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Abstract—Recently neural architecture (NAS) search has at-
tracted great interest in academia and industry. It remains a
challenging problem due to the huge search space and com-
putational costs. Recent studies in NAS mainly focused on the
usage of weight sharing to train a SuperNet once. However, the
corresponding branch of each subnetwork is not guaranteed to be
fully trained. It may not only incur huge computation costs but
also affect the architecture ranking in the retraining procedure.
We propose a multi-teacher-guided NAS, which proposes to
use the adaptive ensemble and perturbation-aware knowledge
distillation algorithm in the one-shot-based NAS algorithm.
The optimization method aiming to find the optimal descent
directions is used to obtain adaptive coefficients for the feature
maps of the combined teacher model. Besides, we propose a
specific knowledge distillation process for optimal architectures
and perturbed ones in each searching process to learn better
feature maps for later distillation procedures. Comprehensive
experiments verify our approach is flexible and effective. We show
improvement in precision and search efficiency in the standard
recognition dataset. We also show improvement in correlation
between the accuracy of the search algorithm and true accuracy
by NAS benchmark datasets.

Index Terms—Neural architecture search, knowledge distilla-
tion, multiple searched networks, image recognition.
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I. INTRODUCTION

HE convolution neural network has achieved huge suc-
cess in various computer vision tasks such as image
recognition, semantic segmentation, and object detection [1]—
[4]. As the network architectures designed in the recognition
task are always used as pretrained backbone and finetune
in the other tasks, image recognition has always been seen
as a fundamental task for the neural network design. Many
deep learning models need to stack many convolutional layers,
which is very computationally intensive. Due to the need to
deploy deep learning models on low-end hardware, designing
lightweight neural network architectures has become a hot
research topic. Commonly used methods are the method
of manually designed network architecture and the neural
network search method. Manual-designed neural networks
generally design special modules first, then stack them and add
skip connections. However, designing lightweight networks
manually is inefficient and it is difficult to find the architecture
that has both high performance and low latency for rapid
response due to impossibility to fully explore the search space.
In recent years, neural network search (NAS) has attracted
a growing interest which aims to automatically find the ar-
chitecture combinations and corresponding hyperparameters.
Following studies have shown architectures obtained by NAS
algorithm are able to achieve higher performance compared
to human designed architectures. The core idea of NAS is to
use a search strategy to find the optimal network architecture
for multiple goals at the same time in a pre-designed discrete
search space at a limited computational cost. A straightforward
method for NAS choosing the modules is to traverse all
the possible candidate blocks, train them to convergence and
evaluate. However, the whole process is too time-consuming.
Taking into account the discontinuous search process and the
search space, the early methods regarded the search process
as a black box optimization problem and used reinforcement
learning and evolutionary algorithms to find new architectures
[5]-[7]. However, these early methods have a huge amount of
calculation costs, which limits the wide usage.

Due to the huge search space and long training time of a
single architecture, it is necessary to design specific search
strategy and performance estimation algorithms to find high-
precision architectures with few parameter sizes efficiently.
The efficient search strategy weight sharing based algorithm is
proposed [8]-[10]. Simplifying one-shot algorithm introduces



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

a specific network that forces the candidate network to share
parameters in a complex network, called SuperNet in most
of later studies. In later studies, the whole process can be
divided into two parts, SuperNet training part and candidate
network searching part. In weight sharing based method, the
weight learned by SuperNet is directly used to estimate the
performance of focused candidate subnetwork. Note that there
is no strong correlation between the accuracy obtained by
directly using SuperNet weight and obtained by standalone
training. The standalone ranking is the focusing one and direct
obtained ranking contains error. A common solution to the
weak correlation is to retrain the architecture with few training
epochs. However it is difficult to design the number of training
epochs. Therefore it would be significant to design a more
flexible and efficient retraining method to get the accurate
performance ranking.

In this paper, we propose a specific knowledge distillation
algorithm for retraining part in the searching process. The
main idea is inspired from the fact that the convergence speed
of using soft label training in distillation is faster than the
general classification of hard labels [11]. In addition, multi-
teacher distillation is more robust than single-teacher distil-
lation. The teacher models in MNGNAS algorithm includes
three parts. The first part is the model with higher accuracy
obtained from the previous training, the second part is the
architecture of the same search iteration and the third part
is the candidate subnetwork with a little perturbation. The
perturbation is the subnetwork with a few different candidate
blocks. The first and second part of teacher models is used to
increase the diversity of extracted features. The third part is
used to help the teacher model to learn better knowledge useful
for later knowledge distillation. Considering the computation
burden, the third part of teacher models is only used in the
optimal models. In most multi teacher knowledge distillation
algorithms, the competition and compromise among different
teacher mode features is common. In order to alleviate this
problem, this paper proposes a method of dynamic coefficients,
and solves the final weights through quadratic programming.

Our proposed algorithm can be used as a retraining auxil-
iary module in searching process for various one-shot-based
NAS algorithms. Experiments show that SuperNet training
methods like SPOS, FairNAS and MixPath combining the
MNGNAS algorithm can find the high-precision architecture.
The proposed MNGNAS algorithm has improved performance
compared with corresponding primary algorithm. We prove
that the proposed method can generalize well on three different
search spaces and four image recognition datasets. The results
have shown the effectiveness of all of the components which
improve the final searched network accuracy.

Our main contributions can be summarized as follows:

e We introduce a NAS retraining method applied in the
searching process, termed multiple network guided dis-
tillation neural architecture search (MNGNAS), which
is flexible within arbitrary search spaces. We use a
high-precision model group obtained by searching and
searched architecture in the same iteration as the ensem-
ble teacher models. Our proposal is easily incorporated

into most existing one-shot-based NAS algorithms to
improve search efficiency.

« The proposed adaptive ensemble distillation uses an opti-
mization algorithm to determine the most suitable combi-
nation coefficient of feature maps. It makes better use of
all features extracted from the searched architecture and
avoids the domination of a single architectural feature.

« We introduce a specific knowledge distillation algorithm
named perturbation-aware knowledge distillation for the
optimal model in every searching epoch. Considering the
feature difference caused by capacity difference, we add
another distillation loss to help the models learn features
more suitable for the further knowledge distillation pro-
cess. The updated distillation process is to use the current
model as the teacher model to guide the candidate models
with few block perturbations.

o The adaptive knowledge distillation in the proposed
MNGNAS algorithm helps to achieve competitive per-
formance for the one-shot NAS algorithm on several im-
age recognition datasets, including CIFAR10, CIFAR100,
ImageNet16-120, and ImageNet. Our method can achieve
higher accuracy with less search cost compared with most
neural network search algorithms. We also conducted
the experiment on the NAS benchmark dataset NAS-
Bench-101, NAS-Bench-201, and NAS-Macro-Bench to
verify that our proposed MNGNAS algorithm can ob-
tain searching results that are closer to the standalone-
training-accuracy compared to the recent proposed one-
shot-based method.

The remainder of this paper is organized as follows: Section

IT introduces the related work of knowledge distillation and
neural architecture search algorithm. In Section III, the adap-
tive ensemble knowledge distillation and perturbation-aware
knowledge distillation algorithm in the proposed MNGNAS
algorithm are described in details. Section IV gives the ex-
perimental settings and results. Section V gives some ablation
experiments about similar distillation algorithm and different
hyperparameter settings. In section VI, we conclude this paper.

II. RELATED WORK

Here, we briefly review two research fields related to our
work. We will firstly review the related work about knowledge
distillation, followed by four streams of neural architecture
search methods, i.e., reinforcement based NAS, evolution
based NAS, gradient based NAS and one-shot-based NAS.

A. Knowledge Distillation

General knowledge distillation The vanilla knowledge
distillation algorithm is the process which trains small student
model with the supervision of a high capacity teacher model
and encourages the similarity between lightweight student
model and heavy teacher model. Considering that the predic-
tion results of the teacher model contain more similarity infor-
mation between categories, the knowledge distillation method
helps the lightweight model obtain better results by adding
the loss function of the difference between the prediction
results [11], [12]. Subsequent algorithms introduce different
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loss functions to improve the performance. Neural selectivity
transfer [13] algorithm uses the Maximum mean Discrepancy
as the distillation loss function. Relational knowledge distil-
lation [14] proposes to transfer output relations instead of
individual outputs. The transferred knowledge includes the
distance loss function between two samples and the angular
loss function between the three samples. FitNet [15] algorithm
proposes to calculate the differences of feature map in each
stage as the additional distillation loss.

Distillation from multi-teacher models Ensembles of neu-
ral networks are known to be much more robust and accurate
than a single model. Each neural network is trained inde-
pendently. The main problem is that using too many models
introduces too much inference time. The subsequent knowl-
edge distillation algorithm points out that the multiple teacher
models can help the student model obtain more accurate
outputs. Knowledge flow [16] algorithm proposes to add trans-
formed and scaled intermediate representations from multi
teacher models to the student model. MEAL [17] algorithm
proposes using multiple teacher models to transfer knowledge
to students, and the transferring feature map is determined by
selection modules. In addition, the discriminator network is
used to judge the input feature map from teachers or students
to enhance the performance of distillation algorithm. MEALv2
algorithm is an improved algorithm and proposed using the
average feature map as the transferring feature map. Hydra
[18] algorithm proposes a distillation algorithm that uses a
lightweight student network with multiple auxiliary branches
to learn the features of the ensemble teacher model separately.
There always exists compromise and competition between
different teacher models in previous distillation methods. It
is difficult to alleviate it by simple averaging operation or
selecting the best model. We propose the adaptive knowledge
distillation method which uses the optimization algorithm to
obtain the aggregation coefficient which can partially alleviate
the compromise and competition problem.

