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Abstract—In the task of dynamic human pose estimation, the
temporal relationships between human body parts should be
captured comprehensively to understand the dynamic human mo-
tions, where the correlated motion information eventually helps
to recognize body parts. The popular methods are successful
in terms of utilizing long-term motion information captured by
low-speed cameras. Yet, they neglect the underlying intermediate
motions between captured frames, which comprise the temporal-
interim poses lost in the video. In this paper, we introduce a novel
framework, Temporal-interim Pose Synthesis and Distillation, to
produce and leverage the intermediate motion information for
dynamic motion establishment. The pose synthesis yields the
visual feature maps of the intermediate poses, which appear
between the existing video frames. It allows the synthesized and
current poses to form richer motion patterns. Next, the pose
distillation divides the body parts into several groups, where it
learns the specific part-wise relationship within each group. It
degrades the complexity of learning useful part-wise relationships
from rich motion patterns and extracts more detailed motion
information for fine-grained part groups. We extensively evaluate
our method on challenging datasets for dynamic pose estimation,
achieving state-of-the-art results.

Index Terms—Intermediate pose synthesis, human pose esti-
mation, hierarchical body structure, information theory.
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DYNAMIC human pose estimation (dynamic HPE) is
an essential task that requires accurately localizing and

classifying human body parts, and establishing the complete
human skeleton for each frame in the video. It has drawn a
lot of attention due to its wide applications including action
recognition [1], [2], person re-identification [3], [4], and digital
human generation [5]. In real-world applications, the dynamic
motions of human body parts yield complex visual patterns,
which continually change over time. Thus, dynamic HPE
heavily relies on understanding temporal relationship between
body parts. It allows the relevant body parts with a strong
motion correlation to mutually evidence the part co-existence.

Conventionally, dynamic HPE methods [6], [7] borrow
the success of image-based HPE, predicting the body parts
and obtain the human skeleton in individual frames with-
out modeling the temporal part-wise relationship. The recent
methods [8], [9] employ recurrent neural networks (RNNs)
and 3D convolution to extract the temporal features of body
parts from multiple frames. Typically, the keyframes’ features
with remarkable motion changes are used to calculate the
temporal features. But this kind of pipeline also suffers from
the continuity of human motion. For those visual capturing
system with low speed, these keyframes generally have a
long-time interval in-between, disallowing dynamic HPE to
benefit from the essential motions in short-time periods. On
the other hand, the intermediate motions may be unavailable
in the video. These motions comprise the inherent human
poses, which appear in the short-time intervals missed by
the camera with a limited frame rate. For those high-speed
capturing systems, the occlusion problem in the continuous
motion cannot be avoided. The occlusion of the neighboring
frames and the wrong positions of predicted parts can cause
the fault trajectory and the misunderstanding of the HPE model
when detecting the parts of the current frame. Therefore, the
reasonable part moving track in continuous motion is currently
urgent to obtain for the dynamic HPE task. In addition, current
multi-frame methods focus on the temporal visual context,
neglecting the inherent body structure in the dynamic motions.
Normally, they learn a shared spatial-temporal representation
for body parts, which unavoidably brings the information
redundancy and deteriorate the modeling performance.

To tackle these difficulties, we propose to directly generate
intermediate human poses based on the captured real frames
to complete the continuous human motions, providing efficient
temporal contexts. Considering the continuity of human mo-
tion and inherent static human body structure, we can naively
regard the trajectory of body parts in motion as linear in



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

Previous Frame Synthesized 
Heat Map 

Left Wrist

Right Ankle

Next Frame

Fig. 1. Temporal-interim poses obtained by our proposed pose synthesizer.
For the first and third rows, the first and third columns are adjacent frames,
which are attached with the predicted heat maps of the identical part. The
second column is heat maps of the same part of the synthesized temporal-
interim pose. The pink boxes select the areas with dynamic part locations.
In the enlarged boxes in the second rows, we zoom in the parts of the right
knee and the left wrist. The green and cyan circles represent the locations of
the same part in the adjacent frames. The blue arrows in the middle boxes
represent the line trajectory. The blue stars are the synthesized locations of
parts in the intermediate interval.

