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Non-autoregressive video captioning methods generate visual words in parallel but often overlook semantic
correlations among them, especially regarding verbs, leading to lower caption quality. To address this, we
integrate action information of highlighted objects to enhance semantic connections among visual words.
Our proposed Action-aware Language Skeleton Optimization Network (ALSO-Net) tackles the challenge of
extracting action information across frames, improving understanding of complex context-dependent video
actions and reducing sentence inconsistencies. ALSO-Net incorporates a linguistic skeleton tag generator to
refine semantic correlations and a video action predictor to enhance verb prediction accuracy in video captions.
We also address issues of unsatisfactory caption length and quality by jointly optimizing different levels
of motion prediction loss. Experimental evaluation on prominent video captioning datasets demonstrates
that ALSO-Net outperforms baseline methods by a significant margin and achieves competitive performance
compared to state-of-the-art autoregressive methods with smaller model complexity and faster inference time.

CCS Concepts: • Computing methodologies → Video summarization; Natural language generation;
Neural networks;

Additional Key Words and Phrases: Video Captioning, Non-Autoregressive Models, Visual-Language Align-
ment, Video Action Prediction, Semantic Dependencies

ACM Reference format:
Shuqin Chen, Xian Zhong, Yi Zhang, Lei Zhu, Ping Li, Xiaokang Yang, and Bin Sheng. 2024. Action-aware
Linguistic Skeleton Optimization Network for Non-autoregressive Video Captioning. ACM Trans. Multimedia
Comput. Commun. Appl. 20, 10, Article 326 (October 2024), 24 pages.
https://doi.org/10.1145/3679203

1 Introduction
Recent advancements in deep learning [21, 26, 42, 48, 69] have significantly propelled research in
several cross-modal tasks [34, 50, 51, 70], particularly within multimedia and artificial intelligence.
Among these, video captioning has rapidly emerged as a dynamic research field [43, 47, 65],
focused on generating coherent natural-language descriptions of visual content. This field has
broad applications, ranging from assisting visually impaired individuals to enhancing human–robot
interactions.

Autoregressive methods, which sequentially generate captions word by word, are widely em-
ployed across various domains and typically utilize an encoder–decoder architecture to maintain
visual and semantic coherence during caption generation [4, 33, 54]. However, the inherent sequen-
tial nature of these methods can restrict processing speed in certain applications. Consequently,
non-autoregressive methods, which generate all words simultaneously, have emerged as a promis-
ing alternative due to their low latency. Despite their speed, non-autoregressive methods often
suffer from weak dependencies among simultaneously generated words, resulting in captions
with repeated or incorrect words. Innovations in neural machine translation (NMT) have ad-
dressed this issue through the use of latent variables that encode information about the target
language sequence [40, 44]. In visual captioning, the integration of local autoregressive and global
non-autoregressive methods has been identified as a practical compromise [14]. However, their
application in video captioning remains limited, with only one iterative optimization-based method
proposed to date [62]. This method, while innovative, requires an impractical number of iterations
due to its iterative, sentence-level autoregressive nature. Yang et al. [62] highlight the significant role
of visual words in guiding the caption generation process, especially in encouraging the production
of scene-related words. Visual words, which correspond to relevant visual objects and actions,
serve as a template for the generation of non-visual words, underscoring their importance in video
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Fig. 1. Illustration of the video captioning process guided by linguistic skeleton tags. (a) Traditional supervision
of visual words, (b) Integration of a video action predictor branch in our model, which extracts high-level
action information from the entire video to refine low-level action semantics identified within single frames
by the skeleton tag generator. This method enhances semantic dependencies among visual words, enabling
the effective integration of specific verbs (highlighted in color) and the generation of diverse, action-aware
captions tailored to the video content.

captioning. However, the reliability of generating visual words non-autoregressively remains a
concern. As shown in Figure 1(a), relying solely on word-level cross-entropy loss is insufficient
to fully capture semantic relations within linguistic skeletons, as it fails to consider the linguistic
skeleton as a cohesive unit.

In previous research [66], linguistic skeleton tags have been employed as sentence-level supervi-
sion for visual word sequences. This method utilizes dual-scale visual-language bi-directional
alignment (DVBA) to establish the internal relevance of these tags, thereby enhancing the correla-
tion among visual words within a single-frame image. Specifically, the method effectively captures
the semantic dependencies among visual words by recognizing the relevance of objects depicted in
a video frame. For instance, as shown in the upper part of Figure 1(b), attention mechanisms cluster
“Gordon Ramsay” and “kitchen” into visual word groups. These clusters reflect their spatial relation-
ships within the video frame, such as “Gordon Ramsay in the kitchen,” indicating the preposition
“in.” Consequently, these visual word groups significantly strengthen semantic dependencies.

However, existing methods exhibit limitations. Associations captured within a single-frame image
may not fully represent the cohesion of the entire video. Relying solely on single-frame image
analyses to strengthen visual word dependencies can result in inaccuracies because describing
actions within a video often requires summarizing successive observations, and the semantics
expressed within a single frame frequently lack comprehensive temporal context. To more clearly
distinguish and emphasize interaction levels both within and across frames, we adopt the definition
from the field of image captioning [35], which characterizes “high-level semantic information” as a
summary description of images. Building on this, we extend the concept to encompass video action
semantic information, necessitating a summary across multiple frames. Consequently, for complex
videos, low-level action semantic information from individual frames is inadequate compared to the
high-level action semantic information conveyed by the entire video. Moreover, in complex videos
where multiple events may be unrelated, employing a single-frame target semantics construction
method can lead to errors when modeling the semantics of visual word sequences in the target
language. To address these challenges, we propose the design of action prediction branches to
extract high-level action information from the entire video. These prediction results are then
integrated into the inputs of both the length predictor (LP) and the decoder, correcting the
erroneous constraints imposed by low-level action information extracted by the skeleton tag
generator. With this enhanced method, we optimize the entire process of semantic refinement for
visual word sequences. We introduce an action-guided branch to accurately determine relevant
actions, mitigating erroneous actions suggested by specific frames. This action information is
subsequently integrated into the caption generator branch to refine the generation template,
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thereby improving semantic dependencies between visual words. Thus, enhancing the accuracy of
the linguistic skeleton, which includes both noun and verb attributes, is a significant focus of our
study. We observe that the correlation between visual words manifests primarily in two aspects:
the association among nouns within a single frame and the semantic correlation between nouns
and verbs that models the relationship among video objects and facilitates action prediction. By
explicitly predicting actions, the captioning process is furnished with additional guidance beyond
mere linguistic structuring.

Drawing on this method, we introduce the Action-Aware Linguistic Skeleton Optimization
Network (ALSO-Net), a novel method that incorporates skeleton tag prediction and a video
action predictor (AP) within the Transformer framework. This method establishes semantic
relationships among visual words through dual-scale video–text alignment. Additionally, we extend
this mapping to the visual word sequences generated by non-autoregressive methods, enhancing
semantic dependencies among visual words via the supervision of skeleton tags. This improvement
significantly enhances the decoder’s capacity to generate detailed captions guided by a more
accurate visual context. ALSO-Net operates through a two-step process: it first identifies the target
action present in the video and then selects the focal object to be included in the final caption.