Online knowledge distillation Since the general knowledge
distillation needs to train one or more teacher and student
models separately, the computational cost in training process
is relatively high. Online knowledge distillation proposes a
method of using multiple simple models to transfer knowledge
to each other to improve the performance of small models.
Deep Mutual Learning [19] is an algorithm proposed earlier,
which proposes to transfer knowledge among multiple stu-
dents instead of one-way transfer in traditional knowledge
distillation algorithms from only teacher to student model.
ONE ensemble [20] proposes a multi-model online distillation
algorithm using main module sharing and multiple auxiliary
branches. In addition, it is proposed to use the gating function
to predict the importance coefficient of each branch. OKDDIP
[21] algorithm proposes a two level online knowledge distil-
lation algorithm. The First level distillation is to train peer
models by their own training targets. The second level is to
transfer the knowledge from peer models to the group leader
models. Self-distillation [22] algorithm proposes to use deep
feature maps to transfer knowledge to shallow feature maps
to avoid individual teacher model training.

B. Neural Architecture Search

The goal of NAS is to automatically design the network
topology without human intervention and find the optimal
architecture with highest standalone accuracy as well as sat-
isfying the hardware constraint. The most accurate solution
to NAS is to train each of the architectures within the
search space from scratch to convergence and compare their
performance. However it is impractical due to the huge number
of search architectures and training costs. The commonly
used solution is to train only the architecture in the designed
search subspace using various heuristic search strategies. Ac-
cording to the searching strategy, NAS algorithms can be
briefly categorized into Reinforcement learning (RL) based
method, evolution algorithm (EA) based method, gradient
based method and one-shot-based method.

NAS-designed neural networks MobileNetV3 [23] is a
block-wise search algorithm and uses the inverted residual
bottleneck as the main component in the search space. FBNet
[24] algorithm is a cell-wise search algorithm and the search
strategy is based on the gradient descent method. EfficientNet
[25] algorithm uses search algorithms to find the best combi-
nation of network depth, network width and input resolution.
MnasNet [26] algorithm takes accuracy and delay time as
optimization targets at the same time and it is designed on
the MobileNet search space. These architectures all require
tremendous searching cost.

Reinforcement-learning-based methods Earliest RL-based
method [5] uses the RNN-based controller to generate and
search architecture, and use accuracy as the reward of the
policy gradient strategy to update the controller parameters.
Later proposed method [6] proposes the improved usage of
Q-learning and uses the greedy exploration and experimental
replay to choose the CNN layers.

Evolution-based methods The general EA-based method is
to use the validation accuracy as fitness and the mutation and
crossover operators in the evolutionary algorithm to search
for new architectures. The method based on evolutionary
algorithm generally uses the block as the search unit, and the
combination of modules searched at each level is represented
by a fixed-length string. Selection, crossover and mutation
operations are used to generate new searching architectures.
Evolution classifiers [7] propose an evolutionary algorithm
in search space of variable depth. Regularized Evolution
[27] algorithm proposes the aging evolution algorithm which
discards the earliest training model.

Although reinforcement-based NAS and evolution-based
NAS have achieved impressive results, they are extremely
computationally expensive and generally require several hun-
dred GPU hours, which severely restricts its application
prospect. The main disadvantages of the RL-based method and
the EA-based method is that each individual network is trained
separately during the search process. Weight-sharing-based
neural architecture search has recently become the mainstream
in NAS studies and it significantly improves the computational
efficiency. Weight-sharing method can be mainly divided into
gradient-based method and one-shot method.

Gradient-based methods DARTS [28] is the earliest
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gradient-based method. As the search space is reduced to a
continuous structure space, the gradient descent method can
be used to optimize the structure and weight alternately. The
search algorithm based on gradient descent needs to expand
the depth after the architecture search to complete the training
of the architecture parameters. The PDARTS [29] algorithm
states that there exists a depth gap between the searched
architecture and the final architecture, that is, the searched
shallow architecture may not be the optimal combination
of operations in the deep architecture. PDARTS proposes a
progressive expanding procedure. StablizingDARTS [30] and
RobustDARTS [31] algorithm propose a regularization method
to improve search performance and the norm and maximum
eigenvalue of hessian matrix are are used as the basis for
stopping the search respectively. Subsequent improvements to
the DARTS algorithm noticed that the searched architecture is
prone to generate excessive skip-connection layers. DARTS+
[32] algorithm proposes to use the early stop strategy that di-
rectly stops when there are too many skip-connections to avoid
overfitting problem. FairDARTS [33] algorithm proposes to
replace the softmax operation in the original DARTS algorithm
with sigmoid to transform the competitive relationship of dif-
ferent modules into a cooperative relationship. NoisyDARTS
[34] algorithm proposes to add noise to the skip connection
branch to alleviate the problem of unfair competition between
skip-connection and other modules.

One-shot-based methods One-shot method encodes the
search space into a over-parameterized network SuperNet.
It decouples SuperNet training from architecture searching.
The main process is: training the SuperNet containing all
search modules; using the designed search strategy to iterate
the searching architecture and fine-tuning the corresponding
architecture based on the weight of the SuperNet and selecting
the best architecture to evaluate. The weight sharing in the one-
shot method is to preserve the weights of all paths during the
training of the subnetwork. The previously proposed multi-
branch SuperNet network has the problem of excessive co-
adaption between modules. Simplify one-shot algorithm [8]
proposes to use path dropout strategy to alleviate the problem
of excessive dependence between different modules, but this
method requires artificial setting of dropout hyperparameters.
Single Path One shot (SPOS) algorithm [9] proposes a training
method that only one path is trained in each training step and
uses uniform sampling of each module branch to make the
accuracy of the search process closer to the standalone training
accuracy. FairNAS algorithm [35] pointed out that the training
accuracy is the closet to the true accuracy when the SuperNet
training method is consistent with the general single network
training method. A method for updating SuperNet weights
after training multiple architectures is proposed. MixPath
[10] algorithm proposes a special regularization layer shadow
batch normalization to train multiple paths corresponding to
multiple modules at the same time in the SuperNet. CARS
algorithm [36] uses a SuperNet training method similar to the
SPOS algorithm. The difference is that the search process is
regarded as a multi-objective optimization problem, and the
optimization target is selected as accuracy and FLOPs metrics.
AttentiveNAS [37] algorithm also uses the similar SuperNet

training process as SPOS and proposes to retrain only the
pareto best and worst architecture to reduce the computational
cost in the searching process. NSAS algorithm [38] proposes
that it is easy to forget the previously trained parameters when
training the SuperNet, and proposes the usage of continuous
learning to improve the SuperNet training process.

There exists some studies that use the knowledge distil-
lation process to guide the training of SuperNet. DNA [39]
algorithm factorizes the search space into block-wise search.
The distillation algorithm uses the output of the previous
block as the teacher of the next block layer by layer. Boss-
NAS [40] algorithm is an improved algorithm of DNA and
proposes a online collaborative learning method that uses a
self-supervised method to optimize each layer in candidate
subnetworks. Cream of the Crop algorithm [41] uses the same
search space and searching strategy as SPOS and proposes
using the search prioritized path to guide the training of
following searching architectures by knowledge distillation.
AlphaNet [42] algorithm proposes a specific a-divergence
regularization that focuses on avoiding over-estimation and
under-estimation problem of the teacher network guidance.

In our method, we use the same SuperNet training strategy
as one-shot-based method. Unlike previous distillation based
method, our proposed algorithm MNGNAS is that we propose
using the adaptive ensemble distillation method based on
multiple models with better performance obtained by search
and the architectures in the same searching epoch instead of
the single-teacher distillation method in the previous method.

NAS Bench datasets Since NAS experiments generally
require a lot of computing resources, it is difficult to re-
produce the experiments and compare the algorithms fairly.
Some recent studies provide records of the accuracy, FLOPs
and other information corresponding to each architecture in
the pre-designed search space. NAS-Bench-101 [43] only
focuses on the CIFARI10 dataset. The search space includes
3x3 convolution, 1x1 convolution and 3x3 average pooling.
NAS-Bench-201 [44] focuses on CIFAR10, CIFAR100 and
ImageNet16-120 dataset and uses the MobileNet-like search
space. In addition, the dataset gives the accuracy of the
validation set during the training process. NATS-Bench [45]
provides more detailed information of a topology search space
and loss change in training process which can be used in all
cell-based NAS algorithms. NAS-Macro-Bench [46] focuses
on the topology structure and corresponding training, test
accuracy information on a MobileNet-like search space.

III. MULTI-NETWORK-GUIDED NEURAL ARCHITECTURE
SEARCH

In this section, we start by briefly reviewing the technical
background related to our work and then introduce the details
of the proposed MNGNAS algorithm.

