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Abstract—This supplementary document provides additional
details of our method, including ablation experimental results
and extra visual results together with the ground truth images.

I. HYPER PARAMETER BALANCING EXPERIMENTS

To illustrate the effectiveness of proposed loss terms. We
conduct experiments with setting different values of hyper
parameters of them. From the massive experiments, we ob-
serve that the values of γs will not influence directly to the
internal of the Linfo. So we firstly conduct experiments based
on different settings of γinfo and γs to find the best balancing
of these two extra loss terms. From Table I, it is evident that
without any information-level constraints (γinfo = 0), we rely
solely on the localization error. This approach still yields better
results than the original HRNet (77.3 mAP). From the first
row, we can tell that the Linfo is very important for the useful
information extraction and the performance improvement. And
the results from first column demonstrates that Ls can provide
effective help for enhancing the motion information. From
each column, we can tell that with the increasing of the
value of γinfo, the mAP get higher and then down. The
inappropriate hyperparameters can cause bad influence on the
pose estimation. Considering all columns together, we will find
that when γinfo = 1, the model will get the best results. The
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TABLE I
SENSITIVITY TO THE PROPOSED OBJECTIVES. WE REPORT THE RESULTS

ON POSETRACK2017 DATASET.

γinfo

mAP γs

0 0.1 1 5

0 83.0 83.5 83.9 83.7

0.1 85.4 85.9 85.3 85.2

1 85.6 86.2 85.8 85.5

5 85.5 85.8 85.7 85.3

model performance changes related to γs have a similar trend
with γinfo. And the best set value of the γs is 0.1.

In the Table II, we initialize the hyperparameters of the
information theoretic objectives and empirically set the values
of γinfo and γs as 1 and 0.1. By incorporating these objec-
tives, we further enhance accuracy. The results from the first
column (γcom = 0), indicate that Lvar and Lred may not be
effective in the absence of Lcom. This is because Lcom aims
to maximize the task-relevant complementary information.
But without Lcom, there is no additional useful information
extracted. Under this condition, Lred will have no effect on
the learning. The superior performance in the other columns
validates the effectiveness of Lcom. The results from the
first row of each block demonstrate that Lvar aids in the
specific part feature learning of our model, ensuring the feature
diversity of each part group feature. From experiments of the
last column, the last row of each block and the whole last
block, the inappropriate hyperparameter of Lcom, Lvar and
Lred can also deteriorate the model performance, underscoring
the importance of proper hyperparameter initialization.

II. VISUAL RESULTS

To show the effectiveness of the pose synthesis, we pro-
vide more visual results of the synthesized poses in Fig. 1.
Besides, we present more visual results of dynamic HPE on
PoseTrack2017 [1] and PoseTrack2018 in Fig. 2.
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TABLE II
SENSITIVITY TO THE PROPOSED INFORMATION-THEORETIC OBJECTIVES.

WE REPORT THE RESULTS ON POSETRACK2017 DATASET.

γvar

mAP γcom
0 0.1 1 5

γred = 0

0 83.9 84.0 84.0 83.7

0.1 84.0 84.9 84.9 84.5

1 84.1 85.0 85.3 85.1

5 84.0 84.9 85.1 85.0

γred = 0.1

0 83.9 85.5 85.0 84.8

0.1 84.0 85.4 85.4 85.3

1 83.9 85.6 85.9 85.6

5 84.0 85.3 85.5 85.5

γred = 1

0 83.8 85.3 85.4 85.3

0.1 83.9 85.2 85.8 85.5

1 84.0 85.5 86.2 85.4

5 83.9 85.7 85.8 85.5

γred = 5

0 83.8 84.9 85.1 85.4

0.1 83.8 85.0 85.2 85.6

1 83.9 85.2 85.4 85.7

5 84.0 85.3 85.2 85.6

(a) (b) (c)Previous Frame Next FrameSynthesized 
Heat Map 

Fig. 1. Visual examples obtained by the pose synthesizer. The pink boxes
select the areas with dynamic part locations. In the enlarged boxes in the
second and fourth rows, we zoom in the parts. The green and cyan circles
represent the locations of the same part in the adjacent frames. The blue
arrows in the enlarged boxes represent the line trajectory formed by the parts
in the previous frame and the next frame. The blue stars are the synthesized
locations of parts in the short-time interval.
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Fig. 2. The part recognition results of our method on benchmark datasets. We illustrate the challenging cases such as fast motion with blur, crowded
background and kinds of pose occlusions.
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