Our work makes threefold significant contributions to the field of video captioning:

—We introduce a Video AP branch that dynamically enhances semantic connections among
visual words. This branch leverages classification results to extract high-level action informa-
tion from video frames, reinforcing semantic connections and addressing the complicated
contextual dependencies in video actions.

—We develop ALSO-Net, a novel non-autoregressive video captioning framework. ALSO-Net
effectively optimizes action prediction losses and reduces inconsistencies in generated sen-
tences by acquiring multi-level visual representations at various granularities and associating
them with their linguistic counterparts. This framework uniquely highlights the crucial con-
nection between high-level action information and visual objects in non-autoregressive video
captioning.

—We validate our model’s high inference efficiency and its capability to produce reliable and
coherent captions through extensive testing on Microsoft research video to text (MSR-
VTT) andMicrosoft research video description (MSVD) datasets. Our strategic integration
of multilevel visual representations at different granularities demonstrates state-of-the-art
performance, substantiating the effectiveness of ALSO-Net in practical applications.

2 Related Work
2.1 Video Captioning
In the field of video captioning, autoregressive methods [33] generate sentences token-by-token,
each conditioned on the previously generated tokens, aiming to maximize the joint probability
of the target words. However, this sequential word-by-word generation method has practical
limitations. To address the shortcomings of non-autoregressive methods, recent advancements
have focused on enhancing target sequence relevance through mechanisms such as latent variables,
knowledge distillation, and iterative optimization. Nonetheless, these methods typically integrate
target sequence relevance either in a one-off or a stepwise manner, which may not capture the full
dynamics of sentence construction. In the field of NMT, Ran et al. [39] have developed a method
that reconstructs the target sequence from source tokens, effectively incorporating the grammatical
structures of the target language into the translation process.

Autoregressive methods are widely used in video captioning, with prior research largely concen-
trating on improving visual feature extraction and enhancing visual-semantic relevance. Li et al.
[28] develop the long short-term relation transformer (LSRT) method, which constructs a

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 10, Article 326. Publication date: October 2024.



Action-aware Linguistic Skeleton Optimization Network 326:5

video-specific long short-term graph and employs the G3RM for relational reasoning, effectively
resolving issues such as redundant connections, over-smoothing, and ambiguity in relationships
within video content. Additionally, Deng et al. [10] introduce the syntax-guided hierarchical
attention network (SHAN)model, which integrates semantic and syntactic cues to better combine
visual and contextual features in captioning, significantly improving the generation of non-visual
words and model interpretability. In the domain of non-autoregressive frameworks, Fei et al. [13]
introduce a method that uses location information to guide the generation of descriptions. Gao
et al. [15] propose the Hierarchical Representation Network with Auxiliary Tasks, a framework
aimed at high-quality video understanding enriched with semantics-aware cues. Yang et al. [62]
utilize a masked language model to facilitate parallel caption generation, enhancing the accuracy
and diversity of the captions. However, this method still relies on sequential decoding processes,
which do not fully capture the semantic relationships among visual words, thus leaving room for
further improvement in nonsequential caption generation techniques.

2.2 Non-Autoregressive Sequence Generation
The translation speed of NMT models is hindered by their autoregressive nature, which decodes
target sentences word-by-word based on the translation history. In contrast, non-autoregressive
translation (NAT)models decode all target words simultaneously, effectively overcoming the speed
limitations associated with autoregressive translation. NAT achieves this by iteratively refining
the initial translations using the source language input, which conceptually mimics sentence-level
autoregressive processing. A notable method within NAT involves the use of knowledge distillation
[67], where an autoregressive model, adept at detailed modeling, serves as a “teacher.” The NAT,
acting as a “student,” learns the translation distributions block by block. This strategy allows NAT
to achieve rapid translation speeds without sacrificing the quality of the output.

In video captioning, NAT [14, 62] eliminate sequential dependencies, enabling the simultaneous
generation of all words and thus speeding up decoding. To address the performance gap between
autoregressive and non-autoregressive captioning models, various strategies have been introduced,
such as knowledge distillation, the incorporation of auxiliary regularization terms, and the opti-
mization of decoder inputs. However, these methods often rely on traditional cross-entropy loss
during training, which does not ensure sentence-level consistency.

2.3 Action-Aware Video Captioning
Pretrained 3D convolutional neural network (CNN) models such as Convolutional 3D [49],
Inflated 3D ConvNet [3], and ResNet 3D [19] are commonly used as feature extractors in video
captioning tasks to capture motion information. These models are typically pre-trained on motion
recognition datasets like Kinetics-400 [23] or UCF-101 [46], excelling at detecting motion in
video frames. Previous research [36, 38, 41, 62] has shown promising results by integrating 3D
and 2D CNN features to achieve a more comprehensive video representation. Instead of directly
merging 3D and 2D CNN features, other studies [1, 64] have explored novel methods to utilize 3D
CNN features, also known as action features. Zheng et al. [64] apply the self-attention mechanism
of the Transformer to capture global dependencies among multiple objects and extract action
semantic information based on sequentially decoded subject–predicate–object syntax. However,
this method involves serial decoding and incurs a quadratic computational cost relative to the
large number of objects in a video, which contradicts the goal of fast, parallel decoding inherent in
non-autoregressive generation algorithms. Bai et al. [1] explore object-level interaction and frame-
level information through a conditional graph, but their method does not address the semantic
correlation between nouns and verbs in video captions or explicitly predict actions. Furthermore,
most autoregressive algorithms primarily rely on object-level features to extract action semantics,
often overlooking the potential of appearance features from individual frames and motion features
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Fig. 2. Proposed ALSO-Net framework with dual branches: the video AP and the caption generator, both
employing DVBA. (a) Inputs are sequences of video frames or clips of specific lengths, processed by pre-trained
2D/3D CNNs to extract visual features. (b) Video AP branch identifies key verbs of interest for the caption,
which may be predicted by the DVBA-based caption generator branch, specified by the user, or predefined. (c)
Caption generator branch then constructs the remaining words around these focused verbs to form a coherent
caption. (d) LP estimates the overall length of the target caption. The entire model undergoes training with a
joint optimization loss function to enhance performance.

from consecutive frames to generalize the primary content of the video, thus missing out on
capturing global contextual information.

In contrast to previous studies, our work introduces a non-autoregressive video captioning algo-
rithm that focuses on optimizing global high-level actions. We begin by addressing the limitations
of traditional models in semantically modeling visual word sequences, particularly their failure
to accurately recognize high-level actions in certain scenes. To overcome this issue, we employ
a novel action recognition method that rectifies the limitations of single-frame action semantics.
Our AP branch streamlines the process by compressing complete visual information and treating
verb prediction as a multi-classification task. This method not only mitigates issues related to
redundant connections but also significantly reduces the model’s parameter count through the use
of two linear layers in the prediction head. Through the integration of action features that capture
object interactions, our method achieves a higher accuracy in generating captions that faithfully
represent the involved actions and objects. To the best of our knowledge, this marks the initial
incorporation of prominently emphasized action features in non-autoregressive video captioning,
thereby representing a substantial advancement in the field.

