19. Computation time of the DMI and MJD descriptors according to
the action frames number.

image. However, the MJD calculation requires transformation
of a sequence of 12 x 3 (2-D array) of joints coordinates into
an RGB image of size equals 112 x 112. The difference in
the input data size and the complexity of preprocessing steps
influence widely on computation time, as clearly shown in
Fig. 19. For example, an action of 65 frames needs 0.835 s
to calculate the DMI descriptor and 0.029 s to calculate the
MIJD descriptor. More frames involved in the action means
more computation time required. The computation time of
DMI and MJD with 73 frames are 0.985 and 0.032, respec-
tively. However, with 80 frames, the duration is 1.084 and
0.041, respectively. It is also noticed that the changing rate of
the DMI descriptor is larger than the MJD descriptor. If an
action includes more than 15 frames (from 65 to 80 frames),
the computation increases with 0.249 for DMI and 0.012 for
MID. The results of Fig. 19 have been calculated on CPU with
a machine of Intel Core i7-6700 @ 3.40 GHz, 8 GB of RAM
and 64 bits operating system. As an example of the prepro-
cessing comparison, we discuss the computation of descriptors
in [29]. They calculated a depth descriptor similar to ours.
However, they involved an extra parameter v which indicates
the action view. They use the descriptor from the front and the
side view, and that requires twice computation time than ours.
On the other hand, in their method, they use the descriptor to
compute two other descriptors from two views as well, which
is really high computationally demanding. In our method, we
use the descriptor from the front view only with MJD descrip-
tor in which the whole computation of both of them requires
less time than [29].

2) Training and Testing Time: The training time differs
from a dataset to another, depending on the number of descrip-
tors that are used for training. While MSRAction3D dataset
has the lowest number of training data, the training time is
also smaller compared to the other two datasets that have more
training data. From Table VII, we notice that the training time
and number of iterations required for the model to converge
are subject to number of training data. The case of the MAD
dataset is a little different from the other two datasets. As the
evaluation protocol of this dataset demands five training steps
to calculate the average of the fivefold results, the computa-
tion training time for this dataset is the sum of the five training
durations. Even though the fivefold have the same number of
training data, the number of iterations required to get the min-
imum loss differs from onefold to another because each data
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TABLE VII
TRAINING AND TESTING TIME OF THE THREE DATASETS

Datasets Nl.m‘1ber of Nur.nber of Numb(}r of Train (min) Test gsec):
Training Data | Testing Data Iterations One input
MSRACction3D 284 273 441 7.35 0.07
UTD-MHAD 431 430 720 12 0.07
- fold-1 2260 37.67
- fold-2 1750 29.17
MAD - fold-3 1120 280 1950 32.5 0.35
- fold-4 4370 72.83
- fold-5 1470 24.5

fold has different combination of actions, and hence different
types of features to be learned.

While the structure of the model used for training is the
same for the three datasets as well as the type of training data,
the processing time of action prediction of an input pair for
any dataset is the same (0.07 s), but for the MAD dataset, the
testing for one input requires averaging the prediction accura-
cies from the five trained models of the fivefold, which results
in 0.07 x 5 s computation time. The hardware material used
for testing and training is different from the one used for the
preprocessing. The training process has been performed on a
GPU of 12.2 GB memory of a server with Intel Xeon CPU
E5-2630 v4 @ 2.20 GHz (10 cores), 64 GB of RAM and 64
bits operating system. Generally, CNN models require a large
number of training examples, such as thousands of images with
hours of training to reach a high prediction accuracy. Existing
RGB-D action datasets like the ones used in this paper have a
limited number of training data. The key success of the learn-
ing process from a large amount of data is to extract enough
features to recognize each action. In our proposed work, two
types of descriptors and three CNN channels provide a variety
of feature extraction ways that can replace the lack of training
data, and with less computation complexity as presented in
Table VII.

3) Discussions: Although the recognition accuracy of the
proposed work is better than most of existing state-of-the-
art results, the computation time from the raw input data to
the final action prediction depends on the hardware used for
computation. If we want to compare the computation time
of the proposed work with the existing works, we should
take two aspects into consideration, the descriptor computation
time and the classification algorithm complexity. Some exist-
ing methods, such as [23] and [60] use only one type of input
data, either depth maps or posture data to create a descriptor.
However, other methods, such as [40] use three descriptors to
cover the human action from different views. In our case two
input descriptors are computed, and one of them requires very
less computation than the other. According to this analysis, we
can classify the proposed method in the middle rank among
existing methods in term of descriptors calculation.

Most of the approaches mentioned in the related work sec-
tion employ SVM as a classifier, such as [23]. Generally,
SVM computation time is less than neural networks, but it
also depends on how the neural networks model is deep.

The approaches which are based on using CNN like ours,
require more computation than using simple feed-forward
neural networks due to the 2-D processing. Even the CNN
approaches differ by the number of layers for the process-
ing. Additionally, one CNN channel is less computationally
demanding than three channels. In this case, we can rank
the processing time of the proposed method in term of clas-
sification among computationally demanding methods. As
previously highlighted in the introduction and in the score
fusion section, the proposed approach offers many possibil-
ities on how to use the data and the model. For example,
using MJD descriptor only with channel Ch3 is not the best
choice to produce accurate classification results, but it is still
better than some of the existing approaches and with less
computation time. More descriptors and channels involved in
the action recognition process means high accuracy with low
computation speed.

V. CONCLUSION

A method for human action recognition from depth maps
and posture data using deep CNNs has been proposed. Two
action representations and three CNNs channels are used to
maximize feature extraction. The posture data descriptor influ-
ence greatly on the whole recognition process by providing
features to support the front view of the depth maps repre-
sentation. Fusion operations between the output predictions of
CNN channels are proposed to maximize the score of the right
action. Since RGB-D datasets have a small number of train-
ing samples, two action representations are helpful to learn
the model with a variety of feature and replace the lack of
data. The results of our proposed method outperform most of
the state-of-the-art methods on three public datasets. Although
the proposed method showed high accuracy in action recog-
nition and surpasses most of existing state-of-the-art methods,
it was only evaluated using testing samples of humans per-
forming actions in an environment with still cameras from
a predefined distance. Future work concerns on collecting a
dataset of depth maps and posture data of actions with a
moving wearable camera or a robot to record actions per-
formed spontaneously by humans from different views and
distances [61], then we train the CNN model on the dataset
samples and test the effectiveness of the proposed approach
in real environment.
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