a very short time period. Thus, the generation of temporal
interim poses can be simply guaranteed by regression-based
supervision. As shown in Fig. 1, our method can synthesize
the heat maps of the intermediate pose, indicating the most
possible temporal-interim part locations. The existing and
intermediate poses together rich complex motion patterns and
form the reasonable part trajectory, providing more solid
motion information. When there are occlusions or serious
prediction of part locations in any of the neighboring frames,
the HPE model can rely on the rest of sufficiently enriched
reasonable motion contexts. However, they are unsuitable for
direct utilization as a hint for predicting the part locations of
the existing poses because of the difficulty of achieving useful
motion information from these more complex spatial-temporal
contexts. To degrade the complexity of information extraction,
we propose to learn the temporal contexts of human body parts
separately and leverage information-theoretic supervision to
extract useful knowledge from the spatial-temporal features of
individual body parts. With the specific temporal features of
each part group, the model can focus on the fine-grained part
motions for each smaller group respectively. The reasonable
motion trajectories can be effectively learned in this way and
useful information can be obtained via task-relevant objective.

Specifically, we propose a novel framework, called
Temporal-interim Pose Synthesis and Distillation (see Fig. 2),
to harness intermediate motions for dynamic HPE. It consists
of two main components: pose synthesis and pose distilla-
tion. (1) During the processes of image and pose synthesis
(see Fig. 2(a)–(b)), we leverage a pretrained Video Frame
Interpolation Transformer (VFIT) [10] to generate the visual
features representing the intermediate visual status between

the existing frames. Along with the learned visual features of
adjacent frames, the generated intermediate visual features are
given to the pose synthesizer along the temporal dimension.
The synthesizer yields the visual features of the interim
poses. Moreover, we employ maximum likelihood to make the
prediction process is differentiable, building a regression-based
objective for the refinement of the interim pose synthesis. It
allows the synthesizer to predict the appropriate part locations
for the interim poses, which are consistent with the existing
poses. (2) In the pose distillation (see Fig. 2(c)), which divides
the human body parts into multiple groups and focuses on
the part-wise relationships within the individual groups. A
multi-branch network implements the pose distillation. Each
branch has a deformable transformer with multi-head attention,
whose training is supervised by a part-related information-
theoretic objective. The objective includes a cosine similarity
for enchancing the diversity of group features and an mutual
information objective for extracting useful information from
the refined spatial-temporal features. Our proposed supervision
allows each branch to attend to the specific relationship of a
group of parts with various locations and extract more detailed
motion contexts for fine-grained part groups, thus improving
the performance of dynamic HPE.

We evaluate our method on the current benchmark pub-
lic datasets for dynamic HPE, achieving state-of-the-art re-
sults on PoseTrack2017 [11], PoseTrack2018 [12], Pose-
Track2021 [13] and sub-JHMDB [14]. And extensive ablation
studies are also conducted, validating the effectiveness of each
network component and objective we proposed in the frame-
work. Our work makes the following three main contributions:

• We advocate a novel idea of generating temporal-interim
human poses in long-time intervals based on the existing
captured frames, forming a more continuous motion se-
quence. With the assumption of a linear trajectory of body
parts in motion, we propose a regression-based objective
based on the integral to guarantee the consistency of the
generated interim poses. The spatial-temporal relationship
between body parts can be enriched with the completed
motion sequence, bringing improvement to the dynamic
human pose estimation.

• We propose a multi-branch network architecture to
learn the spatial-temporal contexts of separate body part
groups. We further propose information-theoretic objec-
tives to diversify the specific features of different part
groups and distill useful information from the extracted
features of multiple groups. With feature-level supervi-
sion, the specific relationship among groups of body parts
can be fully mined from the complex dynamic motion
pattern, bringing significant improvements to the dynamic
HPE performance.