3 Proposed Method
3.1 Overall of Framework
The proposed ALSO-Net, depicted in Figure 2, consists of two main branches: a video AP branch
and a caption generator branch. The video AP branch is trained to predict actions within the video
by minimizing an element-wise logistic loss function, and its outputs are integrated into the caption
generator. The caption generator branch is composed of four key components: a Transformer-based
video caption generator, a skeleton tag generation module, a skeleton alignment module, and a
specially designed DVBA-based loss. In subsequent sections, we will provide detailed descriptions
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Fig. 3. Action prediction model fine-tuned on the target multi-label dataset. For each test video frame, selected
proposal regions are processed through a shared CNN. The outputs from various proposals are aggregated via
mean pooling to produce the final multi-label prediction, yielding a high-level action representation denoted
as G.

of these components and explain how they are synergistically combined within our framework to
generate more accurate visual captions. The entire model is trained through the joint optimization
of the loss function.

3.2 Visual Encoder
Both advanced and traditional video captioning methods commonly employ the encoder–decoder
framework. Here, image and motion features are processed separately by two distinct encoders,
resulting in a sequence of consecutive video clips with a length  . These multi-modal features,
including both image and motion features, are concatenated to create X, which is subsequently
input into the decoder.

To reduce video redundancy, we initially sample a fixed number of frames (length  ). These
frames are then fed into pre-trained 2D/3D CNNs to extract two types of visual features: \0 =

{v: } :=1 ∈ R ×3E and \< = {v: } :=1 ∈ R ×3E . These representations are further encoded using an
input embedding layer (IEL), resulting in 5IEL (\ E) = X ∈ R ×3< , which can be formalized as
follows:

5IEL (\ E) = BN
(
� \̄ + (1 − M) \̂

)
, (1)

where \̄ = \ E]41, \̂ = tanh(\̄]42),M = f (\̄]43), \ E = \0 or \< , BN denotes batch normalization,
]41 ∈ R3=×3< , and {]42,]43} ∈ R3<×3< . f signifies the sigmoid function. 3E and 3< denote the
feature dimensions before and after 5IEL (\ E), respectively. Next, we concatenate these twomodalities
to obtain XE = {v8 }2 8=1 ∈ R2 ×3< .

3.3 AP
To overcome the constraint of relying solely on single-frame semantics to establish semantic connec-
tions among visual words in the target language, and inspired by the success of non-autoregressive
coarse-to-fine (NACF) [62] where complete visual information is directly compressed to supple-
ment the decoder’s visual domain information, we introduce a novel action recognition predictor.
This predictor compresses the entire video, predicting the semantics of its primary actions, thereby
augmenting the textual domain information of both the LP and the decoder.

The video AP anticipates the action portrayed in the given video, treating verb prediction
as a multi-classification task, illustrated in Figure 3. To accomplish this, we employ a simple
linear predictor, as shown in Figure 2(b). Initially, we compile an action corpus based on the
complete dataset, encompassing all potential action types. Each video is then associated with
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at least one action type from this corpus. Specifically, we represent the ground truth action as
G∗ = {a∗1, a∗2, · · · , a∗" } ∈ R" , where " denotes the number of verbs in the corpus. If a video is
associated with action 8 , a∗8 = 1; otherwise, a∗8 = 0. The formulaic structure of the AP is as follows:

G = 5AP (XE) = Sigmoid (ReLU (MP (XE)] E1)] E2) , (2)

G (G) = Concat (G] E3, · · · ,G] E3) ∈ R#×3< , (3)

where MP denotes mean pooling, ] E1 ∈ R3<×3< , ] E2 ∈ R3<×" , and ] E3 ∈ R"×3< are the
parameters subject to learning. However, unlike length prediction, the long-tail effect of action
classification is pronounced due to the larger number of verb corpora compared to possible lengths.
Therefore, treating all categories equally is impractical, even with constraints like Kullback–
Leibler divergence (KLD) or multiple binary cross-entropy. Otherwise, the actions of all videos
may be classified into a limited number of categories. Following Wu et al. [58], we refrain from
constraining the negative labels of a single sample to diminish their confidence. Instead, we solely
enhance the confidence of positive labels to alleviate the difficulty of such problems. Specifically,
we minimize the element-wise logistic loss function Lact to train the AP:

Lact =

"∑
9=1

log
(
1 + exp

(
−a∗9a 9

))
. (4)

Finally, since the dimensions of the predicted results may not match the input dimensions of the
subsequent text domain module, a linear mapping step is necessary. This process entails adjusting
the dimensions and replicating them #< times, where #< represents the maximum length of the
input decoder text during the training phase:

Ḡ = G(G) = G]03, (5)

Ĝ = Concat(Ḡ1, · · · , Ḡ# ) ∈ R#<×3< . (6)

3.4 Length Prediction
In contrast to autoregressive methods, which stop decoding upon encountering <EOS> token,
non-autoregressive methods typically incorporate an LP to forecast the length distribution R ∈ RN.
However, beyond the encoder output XE , we enhance the text domain information of the LP with
the high-level action semantics G predicted by the AP. This entails using two linear layers for
one-hot type length prediction:

R = 5LP (X) = Softmax (ReLU (MP (XE ⊕ G)] ;1)] ;2) , (7)

where MP and ⊕ denote mean pooling and matrix-vector addition, respectively.] ;1 ∈ R3<×3< and
] ;2 ∈ R3<×# are trainable, with # representing the maximum training length. We minimize KLD
between the predicted length distribution R and the ground-truth distribution R∗, where each l∗9 in
R∗ represents the probability of sentences being of length 9 :

Llen = DKL (R∗‖R) = −
#∑
9=1

l∗9 log
l 9
l∗9
. (8)

3.5 Caption Decoder and Visual Word Decoder
The cloze training method [11] aligns well with our nonautoregressive method for network training.
In this method, given a ground-truth sentence _ ∗, we randomly replace some tokens with <mask>
tokens according to a specified ratio U . This results in a partially observed sequence _ obs and a

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 10, Article 326. Publication date: October 2024.



Action-aware Linguistic Skeleton Optimization Network 326:9

masked (unobserved) sequence _mask = _ ∗\_ obs. Subsequently, we present the visual representation
XE along with _ obs to the decoder, aiming to predict the probability distribution of _mask:

?\ (_mask |_ obs, XE ⊕ G) =
∏

~8 ∈_mask

5dec
(
~8 |_ obs, XE ⊕ G

)
, (9)

where 5dec represents the transformation within the decoder. We aim to minimize the negative
log-likelihood

Ldec = − log (?\ (_mask |_ obs, XE ⊕ G)) , (10)

where U follows a uniform distribution ranging from V1 to V2, ensuring that the network is trained
on examples of varying difficulties.