A. Preliminaries

1) Neural Architecture Search Problem: In general, the
NAS problem can be expressed as: Given a search space
A, a group of resource constraints b for architecture J and
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Fig. 1: The framework of whole process of our proposed algorithm. The algorithm includes four parts: 1. Training of SuperNet.
According to the SuperNet training strategy like SPOS and MixPath, subnetwork is selected for training and updated the
parameters of the corresponding SuperNet path. 2. Generating new searching architecture. We use evolution algorithm to
generate new searching architectures. 3. Retraining. The training of each architecture is based on the adaptive integrated
distillation optimization algorithm. Teacher models include models with higher accuracy in the previous search process and
other models in the current search iteration. 4. Updating teacher group. We select the architecture with highest accuracy to

update the large teacher group and small teacher group. Part

2, 3, and 4 correspond to the search process, which requires

multiple iterations until the predefined number of search epochs is reached.

a performance estimator function E, find the optimal archi-
tecture and corresponding weights (6*,6*) simultaneously in
the search space by maximizing the performance evaluation
function. Formally, we want to enforce as

E((sia@i;Dval) SE((sja@j;Dval) (1)
= ACC((SZ', @i; Dtest) < ACC((SJ‘, Gj; Dtest)v
for all pairs of architectures in the search space. Here D,
and D4 refer to the validation and test dataset respectively.
In general, the searched network in the search space can
be represented as the string [Cy, Cy, ..., Cjl, then, the corre-
sponding deep learning architecture is defined as:

(z)

o
w,d

(Cwl O"'chi)(x)a (2
where C,, denotes as a searched block using the network
weight, I} 5 (x) denotes as the output feature map, and o refers
to the operations to connect several layers in sequential. The
feature map F" obtained in the i-th layer is defined as:

m

7

2) SuperNet Training Procedure and Challenges: The
search space A is represented by a directed graph named
SuperNet « containing all combinations of operations and each
branch represents a combination. The goal of NAS task is to
find the optimal architecture . € A in the validation dataset

while meeting the specific constraint. In general, the process
of one-shot neural architecture can be defined as:

Wc = arg Hv%/in Lval(5C7 Wc§ D'ual) + )\HVVCH2
. 2
L. 0c = ra\0y, W 5 Utra c y 4
s.t. & arg\gléI}‘Lt (0, W5 Dira) + A|[We|| “4)
B(3.) <b

where L., and L, respectively, refers to the loss in training
dataset and in validation dataset, B(d) function refers to the
resource constraint function including FLOPs and latency for
the architecture 6, b refers to the corresponding constraint
value, \||W,||? refers to the weight decay term that prevents
the searched model from overfitting, D;,q;n, and D, refer to
the training and validation dataset, respectively.

The main idea of one-shot method is to use the weight
sharing method to train the SuperNet network once, and
directly use the trained SuperNet weight to obtain the accuracy
during the search process. Evolutionary algorithm is always
used as the search strategy. Different from training the single
network separately, there exists parameter overlap between
different subnetworks and it is impossible to guarantee that the
results of SuperNet training are the same as those of individual
training. Even we cannot guarantee that the accuracy ranking
obtained by SuperNet training is the same as the real ranking.
A simple solution is to fine-tune the weights corresponding
to the SuperNet during the searching process. However, due
to huge training cost, the number of retraining epochs in the
searching process is not easy to determine. We propose to
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Fig. 2: The overall framework of the distillation procedure in the proposed MNGNAS algorithm. The proposed algorithm takes
the generated architectures and current ensemble teacher group as input and output the updated ensemble group and searched
architecture ranking. We use the optimization algorithm to obtain the adaptive coefficient. The weight of optimal architecture is
further fine-tuned by the perturbation-aware knowledge distillation algorithm which adds the loss term to calculate the feature

loss between optimal architecture and perturbed architecture.

use adaptive ensemble knowledge distillation to get a more
accurate performance ranking with fewer training epochs.

B. Overall Framework

As shown in Fig. 1, our proposed algorithm MNGNAS
is composed of four parts: (1) Training the SuperNet by
uniform sampling strategy like SPOS algorithm. (2) Using the
searched teacher group and the searched architecture in the
same iteration to train the current training network according
to the proposed adaptive ensemble knowledge distillation al-
gorithm for every searching architectures and the perturbation-
aware distillation algorithm for the optimal architectures. The
detailed procedure is shown in Fig. 2. (3) Selecting the
models with higher accuracy on the validation set and updating
the searched teacher model. (4) Generating new candidate
architectures according to the evolution algorithm. In the next
section, we will introduce the proposed knowledge distillation
algorithm for general model retraining in detail.

C. Adaptive Ensemble Knowledge Distillation

In searching procedure, the aim is to design an appropriate
strategy to get the accurate performance ranking with only a
few training epochs. We propose to use the idea of knowledge
distillation to speed up deep learning model convergence and
use the method of multiple teacher distillation to maintain the
diversity of features in the distillation algorithm. In addition,
considering the need to maintain model diversity as well as
avoiding the problem of the majority of lightweight model
after multiple iterations of evolutionary algorithm, we divide
the whole teacher model group into the large model group 7;
and the small model group T .

The distillation loss defined in our proposed algorithm is
composed of two parts: the intermediate layer difference and
the prediction layer difference. The prediction layer difference
is defined as:

Liii™ (T, 8) = Epep,, (KL @)[If5 (). ©)
The intermediate layer difference is defined as:
L (T, 8) = B, 1S (@) = [F @) (6

where ij and ij refer to the jth feature map obtained by
the teacher model 7" and the student model .S. The distillation
loss is the addition of prediction layer difference loss L(’Z:al
and intermediate layer difference loss Li*!°". The distillation
loss is abbreviated as Lg; in later content.

In our proposed MNGNAS algorithm, the teacher model
includes the teacher model group 7; or T and the model group
{S;}Z¢ for cooperative learning. nc refers to the number of
currently searched model. The loss in cooperative learning is
defined as:

nc—1
1 C

1 Z Ldis(Si,Sﬂ@Si). (7)

j=1.j#i

Lais(5:,{S;}1©s,) = -

In the first search process, we only use the label as the
supervision to retrain the searching model. In the subsequent
search process, the searching teacher model group and the
model in the same searching epoch are used to guide the
structure training. We use KL divergence to calculate the
difference between feature maps. The distillation loss of the
ith model in the first training searching epoch is calculated as
L4is(T, S;), where f]Si refers to the jth feature map obtained
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Algorithm 1: Adaptive Ensemble Knowledge Distilla-
tion Process
Data: Searched teacher model group 7; and 7.
Result: The architecture of the current epoch to
complete the training.
1 Calculate the predictions pg generated by the searched
architecture in the current epoch;
2 for i=0 to Epochy; do
3 Calculate the predictions {prgs}"™?s and {pr }"7*
generated by the searched small and large teacher
group;
4 Calculate the predictions {pg, }""© generated by the
current searching architectures;
5 Calculate the optimal coefficient based on the
optimization algorithm for the ¢th student
described in Eq. (20);
6 Calculate the distillation loss Lg4;s based on the
adaptive coefficient and corresponding teacher
models;
7 Compute the gradient Vyy, by 0Lg;s/0W;;
8 Update the network weight W; based on Eq. (10);
9 end

by the ith model. The distillation loss of the ¢th model in the
training searching epoch is defined as:
L

= aLg;s(T, Si|Os,) + BLais({S;},5i|0s,), (8)

where Lry(-) is the same as the loss in the first training
epoch. The feature map used for distillation in the search
teacher model group is selected as the average of the feature
map. « and [ are the adaptive ensemble coefficients. The
calculation process is described in next section. The distillation
loss between searched teacher models and training models is
defined as:

N nr
Lrs(f75, 15 = Z S, O
j=1 k=1
where ff k¥ is the feature map predicted by kth model in the

searched teacher group. NV is the stage number of the .S;
architecture.

The training loss in retraining architecture procedure in-
cludes classification loss L.;s and distillation loss Lg4;s and is
calculated as L = L5 + Lg;s. Then the parameter update of
the model S; is defined as:

06 = 0§, —nVes, (Las(y, p(Si; 7, 05,))
+aLdzs( (Sz;-r7 G)Si)vp(T;xa@T)))
+BLdzs(p(SZ7x7931)7p(sj7x395]))a

(10)

where @tsfl is the updated parameters of the .S; model in the
t + 1 period. y is the groundtruth label and p(S;;z, wg,) is
the predicted feature map from the network S;. p(T'S; z, wrr)
is the average feature map predicted by the searched teacher
group. Algorithm 1 provides a meta-algorithm of the distilla-
tion process of the proposed MNGNAS algorithm.

D. Adaptive Weighting Coefficient

In general ensemble knowledge distillation, the feature maps
generated from all teacher models are considered equally.
The feature map is usually generated from the average value
from all teacher models. There always exists competitions
and conflicts among the teacher models and the final feature
maps may be determined by few teachers. In our proposed
algorithm, we want to get the guidance from all teachers.

The optimization algorithm is used to find an optimal direc-
tion of the current model by learning the weight coefficients
of each teacher model. The detailed process is defined as:

nc— 1
G 6+ O D o gl

t.(Vels, (07).d) <v. +& 7

(Vols, (07),d) <v.+¢

=0, & =20

(11)
where ©®(7) refers to the parameter of the student network.
e, (e
dent model and the mth teacher model. (-,-) refers to the
e
laborative learning loss regarding the current model m; .d
refers to the optimizing gradient descent direction we want
the student network want to learn. C'; and Cy refer to the
regularization parameter. £, and &, refer to the slack variable
that allow the violation of ( Ve/?, (@(7)) ,d> < v, and

<V@€fn (@W) ,d> < e

To effectively solve the optimization problem, we get the
dual problem which is defined as:

) refers to the distillation loss regarding the stu-

inner product of two vectors. é%( refers to the col-

ncfl 2

s (07) + Y BV, (07)
c=1
nc—1

Z ﬁc:]-
c=1

0<p.<1

nrT
E e =1,
e=1

0<a. <1,

s.t.