• Extensive experiments of our model are conducted based
on the public dynamic HPE datasets. The state-of-the-art
results validate that our proposed framework can synthe-
size actual interim poses and extract valuable knowledge
from them, handling complex cases. Besides, the effi-
ciency experiments demonstrate that our methods achieve
higher performance with little computational cost.
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II. RELATED WORK

We first introduce traditional image-based human pose es-
timation, then provide information about the related works on
video-based human pose estimation and part-wise relationship
learning. These works are relevant to our method, in terms
of using the deep network to learn the visual features of the
human body parts.

A. Image-Based Human Pose Estimation

Traditional approaches for Image-based human pose esti-
mation are based on the pictorial structure models [15], where
the tree-structured graph is used to represent the human body.
They rely on prior knowledge of the body structure, thus
increasing the complexity of learning the features of the human
body. Due to the development of deep learning, most of the
recent methods [6], [7], [16], [17] utilize CNNs to extract the
visual context from images. The heatmap-based methods [6],
[7], [17] have dominated this area. They utilize the likelihood
heat maps to represent the locations of the body parts. Some
of them [6], [7] directly design different CNN architectures
to improve estimation performance of the single-person heat
map. Many works have extended this idea and proposed the
top-down multi-person pose estimation frameworks, which
detect the bounding boxes of humans and use the single-person
pose estimator to compute the heat maps for each bounding
box. There are also bottom-up methods [17], [18] that compute
the heat maps for all body parts. The parts are grouped to form
different human poses. Compared with the top-down manner
that achieves better accuracy, the bottom-up methods have a
faster speed of HPE. However, these methods use directly
use the point coordinates with maximum value in the heat
map as part locations. The arg-max operation for selecting
the coordinates breaks the backward propagation for training
the network. In this case, the regression-based methods [19]
are considered. IntegralPose [19] has an end-to-end regression
framework with the soft-argmax operation to retrieve part
locations from heat maps in a differentiable manner. Image-
based approaches are only based on static images with spatial
features. Thus they perform unsatisfactorily, given videos
with motion blur and out-of-focus. Our work utilizes image-
based networks as our backbone to provide discrete spatial
contexts for each frame, and uses additional architectures to
extract continuous temporal information by generating short-
time poses. We use the differentiable locations to supervise
the visual feature synthesis of short-time poses.

B. Dynamic Human Pose Estimation

To capture the temporal context of human body parts,
some recent works [11], [20] divide the multi-frame task
into two stages: localizing the body parts in single frames
and using temporal smoothing techniques to refine results.
LSTMs and 3D CNN are used for temporal smoothing [8], [9],
yet requiring much computation. To save computation, some
methods [21], [22] use the warping mechanism, which refines
the part localization based on sparse keyframes with part-
wise annotations. For example, PoseWarper [21] detects poses

in the adjacent frames. DCPose [22] and FAMI-Pose [23]
introduce a dual temporal direction framework and a feature
alignment framework, respectively, for better harnessing the
sparse part annotations in keyframes. TDMI [24] exploits
dynamic contexts through temporal difference learning and
useful information disentanglement. Though keyframes accel-
erate the speed of dynamic HPE, keyframes normally offer
long-time pose information, however missing short-time poses.
In contrast to the existing methods, we propose a novel idea
to synthesize the short-time poses that are unavailable in the
video. Our method lets synthesized and existing poses form
more complete motions, eventually benefiting dynamic HPE.

C. Part-wise Relationship Learning

Many methods [25], [26] of HPE respect the characteristics
of the human body for modeling the part-wise relationship.
These approaches [27]–[30] generally use deep networks to
learn the representation of body parts, whose relationships can
be adaptively adjusted. PBN [28] regards the pose estimation
as homogenous multi-task learning. It divides the human body
into multiple groups and uses a individual network module to
learn specific features of each group. It learns the relationship
between parts within the same group but without interaction
between groups. Another array of methods [28], [29] use
the tree-like structure to model the part-wise relationships.
DLCM [27] introduces a hierarchical compositional model
for organizing the body parts. Graph-PCNN [29] introduces
a graphical network to extract the relational information of
body parts. RPSTN [30] has a pose semantics propagator that
transfers the pose semantic information of the current frame
to the next frame. In the above methods, the consideration of
a complex model of part-wise relationship easily distracts the
deep network, which may learn the relationships useless to
dynamic HPE. Though the separable part groups restrict the
part-wise relationship to the independent groups (or among a
few groups), the part-wise relationship learning still needs an
effective way to be directly driven by dynamic HPE.