Similar to constructing training samples in a masked language model, we begin with a ground-
truth sentence _ ∗ of length #6 and replace certain words with <mask> to create the corresponding
target sequence _ vis = {~vis

= }#6

==1

~vis
= =

{
~∗
= POS

(
~∗
=

)
∈ {noun, verb},

<mask> otherwise,
(11)

where POS(·) denotes the part-of-speech of a word. When generating visual words, we pair the
visual representation XE is paired with _ vis

obs = ∅[vis] (a sequence containing solely the special
token <vis>), and provide this combination to the decoder for visual template generation. The
corresponding loss function is formulated as follows:

Lvis = −
∑

~vis
= ∈_ vis

log
(
?\

(
~vis
= |∅<vis>, XE ⊕ G

))
. (12)

3.6 Skeleton Tags Generation Module
Visual words, distinct from non-visual ones, faithfully represent elements within video frames.
We leverage features extracted from video frames closely linked to particular scene-related words
for fusion. Precisely, given a comprehensive ground-truth linguistic skeleton _ vis = {~vis

= }#6

==1,
we utilize attention mechanisms to associate these visual words with fixed-length visual groups
M = {g8 }2 8=1 ∈ R2 ×3<

M = Softmax

(
WQ)
√
3:

S

)
\ , (13)

_ vis
? = _ vis + PE

(
1, #6

)
, (14)

where W = XE]@ , Q = _ vis
? ]: , and \ = _ vis

? ] E . In Equation (14), PE(·) introduces position
embeddings to ensure the distinctiveness of visual words in different positions during mapping.
Here, 3: represents the dimension of Q , while S serves to mitigate the influence of aligning
<mask>. Represented as a 2 by #6 matrix, each row vector \ B = {vvis= }#6

==1 is defined as follows:

vvis= =

{
1 if ~vis

= ∈ _ vis and ~vis
= = ~∗

=

0 if ~vis
= ∈ _ vis and ~vis

= = <mask>.
(15)

Following Equation (13), the variable-length annotated visual word sequence is transformed into
fixed-length visual word sequence Y (i.e., Concat(g1, · · · ,g2 ) ∈ R1×2 ×3< ). Similarly, we map the
non-fixed predicted linguistic skeleton into the same space, denoted as Ypre = Concat(gpre

1 , · · · ,
gpre
2 ) ∈ R1×2 ×3< using Equations (13), (14), and (15).
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Fig. 4. DVBA loss implemented to reduce disparity between video frames and corresponding visual word
groups in video–text alignment. The upward green arrow signifies a decrease in the gap between the two
hidden states, and the downward red arrow indicates an increase in this gap.

3.7 DVBA–Based Loss
Skeleton-level tags focus on the distribution within the tags. Although Y provides uniqueness crucial
for ground-truth tags, it lacks the ability to establish relationships between visual words in different
positions. To enrich Y with intra-dependencies, constraints are necessary during the tag generation
process. We attribute physical meaning to the tags generated in the preceding section, where each
visual group (g8 ∈ M) corresponds to one video frame, denoted as v8 ∈ XE . This method ensures
the intra-dependencies of skeleton tags by aligning visual and linguistic information. Therefore,
we devise a dual-scale alignment method more suitable for skeleton tag generation, as depicted in
Figure 4.

3.7.1 Intra-Tag Alignment. By minimizing the cosine similarity between g8 and v8 , we establish
positive alignment between frames and visual groups, formulated as

cos
(
g8 , v8

)
=

g8v8
)

g8

 ‖v8 ‖ . (16)

While we address redundant continuous frames in the video, a challenge persists due to the
abundance of similar visual groups post-alignment. To distinguish between different visual groups
g8 ∈ M , we employ g 9 ∈ M as negative samples. As a result, the intra-tag alignment losses are
defined as follows:

Lintra−t2v = − 1
2 

2 ∑
8

log
exp cos

(
g8 , v8

)∑2 
9 exp cos(g8 , v 9 )

,

Lintra−v2t = − 1
2 

2 ∑
8

log
exp cos

(
g8 , v8

)∑2 
9 exp cos(g 9 , v8 )

,

(17)

where Lintra−t2v and Lintra−v2t denote the loss functions for text-to-video and video-to-text align-
ment, respectively.
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3.7.2 Inter-Tag Alignment. To distinguish between similar captions and their corresponding
videos, we perform inter-tag alignment. Initially, we compute the cosine similarity between positive
pairs (M: ∈ {M}�1 , (XE): ), where M: corresponds to (XE): , expressed as

cos (M: , (XE): ) =
2 ∑
8=1

cos
(
g8 , v8

)
. (18)

Next, we utilize (M: , (XE)<) (where M: does not correspond to (XE)< in a batch �) as negative pairs.
The optimization objective is to maximize cos(M: , (XE): ) and minimize cos(M: , (XE)<), which are
formulated as follows:

Linter−t2v = − 1
�

�∑
:

log
exp cos (M: , (XE): )∑�
< exp cos (M: , (XE)<)

,

Linter−v2t = − 1
�

�∑
:

log
exp cos (M: , (XE): )∑�
< exp cos (M<, (XE): )

,

(19)

where Linter−t2v and Linter−v2t represent the loss functions for video-to-text and text-to-video
alignment, respectively.

3.7.3 DVBA Overall Loss Function. We adopt the parameter settings of the previous research
work [66], combining the losses from the two scales described above results in the dual-scale
alignment loss:

LDVBA = Lintra−t2v + Lintra−v2t + Linter−t2v + Linter−v2t. (20)

3.8 Training and Inference
3.8.1 Training. Skeleton tags encode robust dependencies among visual words, facilitating the

regulation of the predicted skeleton sequence. KLD effectively quantifies the disparity between the
predicted Ypre and the tags Y , expressed as

Lske = DKL (Ypre‖Y) = −
2 ×3<∑
9=1

g∗
9 log

gpre
9

g∗
9

. (21)

To achieve a better equilibrium between visual word generation and DVBA loss functions, we
introduce two parameters, _1 and _2. Therefore, the network’s overall loss function is defined as
follows:

L = Llen + Ldec + _1Lvis + _2LDVBA + Lske + _3Lact. (22)

Following NACF [62], we set the parameters Llen, Ldec, and Lske to 1, and _1 to 0.8. Furthermore,
for both MSR-VTT and MSVD, we set _2 and _3 to 1.

3.8.2 Inference. During the inference phase, we utilize only the caption generator and AP to
derive the visual words template, which acts as input to the decoder. This is followed by the
generation of the complete caption.

4 Experimental Results
4.1 Datasets
MSR-VTT dataset [59] includes 10,000 videos spanning 20 distinct categories, each paired with 20
captions created by 1,327 workers. For evaluation purposes, we use publicly available splits: 6,513
videos for training, 497 for validation, and 2,990 for testing.
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Fig. 5. Illustration of performance across diverse metrics while varying the hyper-parameter _2.