(12)
Moreover, by examining the KKT condition, we can get the
optimal descent direction d* as:

- 2 acVel, (@“)) - njz; B.Velt, (@<T>) .

(13)
In addition, we can get the optimal coefficient parameter o}

and B} as:
ot ((Votin (67) 4) —vi —ec) =0
5 ((Veti (67) ) vt
3

agée = Chg,
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In this way, we have:

nr
—lldl® —vi = C1) =0
e=1
nc—1
Nl - - Y & =0

c=1

; 5)

and

(Votn, (067) ) <veves

= —[ldD|*+ &)y g

(16)
(Vols, (07),d™) < v +¢
nc—1
= —[ldD)P+& - Cy > &
= an

We want the d(7) to be a decent direction then the dynamic
weight parameter should satisfy:

nr nc—1
-0 ) €&<0, -0y )y <0 (18
e=1 c=1

Considering the general feature difference loss, the gradient
can be expressed as:

V(.aém(@ ) Veem(*Hp(S; @) -
:HP(S; 6) - p(Sc§ 60)”;

then, the adaptive ensemble coefficient o and S is solved by
the optimization that can be described as:

. 2

nc—1

mme p(S;0) — Zaep Se;0¢) Z Bep(Se; O |2
c=1
nr nc— 1
s.t.Zae:L Zﬂczl
e=1 c=1
0<a. <1, 0<8.<1

(20)

In this sense, the optimization process can be seen as a

dynamic weighting strategy. Through optimization algorithm,

the distillation algorithm can be more tolerant to noise feature
maps collected from candidate architectures.

E. Perturbation-Aware Knowledge Distillation

Considering the capacity difference in teacher and students
may leading to the degradation in knowledge distillation
algorithm, we design a specific knowledge distillation process
for optimal architectures in every searching epochs.

The core idea is to let the optimal architectures learn more
suitable features for later knowledge distillation algorithms.
As the crossover and mutation operation only affects few
operations, we propose to use the optimal architectures to
guide a few architectures with few block perturbations as a
regularization term to reduce the differences among optimal
architecture and architectures in following searching process
in feature level. The detailed process is shown in Algorithm

. the focused optimal architecture S;. p(S

Algorithm 2: Perturbation-Aware Knowledge Distilla-
tion Process
Data: Optimal Architecture S; and its initial weight
Ws,.
Result: The weight of architecture S; after fine-tuning.
1 Obtain the perturbed architecture set S’f based on the
rule shown in Eq. (22);
2 for S; in Sf do
3 Obtain the initial weight of .S; from optimal
architecture .S; and SuperNet weight;
4 Calculate the predictions on training dataset
generated by perturbed architecture S;;
5 Fine-tuning the weight of S; based on Eq. (23);
6 end

2. Here we give the formal expression of architectures with
one perturbation. The architecture set is defined as:

k k m m
={Si|3k CF#CF, Ym#k CM=C"}, @D

where S; is the focused optimal architecture. C} is the
perturbed block.
The loss of the optimal architecture training is defined as:

Lais(5j) = By, 5,esP KL(fs; (%), f5:(2)),

where f,. and fs, refers to the output of architecture S; and
Si.
The parameter O, update of the model S; is defined as:

(22)

GtStl =05, —1Veq, (Las(y, p(Six,0s,))—
v@g]. (Ldza(p(sjv xZ, (—)S])ap(sjpv €, (—:)S]P))))7

where p(S;;x,Og,) refers to the predicted feature map from
;x, 0 SJP) refers
to the predicted feature map obtained from the perturbed
architectures.

(23)

F. Candidate Architecture Updating Process

After the retraining process in searching process described
in previous two sections, we obtain the retrained architectures
in the current searching period and new searching architecture
set is needed to be updated. The core updating step set is based
on the evolution algorithm. Firstly, a population of networks
{au}E, is randomly initialized. In addition, there need to be
2ng architectures divided into the large model teacher group
and the small model teacher group. The large teacher model
group selects the highest accuracy of the architecture that
satisfies the parameter constraints of the large teacher model.
The small teacher model group is similar, and the one that
satisfies the constraints of the small model is selected.

After each search epochs, all candidate architectures need
to be sorted according to the accuracy value on the validation
set. The np architectures with the highest accuracy is used
to update the search teacher group 7 and 7; according to
FLOPS. In the multiple teacher group update process, we



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Algorithm 3: Searching algorithm

Data: Search Space A, Pretrained SuperNet .S, FLOPS
threshold flopsipre.
Result: Optimal architecture
117, =9,1T, = 9;
2 for ¢=0 to Epoch do

3 Sample n candidate architectures [d1, 02, ..., d,]
following FLOPs constraint;
4 if T, == @ and T} == @ then
5 | Retrain all the searched architecture {6;}1:<;
6 else
7 if flops(c;) < flopsinre then
8 Use T and {S;}7<, ;; as the ensemble
teacher model to train all the searched
model Sj;
9 else
10 Use T; and {S; ?gL ;i as the ensemble
teacher model to train all the searched
model Sj;
1 end
12 end
13 Select the high-precision architecture, and replace
low-precision architectures in 7T and 7 set;
14 end

consider both the FLOPs and accuracy metrics. The updated
architecture in small teacher group T is formally defined as:

TP ={a|Acc(d,0; Dyar) > Acc(0r, Ok; Dyal),
Flops(a)) < Flops(dy) Vo € Ts}.

In the process of generating new architectures, crossover and
mutation operators need to be used maintain the diversity
of the search architecture. Crossover operation means that
the same modules in the candidate architecture are retained,
and different modules are randomly selected. The mutation
operation is to randomly select a module to become another
candidate one. Main process is to sort the structure with the
highest fitness obtained by the search with the fitness in the
search teacher group and keep the first nrg architectures. The
Nremoved architecture with the worst accuracy is removed.
New candidate architectures for the next iteration are generated
by the mutation and crossover operations on the remaining
architectures. The procedure of our proposed MNGNAS algo-
rithm is described in Algorithm 3.

(24)

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed MNGNAS al-
gorithm on the image recognition task and conduct a series
of experiments on CIFAR, ImageNet as well as recently
proposed NAS Benchmark dataset. Furthermore we apply our
proposed method into the chained and cell based search space
to verify the generalization of our algorithm. The input image
size for CIFAR10 and CIFAR100 is 32x32. ImageNet is a
challenging dataset as the input resolution is 224x224 and
contains 1000 classes. ImageNetl6-120 contains the same
image as ImageNet but with a small resolution as 16x 16.
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Fig. 3: Test errors of some models searched by SPOS with
our proposed MNGNAS algorithm on CIFAR10 dataset. NAS
algorithms are based on the MobileNet search space.
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Fig. 4: Test errors of some models searched by SPOS with
our proposed MNGNAS algorithm on CIFAR100 dataset. NAS
algorithms are based on the MobileNet search space.

A. Implementation Details

On the image classification task, our proposed MNGNAS
is evaluated in three search spaces: ShuffleNet, DARTS and
MobileNet. The searched block includes 3x3 convolution,
5x5 convolution, 7x7 convolution and separable convolution
block. In the SuperNet training process, we train all the
subnetworks using momentum SGD with a batch size of 96
and train the whole SuperNet for 600 epochs with a simple
data augmentation strategy. In the searching process, we set the
number of architectures nrg stored in the search teacher group
T; and T as 5. We use the evolution algorithm to generate new
candidate architectures. Both crossover and mutation ratios are
set to 0.5. The number of models to search ng in each epoch is
set to 30. The number of models removed due to low accuracy
in each search epoch is set to 10.

As competitors, We use the representative one-shot NAS
methods including SPOS, FairNAS and MixPath. These two
methods are the current state-of-the-arts one-shot-based meth-
ods. We also compare our proposed algorithm with gradient
based method including DARTS [28], PDARTS [29], GDAS
[52] and DARTS- [53]. To validate the generalization of
our retraining strategy, we consider combining with different
SuperNet training strategies.
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TABLE I: Test error rates, parameter size and search cost for our proposed MNGNAS algorithm, human designed networks
and other NAS architectures on the CIFAR10 and CIFAR100 dataset. The NAS algorithms involved in the comparison include
both gradient based method and one-shot-based method. Some of the algorithms give the results on the ShuffleNet, DARTS
and MobileNet search spaces respectively. MNGNAS (S) and MNGNAS (M) respectively refer to the models proposed in this
article that correspond to the combination of SPOS and MixPath training strategies. The main comparison is the performance
comparison between the algorithm proposed in this article and the combination of SPOS and MixPath MNGNAS (S), MNGNAS
(M) and the original algorithm.