We propose a multi-branch network with multiple trans-
formers for learning part-wise relationships within the sep-
arable part groups. We resort to a part-related information-
theoretic objective, which drives the part-wise relationship
learning to improve the performance of dynamic HPE.

III. OVERVIEW

Given a human action video, to estimate the body poses
for each frame, we first detect the human in each frame
and crop it to obtain an image sequence that contains more
than three adjacent human images. Then to leverage richer
motion information, we propose a component called pose
synthesizer, which takes advantage of the feature maps of
adjacent frames to generate feature maps of the intermediate
status. We input each neighboring pair of them into a pre-
trained VFIT, obtaining rough intermediate visual RGB images
for the interval (see Fig. 2(a)). All these feature maps are
input into a backbone to compute the visual feature maps,
respectively. In the pose synthesizer, we use a deformable
transformer to synthesize the intermediate poses between the
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TABLE I
IMPORTANT NOTATIONS USED IN THIS PAPER.

X : Function

I Integral

C convolution

T DETR encoder

L/H/S information/heat map/coordinate loss function

X: Set

W temporal window

I RGB image sequence

F feature map sequence

G body part groups

Z the set of group features

R the set of real numbers

X and x: Multi-dimension Representation

I RGB image of the human pose

F/z visual feature map/group feature map

H/P predicted part location heat map/probability heat map

R/q 2D coordinates of parts/location

X: Constant

H ×W spatial resolution of the image

J/N/C number of body parts/groups/feature map channels

x: Index and hyperparameter

t index of the frame in the sequence

w index of the frame in the temporal window

δ temporal bias

k index of the joints

i, j index of the part group

γ hyperparameter of the loss terms

α, β hyperparameter of the synthesized probability heat map

preliminary frames captured by the camera and the roughly
synthesized intermediate frames (see Fig. 2(b)). We employ
the transformer to estimate probability heat maps for interme-
diate poses based on the features of preliminary frames and
synthesized frames, obtaining a feature map sequence with
continuous motion features. The coordinates of part locations
are computed via the integral of probability maps, making the
computation of the movement of part locations differentiable.
We regard the trajectory of part locations in the short-time
period as linear. Then the pose synthesis can be supervised
by locating the part locations of the intermediate status into
the linear trajectory formed by the poses of adjacent captured
frames. The synthesis process is shown in Fig. 3. Besides the
inherent synthesis ability of VFIT, our proposed constraint
further guarantees the effectiveness of the synthesized poses.

As shown in Fig. 2(c), with the continuous pose feature

map sequence, we propose another component called pose
distillation. For the input of this component, we combine
the feature maps along with the temporal dimension to get a
representation which contains the shared temporal and spatial
information of the existing and synthesized poses. Then, we
divide the human body into multiple groups and adopt a multi-
branch network architecture to learn individual features for
each part group, computing part-wise group feature maps.
Applying convolutions to these group feature maps, the heat
maps of part locations can be obtained. By concatenating these
group feature maps and corresponding heat maps together, we
get the feature maps containing the information for all body
parts. Finally, as shown in Fig. 2(d), we combine the obtained
feature maps and the preliminary feature maps for the current
frame together, applying convolution to the combined feature
maps to obtain the heat maps for the overall estimation of the
human pose. We further leverage a cosine similarity to diverse
the contexts in each feature map and a mutual information
objective to distill useful information from different part-group
features.

IV. TEMPORAL-INTERIM POSE SYNTHESIS AND
DISTILLATION

In this section, details of Temporal-interim Pose Synthesis
and Distillation are given. We first give some preliminaries of
the framework to describe the preparation and pre-processiing
for the input. Then we provide the detailed descriptions of
pose synthesis including the network architecture and the
supervision. Finally, we present the details of pose distillation.
Table I list the definitions of the characters used in the paper.