MSVD dataset [18] consists of 1,970 short YouTube clips, each with approximately 40 English
captions, totaling 70,028 annotations from Amazon Mechanical Turk workers. Videos range from
10 to 25 seconds. We split the dataset into three subsets: 1,200 videos for training, 100 for validation,
and 670 for testing.

VATEX dataset [55] presents 41,269 video clips, each with 10 descriptions, utilized as follows:
25,991 clips for training, 3,000 for validation, and 6,000 for testing.

ActivityNet Captions dataset [25] includes 10,009 training and 4,917 validation videos, averag-
ing 3.65 event segments per video. For practical evaluation, we partition the validation set into two
subsets: ae-val with 2,460 videos for validation and ae-test with 2,457 videos for testing.

YouCookII dataset [68] comprises 1,333 training videos and 457 validation videos, with each
video averaging 7.7 event segments. We report results on the validation set.

4.2 Metrics
To quantitatively evaluate ALSO-Net, we employ four established metrics: BLEU (B-1, 2, 3, and 4)
[37], METEOR (M) [2], ROUGE-L (R) [30], and CIDEr (C) [53]. These metrics assess the quality of
generated captions by comparing them to ground-truth sentences, with higher scores indicating
better sentence generation. CIDEr is particularly valued in captioning tasks for its alignment with
human judgment, while BLEU-4 focuses on =-gram similarity, indicative of caption fluency. We use
the standard evaluation software from MSCOCO [31] server, with a particular emphasis on BLEU-4
and CIDEr due to their relevance in assessing fluency and specificity, respectively.

In addition, we adopt two supplementary metrics commonly used in the image captioning domain
[8]: average length and vocabulary usage. The average length metric assesses the typical caption
length, and the vocabulary usage metric evaluates the diversity of vocabulary employed in the
captions.

4.3 Implementation Details
For video feature extraction, we employ ResNet-101-based 2,048-dimensional appearance features
from ImageNet and ResNeXt-101-based 2,048-dimensional motion features from Kinetics. The
parameter  is set empirically to 8 for each modality. Regarding sequence length, we set # to 30
for MSR-VTT and 20 for MSVD. In our model architecture, we use a single decoder layer with
model dimensions 3< of 512, hidden dimensions 3E of 2,048, and 8 attention heads per layer. To
regularize the model, we apply dropout with a rate of 0.5 and ℓ2 weight decay of 5e-4. Optimization
is performed using the adaptive moment estimation (Adam) optimizer [24] for 50 epochs, starting
with an initial learning rate of 5e-3. All experiments are conducted on two NVIDIA Tesla PH402
SKU 200 GPUs.

The impact of different _2 values in Equation (22) on the model’s performance, considering
metrics such as BLEU-4, CIDEr, METEOR, and ROUGE-L, is illustrated in Figure 5. The results
reveal a significant influence of _2 variation on the model’s performance, particularly concerning
CIDEr. Therefore, conducting multiple experiments is vital to achieving a balance between the
contributions of different loss components and obtaining optimal results. Following a comprehensive
analysis of all metrics, we empirically set _2 to 1.0 for both BLEU-4 and CIDEr, as mentioned earlier.
Additionally, we establish the value of _2 as 1.0 for the combined loss functions within the network.
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4.4 Noisy Parallel Decoding (NPD)
We employ the well-established technique of NPD [56], following NACF [62]. This method consists
of three steps: first, the model selects the top-� length candidates from the predicted length ! and
simultaneously generates � candidate sentences. Next, these � candidates undergo re-scoring using
an autoregressive counterpart—an independently trained autoregressive baseline model with the
same structure as the original model. Finally, the sentence with the highest confidence score among
the � candidates is chosen as the final hypothesis.

4.5 Iterative Optimization Strategy
Several non-autoregressive NMT systems employ iterative optimization algorithms at the sentence
level to improve translation quality. The primary method involves the following steps: (1) Retaining
high-confidence words while replacing relatively low-confidence words with a <mask> token
to create a new sequence. (2) Using the newly generated sequence as the input for the decoder’s
header layer in a second decoding pass to integrate valid information from the secondary decoding
input and improve decoding accuracy. (3) Iterating the above two steps multiple times until a
predetermined number of iterations is reached. In this study, in addition to the iterative strategy
utilized in NACF [62], we explore three distinct iterative strategies. The main difference among
these strategies lies in the coverage rate and method of word replacement at each iteration, as
described below:

—Mask-Predict (MP) [17] follows a coverage rate that linearly decreases with the number of
iterations to replace low-confidence words.

—Easy-First (EF) [62] prioritizes replacing @ words with the highest confidence in each iteration.
—Left-to-Right (L2R) [62] extends the EF method by sequentially reserving new @ words in each
iteration from the previous coverage position, starting from the left, and adding them to the
existing sequence for decoding.

4.6 Comparisons with State-of-the-Art Methods
Table 1 presents a detailed comparison between our proposed ALSO-Net and existing state-of-the-art
autoregressive methods onMSR-VTT andMSVD. As a non-autoregressive video captioning method,
ALSO-Net is inherentlymore lightweight and efficient. Importantly, ALSO-Net not only outperforms
current leading models but also delivers competitive results compared to most autoregressive video
captioningmethods. Compared to RNN-basedmethods like SibNet [33], ALSO-Net achieves superior
performance across four key metrics without employing part-of-speech tagging, surpassing SibNet
by margins of 2.2% and 3.5% under BLEU-4 and CIDEr, respectively. When compared to FrameSel
[29], our model achieves substantial improvements, with gains of 10.5%, 4.7%, and 26.7% in these
metrics, respectively. While ALSO-Net slightly trails behind STGCN [36] in ROUGE-L on MSVD, it
ranks second, underscoring its effectiveness. Although ALSO-Net does not surpass STGCN and
ORG-TRL [63] in terms of METEOR and CIDEr metrics on MSVD, its strength lies in its rapid
inference capabilities. Additionally, ALSO-Net methods exhibit near-optimal performance levels
while maintaining its fast processing advantage.