Search Space Algorithm CIFARI0 CIFAR100
Search Cost Search Cost
#Param | #MAdds (GPU Day) Error | #Param(M) | #MAdds (GPU Day) Error
ResNet101 [3] 44.5 1619 4.38 44.5 1619 21.62
. ResNeXt [47] 68.2 8893 } 3.58 68.2 8893 B 20.29
ShuffleNetV2 [48] 3.2 404 5.83 3.2 404 18.18
MobileNetV2 [49] 8.8 706 7.36 8.8 706 22.31
ENAS [50] 4.6 804 0.8 2.89 5.1 933 0.9 17.13
SNAS [51] 2.9 551 1.5 2.92 3.1 573 1.8 17.53
DARTS [28] 33 574 1.5 2.76 3.8 651 5 17.54
PDARTS [29] 3.4 557 0.3 2.50 3.6 585 0.3 16.55
GDAS [52] 34 519 0.21 2.93 3.4 - 0.2 18.38
DARTS- [53] 3.5 568 0.4 2.50 3.3 - 0.4 17.51
DARTS NSAS [38] 3.54 - 0.4 2.73 3.54 - 0.4 18.02
SPOS [9] 3.24 564 0.5 2.41 3.62 597 0.7 16.31
MN(C;I)\IAS 3.24 560 0.6 2.38 3.49 579 0.7 16.21
FairNAS [35] 3.32 572 0.6 2.46 3.70 633 0.8 16.42
MN(C}’})\IAS 322 548 0.7 2.44 3.60 593 0.8 16.37
MixPath [10] 3.34 572 0.6 2.43 3.64 615 0.7 16.30
MI\I&}/BIAS 3.32 570 0.6 2.39 3.58 590 0.8 16.27
SPOS 2.37 389 0.3 2.72 2.32 326 0.7 16.31
ShuffleNet MNgl)\IAS 2.24 387 0.4 2.68 2.32 325 0.7 16.13
SPOS [9] 3.58 735 0.5 2.31 3.91 722 0.8 16.24
MNGNAS 3.61 726 0.6 2.30 3.92 748 0.9 16.23
MobileNet S)
FairNAS [35] 3.54 723 0.5 2.30 3.89 741 0.9 16.22
MN((]}:I)\IAS 3.52 720 0.6 2.32 3.92 751 0.9 16.17
MixPath [10] 3.58 710 0.6 2.26 3.91 746 0.8 16.13
MN(%IAS 3.52 713 0.6 222 3.91 744 0.9 16.12
B. Evaluation Metrics training strategies on the MobileNet search space. The two-

The evaluation process is to train the final obtained archi- oW line chart corresponds to SPOS and MixPath respectively.
tecture on the training dataset and validate on the test dataset 1t is observed that under the close FLOPS conditions, our
like the training methods of most image recognition models. ~Proposed algorithm can achieve a lower error rate most of the
The strategy to obtain the final architecture is a little different time. To compare the performance of MNGNAS with state-
in block-based algorithm and cell-based algorithm. In block- ©f-the-art NAS methods fairly, we follow the experimental
based algorithm, the final architecture is to select one operation ~ Setting in SPOS, FairNAS and MixPath algorithm. For this
in corresponding path of the SuperNet. In cell-based algorithm, ~€Xperiment, we consider accuracy in test dataset, MAdds,
we need to stack more searched cell blocks to form the final FLOPs and search cost (GPU Days) as the two objective of
architecture. In addition to analyzing the top architectures, interest. The comparison results in CIFAR10 and CIFAR100

we also conduct the correlation analysis. We calculate the dataset are provided in Table I and can be summarized as:

correlation between the search accuracy and the true accuracy 1) Compared to primary one-shot-based NAS algorithm
in the NAS-Bench-101 search space. The Kendall Tau metrics SPOS, FairNAS and MixPath, MNGNAS greatly improve
is used to evaluate the correlation. the search results. Under the condition of similar search
time, the MNGNAS algorithm can search for architec-

C. Results on CIFARIO and CIFAR100 Datasets tures with fewer parameters and higher accuracy in both
Fig. 3, Fig. 4 and Fig. 5(a)(b) compare the accuracy and ShuffleNet, MobileNet and DARTS search space. MNG-
FLOPS value of the architecture obtained from the original NAS algorithm can obtain 0.03% and 0.1% decrease
one-shot algorithms and the proposed MNGNAS algorithm. obtained by SPOS 0.02% and 0.5% decrease obtained
Fig. 5 shows the architecture obtained by using the SPOS by FairNAS and 0.04% and 0.03% decrease SuperNet
training strategy on the ShuffleNet search space. Fig. 3 and training strategy in CIFARI10, CIFAR100 dataset and

Fig. 4 show the architecture obtained by using different DARTS respectively. In MobileNet search space, MNG-
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Fig. 5: Test errors of some models searched by SPOS with our proposed MNGNAS algorithm on different image recognition
datasets. NAS algorithms are based on the ShuffleNet search space. SuperNet is trained on the training dataset and evaluated

on the validation dataset.

CIFAR10 CIFAR100 ImageNet16-120 ImageNet

My — MM | T M| — T MM) | I

M — M| M| T M I
Mo — T | M| —— | M| — T | M| —— [

F— T L e N N | M F (I
M(S) — T M) My — T M| T

S —— O s{ T F— si— T s{ —{ T

(a) CIFAR10 (b) CIFAR100 (c) ImageNet16-120 (d) ImageNet

Fig. 6: Box plot of error rates on different image recognition datasets. The figure shows the distribution of the error rate
corresponding to the architecture obtained by different search algorithms. S, F, and M on the y-axis in the figure are the
abbreviations for SPOS, FairNAS and MNGNAS algorithms respectively. M(.) is the abbreviation of MNGNAS and SuperNet

training strategy algorithm respectively.

NAS algorithm can obtain 0.01%, 0.02% decrease ob-
tained by SPOS and 0.05% and 0.01% decrease obtained
by MixPath SuperNet training strategy.

Our proposed MNGNAS algorithm outperforms most of
the gradient based NAS algorithms in accuracy with
much lower computational consumption in the DARTS
search space. In CIFARI10 dataset, the proposed algo-
rithm can obtain 0.09% decrease compared with the
PCDARTS algorithm with the similar parameters. In
CIFARI100 dataset, the proposed algorithm can obtain
0.45% decrease compared with PDARTS algorithm with
the similar parameters.

Our proposed MNGNAS algorithm can also outper-
form manual designed models in both accuracy and
computational consumption. In both CIFAR10 and CI-
FARI100 dataset. The architectures obtained on the Shuf-
fleNet search space outperform manually designed Shuf-
fleNetV1 and ShuffleNetV2. Similarly, the architectures
obtained on the MobileNet search space outperform man-
ually designed MobilenetV1 and MobilenetV2.

2)

3)

The statistical values of error rate obtained by one-shot-
based algorithm are represented in Fig. 6(a) and Fig. 6(b).
As it shows, compared with the SPOS, FairNAS and MixPath
algorithms, the proposed algorithm has a lower average error
rate, and the minimum value of error rate obtained by the
search is also lower.

- P05
—— MNGHAS(S)

- MixPath
—— MNGNAS(H)

332 334 336 338 340 332 334 336

Parameter Size (M) Param

338
eter Size (M)

(a) SPOS (b) MixPath

Fig. 7: Test errors of some models searched by SPOS with our
proposed MNGNAS algorithm on ImageNet16-120 dataset.
NAS algorithms are based on the MobileNet search space.

D. Results on ImageNet16-120 Dataset

Different from the architecture on the CIFARIO and CI-
FAR100 datasets, considering the resolution of the image,
only a three-stage architecture is used on the ImageNetl6-
120 dataset. We make comparison with gradient based method
and one-shot-based method where the quantitative results are
summarized in Table II. Our proposed MNGNAS algorithm
obtains slightly accuracy compared to corresponding one-shot
method with fewer FLOPs. Compared with SPOS algorithm,
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Fig. 8: The graph of optimal architecture obtained by the proposed MNGNAS algorithm.

TABLE II: TOP-1 metrics for one-shot-based NAS architec-
tures on the ImageNetl16-120 dataset. The algorithms give
the results on the DARTS, ShuffleNet and MobileNet search
spaces respectively.

TABLE III: TOP-1 metrics for NAS obtained architectures
on the ImageNet dataset. The algorithms give the results on
the DARTS search spaces respectively. T represents directly
searching on the ImageNet dataset.

Search Cost

Search Cost

Search Space Algorithm #Params (GPU Day) Top-1 Algorithm (GPU Day) Params | TOP-1 | TOP-5

SPOS [9] 1.25 4.6 755 92.5

ENAS [50] 3.32 0.3 16.32 FairNAS [35] 1.5 46 | 753 | 924

DARTS [28] 3.24 03 16.32 FairDARTS [33] 3.0 43 756 | 92.6

SETN [54] 327 04 32.52 DARTS [28] 40 53 760 | 927

DARTS SPOS [9] 3.28 0.5 35.17 GDAS [52] _ 53 74.9 922

MNGNAS (S) 3.24 0.6 35.53 CyDAS [55] _ 54 75.9 92.6

MixPath [10] 3.21 0.4 36.05 PCDARTS [56] 3.8 53 75.8 92.7

MNGNAS (M) 322 0.5 36.05 RLNAS [57] - 55 75.9 92.0

MNGNAS (S) - 53 76.2 92.9

ShuffleNet MI§IE}ONSA[S9](S) %gg 83 ggg; MNGNAS (S) t 1.41 5.4 75.8 92.8

: : : MNGNAS (F) - 53 75.9 92.8

SPOS [9] 3.43 0.5 39.11 MNGNAS (F) 1.67 53 76.1 92.7

FairNAS [35] 3.36 0.5 39.15 MNGNAS (M) - 53 76.4 92.9

MobileNet MixPath [10] 3.44 0.5 39.44 MNGNAS (M) 1 1.56 5.5 76.1 927
MNGNAS (S) 3.41 0.6 39.52
MNGNAS (F) 3.43 0.7 39.72

MNGNAS (M) | 3.42 0.6 3974 performance of transfer learning as well as the searching on

the proposed algorithm can obtain 0.22% and 0.41% increase
in TOP-1 metrics in ShuffleNet and MobileNet search space.
Compared with MixPath algorithm, the proposed algorithm
can obtain 0.57% increase in TOP-1 metrics.