A. Preliminaries

As illustrated in Fig. 2, we aim to estimate the human
pose in the tth frame It ∈ RH×W×3, where H × W is
the resolution of the input image. We crop the detected
human from the frames within a temporal window W. By
cropping the human regions, we achieve the image sequence
I = {It+δ | δ ∈ W}. In Fig. 2, we set the length of the window
as 5, i.e. W = {−2,−1, 0, 1, 2}. By inputting them into a pre-
trained VFIT, we obtain the rough RGB image sequence Is =
{It+δ,t+δ+1 | δ ∈ W′} for the time interval between each pair
of neighboring frames. Here we define W′ = {−2,−1, 0, 1}.
We feed I and Is into a backbone network, producing the
preliminary pose feature maps F = {Ft+δ | δ ∈ W} and
Fs = {Ft+δ,t+δ+1 | δ ∈ W′} that respectively represent the
existing poses and the roughly synthesized interim poses, as
shown in Fig. 3. For the simplicity of clarification, we use wth

frame to represent any frame in the cropped window of W,
i.e., (w − t) ∈ W.

B. Pose Synthesis

To generate actual interim poses, we build a component
called pose synthesizer. As illustrated in Fig. 3, the pair of
preliminary pose feature maps (Fw,Fw+1) is passed into
the synthesizer, which computes the feature map F′

w,w+1 ∈
RH×W×C of intermeidate pose between the wth and (w+1)th
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Fig. 2. Illustration of estimation the human pose in the frame It. (a) We feed the each pair of neighboring frames (e.g., It and It+1) into a VFIT for producing
the rough intermediate frame. (b) Then we feed the preliminary feature maps (e.g., It and It+1) of each pair of given frames into the pose synthesize for
producing the feature map (e.g., I′t,t+1) of the synthesized intermediate pose. The learning of synthesized pose feature maps is supervised by the loss Ls.
(c) We concatenate the preliminary and synthesized feature maps. And we apply convolutions to the concatenation, forming the representation z, which is
passed to individual transformers to learn the feature maps I1, ..., IN of N body part groups. I1 to IN are used to compute the heat maps of part locations
in different groups. And we concatenate z1 to zN to and use convolutions to get the feature map z̃ containing rich useful part-wise information. (d) Finally,
we combine z̃ and Ft and apply transformer for predicting the overall heat maps H̃t, supervised by the loss H.

frames. We utilize the visual feature map Fw,w+1 from Fs

in the synthesizer to produce rough features for the interim
pose. The details are described in Section IV-B. The pose
synthesizer computes the final interim pose feature maps in the
set F′ = {F′

w,w+1}. We compute the 2D coordinates of parts
Rw,Rw,w+1,Rw+1 ∈ RJ×2, based on Fw,Fw+1,F

′
w,w+1. J

is the number of body parts.

a) Pose Synthesizer: The pose synthesizer leverages ad-
jacent frames Iw and Iw+1 to compute the short-time pose
feature map F′

w,w+1. We first leverage a VFIT which is
pretrained on other dataset to generate the intermediate frame
It,t+1 roughly via interpolation, producing additional knowl-
edge for image feature synthesis. Then we input the existing
frames and the synthesized frames into the backbone to obtain
preliminary pose feature maps Fw, Fw+1 and Fw,w+1 of the
wth, (w + 1)th middle frames in-between. We compute the
difference of Fw,w+1 and the other two feature maps Fw

and Fw+1 for capturing the motion in a short-time slot. And
we feed the differences concatenated with Fw,w+1 into a de-
formable DETR T [31]. In this manner, we allow to T account
for the beginning and ending poses along with the intermediate
motion in-between, which form the necessary information for
determining the pose between the wth and (w + 1)th frames.
T has the deformable attention to comprehensively propagate
the information of the given poses and motion to the interim
pose feature map F′

w,w+1 computed as:

F′
w,w+1 = T (Fw,w+1, Fw,w+1 − Fw,Fw,w+1 − Fw+1). (1)

Given the preliminary and interim pose feature maps
Fw, Fw+1, F′

w,w+1, we employ an integral operation
I [19] to the heat maps and compute the 2D coordinates
Rw,Rw+1,Rw,w+1 of part locations as:

Rw =I(C(Fw)), Rw+1 = I(C(Fw+1)),

Rw,w+1 = I(C(F′
w,w+1)).