On MSR-VTT, our ALSO-Net exhibits strong competitive performance relative to other autore-
gressive methods. Specifically, when compared to SHAN [10], ALSO-Net with L2R-NP registers
improvements of 5.5%, 2.1%, 2.6%, and 4.7% across the respective metrics. Likewise, against LSRT
[28], it achieves enhancements of 2.1%, 1.6%, and 3.6% on the latter three metrics. Furthermore,
ALSO-Net sets the benchmark among non-autoregressive methods. For instance, compared to
NACF [62], it shows substantial gains of 12.9%, 9.1%, 1.5%, and 8.5% across all four metrics. This
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Table 1. Performance Comparison of BLEU-4, METEOR, ROUGE-L, and CIDEr Scores with
State-of-the-Art Methods on MSR-VTT and MSVD

Model Venue
MSR-VTT MSVD

B-4 M R C B-4 M R C

AT

Two-stream [16] TPAMI’20 39.7 27.0 - 42.1 54.3 33.5 - 72.8
STAT [61] TMM’20 39.3 27.1 - 43.8 52.0 33.3 - 73.8
VideoTRM [4] ACM MM’20 38.8 27.0 - 44.7 - - - -
STGCN [36] CVPR’20 40.5 28.3 60.9 47.1 52.2 36.9 73.9 93.0
MAD-SAP [20] TIP’20 41.3 28.3 61.4 48.5 53.3 35.4 72.0 90.8
SAAT [64] CVPR’20 40.5 28.2 60.9 49.1 46.5 33.5 69.4 81.0
PMI-CAP [6] ECCV’20 42.1 28.7 - 49.4 54.6 36.4 - 95.1
ORG-TRL [63] CVPR’20 43.6 28.8 62.1 50.9 54.3 36.4 73.9 95.2
SBAT [22] IJCAI’20 42.9 28.9 61.5 51.6 53.1 35.3 72.3 89.5
TTA [52] PR’21 41.4 27.7 61.1 46.7 52.0 34.0 70.5 81.2
SibNet [33] TPAMI’21 41.2 27.8 60.2 48.6 55.7 35.5 72.6 88.8
AR-B [62] AAAI’21 42.0 28.7 - 49.1 48.7 35.3 - 91.8
SGN [41] AAAI’21 40.8 28.3 60.8 49.5 52.8 35.5 72.9 94.3
MGRMP [7] ICCV’21 41.7 28.9 62.1 51.4 55.8 36.9 74.5 98.5
FrameSel [29] TCSVT’22 38.4 27.2 59.7 44.1 50.4 34.2 70.4 73.7
SHAN [10] TCSVT’22 39.7 28.3 60.4 49.0 54.3 35.3 72.2 91.3
LSRT [28] TIP’22 42.6 28.3 61.0 49.5 55.6 37.1 73.5 98.5
TVRD [57] TCSVT’22 43.0 28.7 62.2 51.8 50.5 34.5 71.7 84.3
R-ConvED [5] TOMM’23 40.4 28.1 - 47.9 53.5 34.6 - 82.4
EFFECT [12] TOMM’23 41.4 28.4 60.5 48.8 56.9 36.6 74.2 98.5
RSFD [65] AAAI’23 43.4 29.3 62.3 53.1 51.2 35.7 72.9 96.7

NAT

NACF [62] (baseline)a AAAI’21 37.1 26.5 61.1 47.3 54.1 35.2 73.5 91.0
O2NA [32] ACL’21 41.6 28.5 62.4 51.1 55.4 37.4 74.5 96.4

ALSO-Net w NPD (ours) 39.1 27.0 61.3 48.9 55.5 35.8 73.7 93.4
ALSO-Net w L2R-NPD (ours) 41.9 28.9 62.0 51.3 55.7 35.9 73.0 89.0

aindicates the reproduced method. Best results are highlighted in bold.

highlights our method’s proficiency in understanding semantic relationships among visual elements
in complex scenarios. In conclusion, as evidenced by Table 1, ALSO-Net not only corrects inaccu-
racies in caption sequences but also significantly elevates the quality of the generated captions.
On MSR-VTT, it achieves remarkable improvements over FrameSel and delivers performance on
par with the best video captioning methods on MSVD. Notably, our DVBA-based caption genera-
tor is instrumental in achieving outstanding results across various metrics assessing visual word
sequences.

On MSR-VTT, index scores are notably lower compared to those on MSVD, which can be attrib-
uted to several factors. Primarily, MSVD typically features videos depicting single events, whereas
MSR-VTT often includes videos that correspond to multiple distinct events. This discrepancy
significantly increases the complexity of the captioning task. Moreover, the uniform sampling of
visual features as model inputs may lead to our AP within ALSO-Net inadvertently using irrelevant
video features for action prediction, which can disrupt the captioning process. Nonetheless, when
compared with O2NA [32], a model that leverages a multi-input guidance corpus to enhance the
diversity of video descriptions, our ALSO-Net achieves improvements of 0.7%, 1.4%, and 0.3% in
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Table 2. Performance Comparison of BLEU-4, METEOR, ROUGE-L, and CIDEr Scores
on VATEX

Method Venue B-4 M R C

AT VATEX [55] ICCV’19 28.4 21.7 47.0 45.1
ORG-TRL [63] CVPR’20 32.1 22.2 48.9 49.7

NAT NACF [62] (baseline)a AAAI’21 26.7 20.2 47.0 39.1
ALSO-Net (ours) 27.8 20.6 46.8 40.4

aindicates the reproduced method. Best results are highlighted in bold.

Fig. 6. Comparison of latency between autoregressive and non-autoregressive decoding strategies on MSR-
VTT and MSVD, highlighting the significant improvement in inference speed achieved by the proposed
ALSO-Net.

BLEU-4, METEOR, and CIDEr, respectively. These gains underscore ALSO-Net’s enhanced capabil-
ity to understand complex, context-dependent video actions and to minimize inconsistencies in
generated sentences by effectively extracting action information across frames in more complex
video content. Furthermore, due to resource constraints, all methods in this study utilize only eight
visual frames for decoding. In scenarios where videos capture multiple events, this limited number
of frames restricts the amount of effective information available, posing challenges in accurately
summarizing the global high-level actions depicted in the videos. Therefore, there is potential to
further improve our model’s performance by implementing more effective sampling methods and
increasing the frequency of sampling.

Additionally, we evaluate the performance of our model on the public testing set of VATEX, as
shown in Table 2. Compared to MSVD and MSR-VTT, VATEX features longer titles and presents a
greater challenge for non-autoregressive algorithms. Despite these challenges, our model achieves
improvements of 4.1%, 2.0%, and 3.3% in BLEU-4, METEOR, and CIDEr, respectively, compared to
the baseline. These results highlight the effectiveness of incorporating a video AP branch into our
model, which significantly enhances the comprehension of complex, contextually relevant video
actions.

In Figure 6, our proposed ALSO-Net shows comparable performance to traditional autoregressive
methods while achieving a significant increase in inference speed, without the need for additional
features or manual labeling. Autoregressive caption generation methods, like autoregressive
baseline (AR-B) [62], sequentially generate each word based on the previously generated output,
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Table 3. Performance Comparison of Different Variants of the Proposed Skeleton Tags
across Various Scales

Skeleton Intra Inter AP
MSR-VTT MSVD

B-4 M C B-4 M C

# # # # 37.1 26.5 47.3 54.1 35.2 91.0
  # # 37.9 26.6 47.8 54.8 35.3 91.6
 #  # 37.4 26.8 48.7 54.2 35.2 91.3
   # 38.8 26.6 48.8 55.3 35.3 90.7
    39.1 27.0 48.9 55.5 35.8 93.4

Best results are highlighted in bold.

which substantially increases inference latency. Conversely, non-autoregressive decoding (NAT)
has gained popularity in natural language processing for its ability to generate words in parallel,
thereby significantly speeding up inference. Prominent examples of NAT methods include NACF
[62] and our ALSO-Net. Our comparison between AR-B and ALSO-Net demonstrates that ALSO-Net
not only matches AR-B in performance but also drastically improves decoding efficiency, reducing
latency by 28.7 ms. Moreover, ALSO-Net outperforms the non-autoregressive NACF in both model
performance and inference speed.