Fig. 5(c) and Fig. 7 compare the accuracy and FLOPS
value of the architecture obtained from the original one-shot
algorithms and the proposed MNGNAS algorithm. It shows
that under the approximate FLOPS conditions, our proposed
algorithm can achieve a lower error rate most of the time.
Fig. 8 and Fig. 9 demonstrate the detailed optimal architecture
obtained in MobileNet and DARTS search space on different
image recognition datasets respectively.

E. Results on ImageNet dataset

In this section, we apply the proposed MNGNAS algorithm
to both MobileNet and DARTS search space. We verify the

a large model in ImageNet dataset.

(a) DARTS search space: The experimental results are
shown in Table III. Our proposed MNGNAS algorithm can
obtain higher TOP-1 value in both directly searching and
transferring settings. MNGNAS with FairNAS SuperNet train-
ing strategy can obtain highest TOP-1 among all compared
training strategy, with 0.5% increase compared with CyDAS
[55] and RLNAS [57].

(b) MobileNet search space: The experimental results are
shown in Table IV. As it shows, the proposed MNGNAS
algorithm obtains highest TOP-1 value. MNGNAS algorithm
with FairNAS training strategy obtains 0.4% increase com-
pared with primary FairNAS algorithm.

F. Results on NAS Benchmark Datasets

In this section, we apply MNGNAS to the NAS-Bench-101,
NAS-Bench-201 and NAS-Macro-Bench search space.

(a) NAS-Bench-101: We apply the proposed method in one
of the cell-based search space NAS-Bench-101. We mainly
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Fig. 9: The cell topology found in different image recognition datasets and DARTS search space. The cell topology is searched
on CIFAR10, CIFAR100 and ImageNet datasets respectively. The two lines in the figure represent the topology of the normal

and reduction modules respectively.
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Fig. 10: The Scatter plot of the real accuracy of the architecture extracted by NAS Bench101 and the accuracy obtained by
the NAS algorithm. The algorithm to be compared is the original one-shot search algorithm SPOS, FairNAS, MixPath and the
MNGNAS algorithm proposed in this paper for retraining the search architecture.

TABLE IV: TOP-1 and TOP-5 metrics for NAS obtained
architectures on the ImageNet dataset. The algorithms give
the results on the MobileNet search spaces respectively.

Method | Params | Flops | TOP-1 | TOP-5
MobileNetV3 [23] - 217 75.2 -
SPOS [9] 54 472 76.3 -
FairNAS [35] 4.6 488 77.5 93.2
FBNet [24] 4.4 375 74.9 92.1
ProxylessNAS [58] 7.0 457 75.1 92.7
MNGNAS (S) 4.7 392 77.4 93.6
MNGNAS (F) 4.5 375 77.9 93.9
MNGNAS (M) 5.0 455 71.5 93.6

give the correlation coefficient between the accuracy obtained
by the algorithm and the actual accuracy. Fig 10 gives the
scatter plot of actual accuracy and accuracy predicted by the
MNGNAS algorithm and shows that the correlation between
true accuracy and predicted accuracy obtained by MNGNAS
algorithm and primary one-shot-based method. The blue and
red point represents the searching results obtained by MNG-
NAS algorithm and primary one-shot-based NAS algorithms
respectively. Obviously, there exists more points obtained by
MNGNAS algorithm near the center line, which shows the

superior performance compared with primary algorithm. We
give the correlation coefficient above the scatter plot and it also
shows the superior performance of our MNGNAS algorithm.

(b) NAS-Bench-201: In this part, we apply the proposed
method in another cell-based search space NAS-Bench-201. To
fairly compare with recently proposed method, we both give
the average and optimal architecture obtained accuracy value
obtained by the proposed MNGNAS algorithm. We conduct
the experiments for four times and use 4 different random
seeds. The experimental results are given in Table V. As it
shows, the proposed MNGNAS algorithm can obtain rela-
tively higher accuracy in most image recognition datasets and
SuperNet training strategies. In CIFAR10 and ImageNet16-
120 dataset, MNGNAS algorithm with SPOS training strategy
obtains highest accuracy. In CIFAR100, MNGNAS algorithm
with SPOS or MixPath training strategy obtains highest ac-
curacy. The optimal architecture obtained by MNGNAS also
achieves higher accuracy value compared with corresponding
one-shot-based NAS algorithm.

(c) NAS-Macro-Bench: We also apply the one-shot-based
NAS algorithm in the block-based search space. We con-
sider three state-of-the-art one-shot-based architectures namely
SPOS [9], FairNAS [35] and MixPath [10]. Moreover, we
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Fig. 11: The overall framework of one-shot-based NAS algorithm with similar distillation algorithms.

TABLE V: Test error rates with standard deviation for our proposed algorithm based on the NAS-Bench-201 search space.

CIFARI10 CIFAR100 ImageNet16-120
Valid Test Valid Test Valid Test
Optimal 91.61 94.37 73.49 73.51 46.77 47.31
REA [27] 91.2540.31 94.0240.31 72.2840.95 72.234+0.84 45.71+0.77 45.7740.80
REINFORCE [5] 91.124+0.12 93.9040.26 71.8040.94 71.8640.89 45.374+0.74 45.641+0.78
DARTS [28] 39.7740.00 54.3040.00 38.5740.00 38.97+0.00 18.8740.00 18.4140.00
GDAS [52] 90.0140.46 93.2340.23 24.0548.12 24.204+8.08 42.844+1.79 43.1642.64
SNAS [51] 90.10+1.04 92.7740.88 69.6940.39 69.344+1.89 42.844+1.79 43.161+2.64
DARTS- [53] 91.031+0.44 93.8040.40 71.3641.51 71.534+1.51 44.87+1.46 45.1240.81
SPOS [9] 91.234+0.16 93.4140.14 71.8340.46 71.8240.38 44.87+1.43 45.724+2.15
(91.44) (93.62) (72.32) (72.36) (45.45) (45.92)
MNGNAS (S) 91.274+0.12 93.4140.13 71.914+0.44 71.99+0.45 44.81+1.34 45.734+2.19
(91.49) (93.77) (72.53) (72.60) (45.69) (45.97)
FairNAS [35] 91.334+0.09 93.2740.08 71.7740.38 71.9440.43 44.794+1.63 45.17+1.83
(91.45) (93.70) (72.29) (72.39) (45.53) (45.89)
MNGNAS (F) 91.354+0.11 93.1640.15 71.8040.47 71.964+0.41 44.814+1.82 45.2441.92
91.79) (93.87) (72.41) (72.67) (45.62) (45.94)
MixPath [10] 91.284+0.14 92.9440.31 71.7540.41 71.714+0.38 44.734+1.79 45.4142.06
(91.48) (93.57) (72.33) (72.43) (45.39) (45.84)
MNGNAS (M) 91.2740.12 93.014+0.29 71.7740.33 71.9940.43 44.85+1.53 45.4242.01
(91.55) (93.68) (72.44) (72.58) (45.61) (45.92)

TABLE VI: Accuracy, parameter size, Flops and search cost TABLE VII: Object detection results on MS-COCO dataset.
for our proposed method and recently proposed NAS algorithm The detection model is based on RetinaNet combined with

on the NAS-Macro-Bench search space. different backbone networks.

Methods FLOPS | Params | Top-1 | Top-5 Sé‘:)rscth Backbone | FLOPs | Params | mAP | APsg | APrs
EfficientNet [25] 390 53 76.3 932 N MobileNetV2 [49] 6.1 3.4 28.3 46.7 29.3
SCARLET [59] 280 6.0 75.6 92.6 12 MobileNetV3 [23] 4.5 - 29.9 49.3 30.8

MnasNet [26] 312 3.9 752 | 925 - SPOS [9] 7.4 4.3 307 1 498 | 322
GreedyNAS [60] 284 47 | 762 | 925 | <1 FairNAS [35] 8.0 29 | 324 | 24 | B9
MCT-NAS [46] 280 4.9 763 | 926 <1 MNGNAS (S) 7.37 4.2 323 | 535 | 365
ProxylessNAS [58] | 320 40 746 | 922 - MNGNAS (F) ‘ 7.88 ‘ 5.7 ‘ 338 ‘ 55.2 ‘ 37.2
ST-NAS [61] 326 52 76.4 93.1 -
SPOS [9] 322 3.8 76.2 92.5 1.1
MNGNAS (S) 323 3.8 76.5 92.6 1.3
FairNAS [35] 326 39 76.7 92.6 1.2
MNGNAS (F) 324 39 76.8 92.9 1.4
MixPath [10] 327 39 76.4 92.4 1.1 : : : :
MNGNAS (M) 330 1n 267 025 12 [46]. The comparison results are given in Table VI. As it

shows, one-shot-based method and our method can be seen
as time-saving methods and obtain approximate TOP-1 value.
Our proposed method MNGNAS can obtain higher TOP-1
compare our method with reinforcement and Monte Carlo compared with corresponding method. MNGNAS algorithm
based method including EfficientNet [25] and MCT-NAS with FairNAS algorithm obtains highest TOP-1 value.
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Fig. 12: Effect of different retraining epochs and different distillation methods on error rate of the searched architecture. We
give the training loss in the 40 searching epochs by different distillation algorithms. The SuperNet training strategies are SPOS,

FairNAS and MixPath in three lines respectively.