4.7 Ablation Study
4.7.1 Skeleton Tags. To assess the impact of the proposed skeleton tags and various alignment

methods, we conducted an ablation study examining two video-language alignment strategies at
different scales. Table 3 details the performance under different experimental conditions, where
“Skeleton,” “Intra,” “Inter,” and “AP” represent skeleton tags, intra-tags alignment, inter-tags align-
ment, and action predictor, respectively.

Analysis of the table’s first three rows indicates that both intra-tags and inter-tags alignments
significantly enhance the dependencies among visual words. Additionally, using semantic informa-
tion encoded in the skeleton tags, rather than solely depending on direct language grammar rules,
offers clear benefits for our non-autoregressive method. The comparison between the fourth row
and the second and third rows reveals that minimizing redundancy in skeleton tags and effectively
distinguishing between similar tags yield improved results across various scales while preserving
efficiency. The final row of the table demonstrates that our proposed ALSO-Net, which integrates
a skeleton tag generator and a video AP, successfully refines the semantic correlation between
visual words and rectifies verb errors. This integration facilitates the generation of more precise
and descriptive captions.

4.7.2 AP. To assess the impact of the proposed video AP branch, we conducted an ablation study
within autoregressive frameworks. Table 4 details performance across different conditions, with
“w AP” denoting the inclusion of the AP. Compared to the baseline, our method demonstrates
improvements of 2.2%, 1.2%, 0.3%, and 0.3% on four metrics respectively within the ActivityNet
dataset. In the YoucookII dataset, it shows gains of 0.6%, 0.3%, and 1.1% on the latter three metrics.
These results clearly affirm the positive influence of the video AP branch across various decoding
frameworks, underscoring its wide applicability and effectiveness in enhancing video captioning
performance.

To further assess the effectiveness of our proposed ALSO-Net method, we conducted several
ablation experiments to clarify the contribution of each component within the model. The outcomes
of these evaluations are summarized in Table 5, where “appearance” and “motion” denote the use

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 10, Article 326. Publication date: October 2024.



Action-aware Linguistic Skeleton Optimization Network 326:17

Table 4. Performance Comparison of BLEU-4, METEOR, ROUGE-L, and CIDEr Scores with the
Proposed AP across Autoregressive Frameworks

Model Venue
ActivityNet YouCookII

B-4 M R C B-4 M R C

Trans.-XL [9] ACL’19 10.3 14.9 30.3 21.7 - - - -
MART [27] ACL’20 9.8 15.6 30.9 22.2 8.0 15.9 - 35.7
Memory Trans. [45] CVPR’21 11.7 15.6 - 26.6 - - - -

VLTinT [60] (baseline)a AAAI’23 13.4 17.2 36.0 30.2 9.1 17.3 34.3 43.7
VLTinT w AP (ours) 13.7 17.4 36.1 30.3 8.9 17.4 34.4 44.2

aIndicates the reproduced method. Best results are highlighted in bold.

Table 5. Performance Comparison of Various Iterations of the Proposed AP across
Different Types of Features

Model
MSR-VTT MSVD

B-4 M C B-4 M C

ALSO-Net w/o AP 38.8 26.6 48.8 55.3 35.3 90.7
ALSO-Net w appearance 37.4 26.3 48.1 53.7 35.0 88.6
ALSO-Net w motion 38.2 26.7 48.4 53.9 35.0 89.5
ALSO-Net w both 39.1 27.0 48.9 55.5 35.8 93.4

Best results are highlighted in bold.

of appearance and motion features, respectively. The results detail four configurations of ALSO-
Net method: “w/o AP”, which operates without the AP; “w appearance” and “w motion”, which
utilize solely the appearance or motion features respectively; and “w both”, which incorporates
both features along with the AP. These ablation studies demonstrate the critical role of the AP in
ALSO-Net. It is clear that using only one type of feature–either appearance or motion–along with
the AP can limit the model’s expressive capacity, resulting in reduced performance. In contrast,
the integration of both appearance and motion features with the AP significantly enhances the
model’s performance, underscoring the importance of a multifaceted method in action prediction.

4.8 Comparison with Diversity and Different Decoding Algorithms
4.8.1 Diversity. Both of our proposed models consistently outperform NACF on at least one

diversity metric, providing a quantitative measure of caption diversity. Notably, our ALSO-Net
achieves a significant enhancement in average caption length, with a relative improvement ranging
from 6.38% to 6.49% compared to NACF [62] and DSA-LST [66]. This superior performance in
average length indicates that the captions generated by ALSO-Net encompass a broader range of
information and subtleties present in the video content. This suggests an increased complexity and
diversity in the captions, reflecting more nuanced and comprehensive video interpretation.

4.8.2 Decoding Algorithms. Table 6 compares the inference performance and latency of ALSO-
Net using three different sentence-level iterative optimization algorithms alongside the commonly
used NPD strategy [56]. Specifically, MP, EF, and L2R represent the Mask-Predict, Easy-Fit„ and Left-
to-Right optimization algorithms, respectively. Additionally, NPD serves as the base optimization
strategy for ALSO-Net, with combinations such as MP-NPD, EF-NPD, and L2R-NPD indicating the
integration of these iterative algorithms with NPD strategy.
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Table 6. Performance Comparison of Different Variants of the Proposed ALSO-Net Using Various
Decoding Algorithms

Algorithm
MSR-VTT MSVD

B-1 B-2 B-3 B-4 M R C Latency B-1 B-2 B-3 B-4 M R C Latency

MP 75.5 61.1 47.2 34.8 25.7 59.4 43.9 30.8 ms 80.2 66.3 55.7 45.1 33.6 70.8 81.5 29.5 ms
EF 75.6 61.2 47.4 35.2 25.8 59.1 44.9 58.7 ms 80.1 66.1 55.4 44.7 33.5 70.6 80.8 42.0 ms
L2R 76.1 62.0 48.4 36.1 26.2 59.2 43.3 50.6 ms 80.6 66.6 55.7 44.8 33.6 70.8 81.2 41.0 ms

MP-NPD 81.2 67.2 53.5 41.1 28.4 61.6 51.0 33.7 ms 84.5 74.5 65.4 55.6 35.1 72.3 89.8 30.3 ms
EF-NPD 81.6 67.9 54.2 41.7 28.7 61.8 51.5 57.3 ms 83.4 73.1 64.0 54.2 34.5 71.6 88.0 44.2 ms
L2R-NPD 81.6 68.0 54.4 41.9 28.9 62.0 51.3 51.4 ms 84.6 74.4 65.4 55.7 35.9 73.0 89.0 44.6 ms

NPD 80.8 66.1 51.7 39.1 27.0 61.3 48.9 13.3 ms 86.0 75.5 66.0 55.5 35.8 73.7 93.4 12.5 ms

Best results are highlighted in bold.

Analysis of the data from the first three rows compared to the fourth through sixth rows reveals
that NPD algorithm significantly enhances the metrics while maintaining relatively stable inference
latency. This finding suggests that all types of iterative optimization algorithms are compatible with
NPD method. The synergy arises because NPD algorithm focuses on ensuring consistency between
length prediction and decoding results, while the iterative optimization algorithms prioritize
constructing the semantics of the target language. These optimization methods serve distinct yet
complementary roles, enhancing the overall effectiveness of the decoding process.

Comparing the results from rows four to six with those of the last row in the table, it becomes
apparent that sentence-level iterative optimization algorithms do not always enhance model perfor-
mance. In fact, for MSVD, there is an observable trend towards over-optimization. This is likely due
to the relative simplicity of MSVD, where annotations primarily consist of visual words that reflect
straightforward video events. ALSO-Net method, which focuses on modeling the semantics between
visual words, can experience adverse effects from the introduction of additional iterative optimiza-
tion algorithms in such contexts. On the other hand, MSR-VTT benefits more from continuous
iterative optimization of the initial decoding sequence based on visual words. This iterative process
aids in generating non-visual words, using visual words as a reference. However, it is important
to note that this method significantly increases inference time. The delay is primarily caused by the
cyclic decoding process of the decoder, compounded by the average length of texts in the training
corpus. Therefore, employing iterative optimization to tackle non-autoregressive challenges may
not always be the most efficient method, particularly in scenarios where time efficiency is crucial.

4.9 Qualitative Results
Figure 7 displays the visualization of cross-modal cross-attention weights on two types of features
within our proposed ALSO-Net. These examples highlight the model’s accurate verb prediction
for target words, ensuring syntactic correctness. Moreover, the model primarily concentrates on
the most pertinent features for most words, influenced by both semantic and syntactic cues. This
focused attention on word-related features substantially improves the accuracy of predictions for
target words. Additionally, the distribution of cross-modal cross-attention weights across features
corresponds with human common sense. This alignment provides explicit cues about the reasoning
process for each target word, thereby increasing the interpretability of the video captioning process.

Figure 8 presents examples of captions generated by ALSO-Net, contrasting them with those
produced by NACF [62]. While NACF captions utilize a refined visual word template and include
detailed verbs, ALSO-Net offers significant advantages: (1) Precision in Verb Description: In the first
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Fig. 7. Visualizations of cross-attention weights in ALSO-Net on MSR-VTT, including histograms of weights
assigned to two types of features: 3D motion features (blue bars) and 2D video features (orange bars).

Fig. 8. Examples of videos paired with corresponding captions from MSR-VTT, comparing captions generated
by NACF [62], our proposed ALSO-Net without the AP (ALSO-Net w/o AP), and ground-truth captions by
human annotators. Words highlighted in blue demonstrate that ALSO-Net effectively emphasizes fine-grained
verbs and selects superior visual word groups, producing high-quality video descriptions.
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Fig. 9. Example of linguistic skeleton optimization on MSR-VTT. We display the results of skeleton generation
obtained in the first stage. Additionally, the full captions generated in the second stage, along with the
confidence scores for each word, are presented as area line graphs. The size of the generated area corresponds
to the quality of the sentences produced by our proposed method, with larger areas indicating superior
sentence generation performance.

and second examples, NACF yields incorrect descriptions involving small objects, such as “talking a
a man.” In contrast, ALSO-Net accurately generates descriptions like “talking to a man,” showcasing
its superior ability to capture enhanced action features essential for precise verb articulation. (2)
Guidance through Skeleton Tags: ALSO-Net uses skeleton tags to refine the coarse visual template,
providing crucial guidance for generating captions. For instance, in the third and fourth examples,
ALSO-Net accurately identifies the sequence “talking about a machine,” which serves as a vital
guideline for the caption model. This use of skeleton tags not only ensures more precise captions
but also aids in identifying additional elements, such as “talking about a car.” Additionally, in the
last two examples, ALSO-Net generates captions that incorporate more visual words and effectively
utilizes the AP, resulting in increased caption complexity. This is evident in phrases such as “in
a house” and “talking,” demonstrating the model’s ability to enhance the detail and depth of the
narrative.

Figure 9 illustrates the optimization process of ALSO-Net from three perspectives, showing
distinct improvements over the NACFmethod. Specifically, ALSO-Netw/o AP enhances the semantic
connections between certain visual words and improves comprehension of global higher-order
actions. For example, in the second case, ALSO-Net predicts the action “react,” suggesting that
the children are not only present in a TV program but are also reacting within it. This contrasts
with ALSO-Net w/o AP model’s simpler assertion that they “are in a TV show,” a statement based
on a single frame, while the action “react” is derived by synthesizing the entire video content. In
another instance, ALSO-Net w/o AP model mistakenly associates the action with the incorrect
subject “camera.” In contrast, ALSO-Net correctly interprets the action as “talking,” which leads to a
more accurate depiction of the spatial setting as “on a TV show.” Further analysis of the confidence
levels in verb generation by ALSO-Net with and without the AP reveals notable enhancements. In
the second example, confidence in the verb increases from 0.09 (“are”) to 0.15 (“react”). Similarly, in
the third example, confidence jumps from 0.28 (“is”) to 0.92 (“is talking”). These results demonstrate
that the AP not only encapsulates comprehensive global action information but also significantly
boosts confidence in verb accuracy and the generation of spatial semantics. Given that the baseline
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model primarily depends on a visual word template method, these improvements are particularly
significant.

5 Conclusion
In this work, we introduce a novel framework, the ALSO-Net, designed to address the limitations
of non-autoregressive video captioning models, particularly their inadequate grasp of video action.
Our method synergistically combines low-level action semantics from individual frames with
high-level action information from the entire video to enrich semantic relations among visual
words. To further enhance these relations, we incorporate visual word sequences within skeleton
tags to better align video frames. Recognizing that relying solely on individual frames can lead to an
insufficient representation of verbs, we have integrated a video AP branch.This addition encourages
the model to focus on and accurately describe verbs based on action classification results, thus
refining the caption generation process and producing more precise and descriptive captions. Our
experimental evaluations on two benchmark datasets demonstrate that ALSO-Net significantly
improves the accuracy of visual word predictions and increases the richness of visual words in
the generated captions, outperforming current state-of-the-art video captioning methods. Looking
ahead, we propose to explore the integration of graph convolutional networks with ALSO-Net
to further augment caption generation performance. Leveraging graph structures and contextual
dependencies is anticipated to enhance caption quality and description expression.
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