TABLE VIII: Comparison results on different distillation algorithms based on the ShuffleNet search space. The compared
algorithms are similar to the proposed algorithm. We give the results on different image recognition datasets.

Distillation [ CIFAR10 [ CIFAR100 [ ImageNet16 [ ImageNet
Algorithm | #Params  #MAdds  Error | #Params #MAdds  Error | #Params #MAdds Top-1 | #Params #MAdds TOP-1
w/o KD 2.57 392 2.31 2.31 362 16.19 243 376 39.50 341 328 73.0
Single KD 2.53 385 2.29 2.31 361 16.34 2.45 378 39.49 341 331 73.2
Average Ensemble KD 2.52 393 2.26 2.32 371 16.20 2.41 375 39.45 3.41 335 73.1
Searched adaptive 253 394 228 | 233 350 1618 | 243 377 3946 | 342 338 733
nsemble KD
MNGNAS (S) 2.51 387 2.24 2.30 341 16.10 2.41 376 39.51 343 344 73.5

G. Results on COCO Object Detection Datasets

We validate the searched models on the downstream task in
computer vision. We give the experimental results of object
detection as a fundamental computer task which needs to
detect object of different classes. We select the lightweight
object detection model RetinaNet and retain most of the
training hyperparameters. Table VII shows the related results
of Flops, parameter size and mAP value. It shows that the
backbone network obtained by the proposed MNGNAS algo-
rithm obtains a superior tradeoff: higher mAP value with less
Flops compared with primary one-shot-based method SPOS,

FairNAS and manually designed backbones MobileNet.

V. ABLATION STUDY
A. Effects of Knowledge Distillation Algorithm

In this section, we design the comparison groups for MNG-
NAS algorithm with general distillation and general ensemble
distillation and keep the same SuperNet training algorithm. We
compare the accuracy and parameters with similar distillation
algorithms. The algorithms can be described as: (A) Searching
algorithms that uses the general training strategy without
the knowledge distillation process, (B) searching algorithm
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TABLE IX: Comparison results on different distillation algorithms based on the MobileNet search space. The compared
algorithms are similar to the proposed algorithm. We give the results on different image recognition datasets and both ShuffleNet

and MobileNet search space.

SuperNet Training Distillation CIFAR10 CIFAR100 ImageNet16-120 ImageNet

Algorithm Algorithm #Params  #MAdds  Error | #Params #MAdds  Error | #Params #MAdds TOP-1 | #Params #MAdds TOP-I
wlo KD 353 743 236 3.99 757 1626 | 3.8 731 39.15 349 743 735
Single KD 351 744 132 397 758 1628 | 344 728 3931 350 745 734
SPOS Adaptive Bnsemble |3 45 733 23 | 392 753 1619 | 342 723 3043 | 348 743 735
Searched adaptive 3.49 739 231 391 750 1617 | 342 721 39.31 3.46 735 736

Ensemble KD
MNGNAS 347 726 231 391 748 1623 | 341 719 39.54 341 719 738
wio KD 351 725 233 3776 731 1628 | 340 718 39.46 343 720 736
Single KD 354 731 2.29 372 T2 1625 | 344 2 39.38 344 T2 735

Adaptive Ensemble

FairNAS %D 353 729 231 3.74 730 1624 | 343 721 39.42 341 718 73.7
Searched adaptive 3.49 723 233 373 732 16.21 347 725 39.46 344 723 736

Ensemble KD
MNGNAS 351 725 231 374 732 1621 | 344 722 39.52 343 721 7377
wio KD 351 757 238 397 743 1626 | 344 722 39.46 342 720 T34
Single KD 351 T2 236 303 752 1625 | 346 727 3928 340 716 735
MixPath Adaptive Fasemble |3 49 748 234 | 395 746 1623 | 345 76 3961 | 345 726 3961
Searched adaptive 3.49 749 233 3.94 745 1623 | 343 723 39.54 342 720 737

Ensemble KD
MNGNAS 343 746 2.32 391 744 1619 | 342 720 39.73 343 72 737

TABLE X: Test error rates with standard deviation for our proposed algorithm based on the NAS-Bench-201 search space.

CIFARI10 CIFAR100 ImageNet16-120
Valid Test Valid Test Valid Test
SPOS A 91.2540.24 93.0940.13 71.7840.41 71.8340.51 44.794+1.07 45.82+1.93
SPOS B 91.234+0.14 93.0740.17 71.8240.38 71.8540.41 44.76+1.01 45.84+1.51
SPOS C 91.2440.21 93.1640.27 71.9140.28 71.884+0.71 44.64+1.23 45.79+1.24
SPOS D 91.264+0.26 93.2940.24 71.8940.17 71.9440.81 44.724+1.43 45.814+1.06
(91.42) (93.65) (72.48) (72.57) (45.54) (45.94)
MNGNAS (S) 91.2740.12 93.8040.40 71.914+0.44 71.9940.45 44.81+1.34 45.73+2.19
(91.49) (93.76) (72.53) (72.59) (45.69) (45.97)
FairNAS A 91.1740.23 93.1740.11 71.6340.28 71.884+0.23 44.68+1.42 45.19+1.21
FairNAS B 91.1940.27 93.1640.14 71.6440.19 71.884+0.27 44.67+1.01 45.18+1.33
FairNAS C 91.1940.22 93.1840.24 71.6640.11 71.9040.35 44.694+1.41 45.194+1.20
FairNAS D 91.204+0.24 93.0940.24 71.7440.11 71.9440.35 44.744+1.41 45.214+1.20
(91.63) (93.82) (72.32) (72.65) (45.61) (45.95)
MNGNAS (F) 91.354+0.18 93.1640.21 71.8040.14 71.9940.46 44.794+1.24 45.244+1.92
(91.79) (93.87) (72.41) (72.69) (45.69) (45.97)
MixPath A 91.3040.13 93.1240.19 71.7240.16 71.9610.42 44.78+1.14 45.20+1.13
MixPath B 91.3140.11 93.1440.17 71.714+0.12 71.9840.32 44.81+1.21 45.21+1.34
MixPath C 91.334+0.17 93.1540.18 71.7340.13 71.9740.33 44.774+1.31 45.224+1.82
MixPath D 91.3440.23 93.1540.24 71.7640.19 71.9740.36 44.79+1.41 45.244+1.71
(91.50) (93.60) (72.33) (72.51) (45.52) (45.89)
MNGNAS (M) 91.3640.12 93.184+0.29 71.7640.33 71.984+0.43 44.79+1.24 45.294+1.92
(91.55) (93.68) (72.44) (72.58) (45.61) (45.92)

TABLE XI: Comparison of Kendall Tau using different distil-
lation algorithms and SuperNet training algorithms. We select
1000 architectures from NAS-Bench-101 dataset.

SPOS  FairNAS  MixPath

w/o KD 56.46 57.15 57.13

Single KD 56.82 57.29 57.31
Adaptive Ensemble

KD 57.13 57.51 57.81
Searched Adaptive

Ensemble KD 57.19 57.45 58.01

MNGNAS 57.32 57.48 58.04

that only uses the model with a highest accuracy in the
previous searching epoch as the teacher model, (C) searching
algorithm that only uses the model with a higher accuracy in
previous searching epoch as the general ensemble distillation
algorithm, (D) searching algorithm that only uses the model
with a higher accuracy in previous searching epoch as the

adaptive ensemble teacher model, and (E) searching algorithm
(MNGNAS) that uses the model with a higher accuracy in
the previous searching epoch and models on the same search
iteration as teacher model and uses the adaptive ensemble
knowledge distillation. The detailed procedure of B, C, D and
MNGNAS algorithm is shown in Fig. 11.

In Table VIII and Table IX, the error rate and TOP-1 metric
in the compared datasets are shown. The search space is
ShuffleNet and MobileNet respectively. We give the detailed
results with different SuperNet training algorithms and knowl-
edge distillation algorithms. Compared with other knowledge
distillation algorithms in ShuffleNet search space, the proposed
method can obtain the lowest error rate as well as highest
TOP-1 accuracy metrics in both CIFAR and ImageNet dataset.
In MobileNet search space, MNGNAS with SPOS obtains
lowest error rate in CIFAR10 dataset. MNGNAS with FairNAS
obtains lowest error rate in CIFAR100 dataset. MNGNAS with
MixPath obtains highest accuracy value in ImageNet16-120
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TABLE XII: Comparison results on MNGNAS algorithm with different number of teacher models. The results are obtained
on ShuffleNet search space and different SuperNet training strategy.

Teacher Number CIFAR10 CIFAR100 ImageNet16-120 ImageNet
S F M S F M S F M S F M
4 241 236 229 | 17.16 16.88 16.89 | 60.98 60.73 6041 | 27.82 27.62 2792
6 237 231 227 | 1676 1641 1637 | 60.63 60.63 60.34 | 27.31 2741 2754
8 229 225 223 | 1642 1628 1623 | 60.56 60.51 60.28 | 2691 26.83  26.99
10 227 221 221 | 1623 1623 16.19 | 60.56 6042 60.27 | 26.89 26.84 26.88
12 226 221 222 | 1622 1621 16.19 | 60.56 6041 60.28 | 26.89 26.83 26.88
14 228 223 226 | 1622 1621 1622 | 60.59 6041 60.28 | 2690 26.83 26.89

TABLE XIII: Comparison results on MNGNAS algorithm with different number of teacher models. The results are obtained
on MobileNet search space and different SuperNet training strategy.

Teacher Number CIFAR10 CIFAR100 ImageNet16-120 ImageNet
S F M S F M S F M S F M
4 237 238 227 | 17.19 1691 1695 | 60.97 60.89 60.54 | 27.89 27.74 27.77
6 235 233 225 | 16.80 1657 16.65 | 60.63 60.68 60.33 | 27.52 27.54 27.56
8 227 229 222 | 1641 1626 16.19 | 60.54 60.54 60.26 | 26.86 2695 26.93
10 224 225 221 | 1627 1625 16.18 | 60.52 6041 60.25 | 26.85 26.82 26.86
12 225 224 222 | 1627 1626 16.19 | 6052 6041 60.26 | 26.83 26.81 26.86
14 225 225 224 | 1628 1625 16.19 | 60.53 6042 6025 | 26.85 26.82 26.88

TABLE XIV: Comparison results on MNGNAS algorithm with different number of teacher models.

We give the results on the

DARTS search space. We give the results on different image recognition datasets and different SuperNet training strategy.

Teacher Number CIFAR10 CIFAR100 ImageNet16 ImageNet
S F M S F M S F M S F M
4 243 252 265 | 17.32 1713 17.12 | 60.72 60.81 60.84 | 27.53 27.56 27.58
6 232 238 241 | 1685 16.81 1678 | 60.58 60.51 60.53 | 27.44 27.47 27.49
8 228 229 238 | 16.67 1656 1653 | 60.47 6044 6041 | 2745 2743 2744
10 227 226 229 | 1636 1641 1635 | 6046 6042 6041 | 2744 2742 2741
12 227 225 229 | 1633 1640 1636 | 6045 6043 6042 | 2745 2743 2741
14 228 225 227 | 1632 1638 1639 | 6046 6042 6042 | 2744 2742 2742

dataset. MNGNAS with SPOS obtains highest accuracy value
in ImageNet. In addition, our method can obtain lowest error
rate as well as highest accuracy in most of the combinations
of SuperNet training strategy and knowledge distillation al-
gorithms. In Table X, the experimental results with different
knowledge distillation algorithm in NAS-Bench-201 search
space are given. We both give the mean accuracy value and
optimal model obtained accuracy value. As the table shows,
our proposed algorithm outperforms both mean accuracy and
optimal model accuracy in most datasets. We also make a
comparison between MNGNAS and similar distillation algo-
rithms on the NAS-Bench-101 dataset. As reported in Table
XI, our proposed algorithm can obtain much higher correlation
coefficient compared with other distillation algorithms with
several SuperNet training strategy. MNGNAS with MixPath
training strategy can obtain the highest correlation coefficient.

B. Effects of Retraining Epochs

In this section, we provide an analysis on the impact of the
retraining epochs n,.:rq in searching process. When we in-
crease the retraining epochs, more accurate predicted accuracy
can be obtained and the search cost will increase significantly.
The error rates obtained by one-shot-based method based
on different distillation algorithms with different retraining
epochs are shown in Fig. 12. It shows that increasing the
number of retraining epochs significantly decrease the error
rate in the beginning but increase fewer after 40 epochs. Our
MNGNAS algorithm can get the architecture with lower error

rate within relative less retraining epochs. In practice, we
set Nyetrq as 40. We also make comparisons with different
retraining epochs on the NAS-Bench-101 search space. We
give the ablation experiments of the combinations of different
retraining epochs and distillation algorithm in Fig. 13.

C. Effects of the Number of Teacher Models

In this section, we investigate the effect of the number of
teacher models in searching process. The number of teacher
models here refers to the optimal models from previous search-
ing epochs. Before the number of search epochs reaches the
preset number of teacher models, we select all optimal models
in the previous search period as the teacher model group. We
train MNGNAS (S) and MNGNAS (M) with different teacher
model number nrg € {2,4,6,8,10,12,14} and report the
error rates. We give the experimental results on ShuffleNet,
MobileNet and DARTS search space and choose the SPOS
as the SuperNet training strategy. The error rates obtained by
the proposed MNGNAS algorithm are shown in Table XII,
Table XIII and Table XIV. In most combinations, when we
increase np from 4 to 10, the error rates become much lower.
When we continue to increase np, the error rate becomes
nearly unchanged and it will bring much computation costs.
In practice, we set np 10. In Fig. 14, We make comparisons
with different teacher model number on the NAS-Bench-101
search space. As it shows, We can also obtain the highest
correlation coefficient with nearly 10 teacher models. We give
the experimental results of MNGNAS algorithm with different
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TABLE XV: Comparison results on MNGNAS algorithm with different number of teacher models. The results are obtained

on NAS-Bench-201 search space and different SuperNet training strategy.

Teacher number CIFARI10 CIFAR100 ImageNet16-120
valid test valid test valid test
4 91.30+0.10  92.89+0.21 | 71.63+£0.23  71.8040.23 | 44.65+1.44 45.194+1.52
6 91.294+0.20 9291+£0.24 | 71.67+£0.36  71.834+0.27 | 44.7241.63 45.214+1.43
8 91.2940.18  92.97+0.28 | 71.68+0.34  71.8640.34 | 44.76+£1.18 45.264+1.23
10 91.2740.12  93.01£0.29 | 71.69+0.33  71.904+0.43 | 44.85+1.24 45.294+1.92
12 91.264+0.19  92.934+0.21 | 71.664+0.28  71.834+0.24 | 44.85+1.17 45.284+1.87
14 91.25+0.14  92.93+0.26 | 71.65+£0.21  71.8240.23 | 44.83+£1.05 45.27+1.71

TABLE XVI: Comparison results
DARTS search space.

on MNGNAS with different perturbed architecture number. The results are obtained on

Perturbed Architecture CIFAR10 CIFAR100 ImageNet
Number S F M S F M S F M
0 229 225 227 | 16.68 1657 1674 | 2692 2694  26.90
2 228 225 226 | 1654 1642 1661 | 2688 26.86 26.88
4 227 224 226 | 1638 1639 1658 | 26.86 26.82 26.83
6 228 226 226 | 1638 1637 1657 | 26.85 26.83  26.82
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Fig. 13: The Kendall Tau metric (7) during searching for
different distillation algorithms and retraining epochs with
primary algorithm and our MNGNAS algorithm. The ground
truth value is obtained from the NAS-Bench-101 dataset.

teacher models in the NAS-Bench-201 search space in Table
XV. As it shows, we can obtain high accuracy value when
set the teacher number as 10 similar to the parameter settings
in other search spaces. And when increasing the value, it will
almost only bring more computation costs.

D. Effects of the Number of Perturbed Architecture

In this section, we investigate the effect of the number of
perturbed architectures in searching process. We train MNG-
NAS with different SuperNet strategy and different perturbed
architecture number in {2,4,6}. We also give the comparison
results without perturbed architecture fine-tuning process and
its corresponding number is 0. We give the experimental
results on DARTS search space in Table XVI. As it shows,
the perturbed architecture strategy can obtain lower error rate
and 4 perturbed architectures are the optimal hyperparameter.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced the MNGNAS algorithm to
improve the searching efficiency in one-shot-based NAS algo-
rithm by the ensemble knowledge distillation algorithm. The
core idea is to use multiple high-accuracy architectures as
the teacher to distill the following searched architecture. The
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Fig. 14: The Kendall Tau metric (7) during searching for dif-
ferent distillation algorithms and teacher models with primary
algorithm and our proposed MNGNAS algorithm. The ground
truth value is obtained from the NAS-Bench-101 dataset.

a 5 s 10 1
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teacher model in our algorithm includes the model with higher
accuracy in the previous search process and the model with
the same search iteration. Considering the competition and
compromise problem in general ensemble knowledge distil-
lation algorithm, we introduce the adaptive coefficient based
on optimization algorithm. In addition, we design a specific
knowledge distillation strategy for optimal architectures. The
loss calculating the feature differences between focused ar-
chitectures and perturbed architectures is added to learn more
suitable feature maps for later process. Extensive experiments
demonstrated that we improved the accuracy and compact-
ness of one-shot-based NAS methods on several benchmark
datasets. Ablation studies showed that our method could obtain
architectures with higher accuracy under fewer search epochs
than similar distillation algorithms. Our proposed method can
also be applied to improve performance in related computer
vision tasks, which will be investigated as our future work.
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