(2)

b) Supervision for Pose Synthesis: We assume that the
intermediate motion change between the wth and (w + 1)th

frames follows a linear pattern. Between adjacent frames, the
identical part of the continual poses form a line trajectory.
We let each part of the synthesized pose locate at the middle
of the line trajectory. Thus, we only synthesize a pose be-
tween each pair of adjacent frames for saving computation.
Actually, we can specify any point of the linear trajectory
for a part of the synthesized pose. Based on the above
assumption, the 2D coordinates of part locations are required
for the calculation. Traditional heatmap-based methods employ
maximum likelihood to heat maps to obtain 2D coordinates.
But this process is non-differentiable. To solve this problem,
following IntegralPose [19], we estimate probability heat maps
and integrate them to compute the part coordinates. For the
probability heat maps, we denote the probability heat map of
the kth part as Pk ∈ RH×W , the locations in Pk as q ∈ R1×1.
Then the coordinates Rk ∈ R2 of the kth part can be computed
as:

Rk =
∑
q∈Ω

q · eP
k(q)∑

q′∈Ω ePk(q′)
, (3)
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Fig. 3. Illustration of process of interim pose synthesis. (a) First, given neighboring frames Iw and Iw+1, we use a pretrained Video Frame Interpolation
Transformer (VFIT) to generate a rough interval image Iw,w+1. Then we input all three images into a HPE backbone network to yield corresponding pose
features maps Fw , Fw,w+1 and Fw+1. (b) We feed them into the pose synthesizer, where we combine Fw,w+1 and the difference between it and the other
two feature maps as the input of a transformer to get a new feature map F′

w,w+1. With convolution, the probability heat maps Pw , Pw,w+1 and Pw+1

are computed. Through integral operations to these probability heat maps, we obtain 2D locations of body parts Rw , Rw,w+1 and Rw+1. And we leverage
a regression-based loss Ls account for these part locations to supervise the synthesis of interim pose Rw,w+1.

where Ω is the domain of Pk and q′ ∈ R1×1 represents all
locations in Ω. Concatenating all Rk, we can obtain the 2D
coordinates R of all parts of the overall human body.

Given the part locations Rw,w+1 of the synthesized pose,
along with locations Rw and Rw+1 of the tth and (t + 1)th

frames, we compute the loss Sw as:

Sw = ||Rw +Rw+1 − 2Rw,w+1||. (4)

Sw penalizes any part’s location in Rw,w+1, which diverges
from the trajectory’s mid-point determined by the same part
in the wth and (w + 1)th frames.

Each pair of adjacent frames in the sequence F and the
corresponding roughly synthesized the interim frame from Fs

can be fed into the synthesizer to obtain refined interim poses
for computing a regression loss. We compute the overall loss
Ls for the pose synthesis as:

Ls =
∑

w−t∈W′

Sw + 2||R̂t −Rt||, (5)

where R̂t is the ground-truth locations for the tth frame. Here,
the second term penalizes the difference between the predicted
and ground-truth part locations.

C. Pose Distillation and Heatmap Generation

We combine the feature maps in the sets F and F′ to
compute the representation z ∈ RH×W×C , which contains
the shared information of the existing and synthesized poses.
A multi-branch pose distillation learns part-wise relationship
from z, as illustrated in Fig. 2(c). Pose distillation divides J
body parts into N groups. We denote the groups as {Gi | i =
1, ..., N}. Gi contains the part indexes of the ith group. In a
branch, a transformer learns the specific part-wise relationship
from the group Gi. The transformer takes input as z. Different
transformers for the corresponding groups yield the group
feature maps in the set Z = {zi ∈ RH×W×C |i = 1, ..., N}.
Based on zi, we compute the heat map Hi

t ∈ RH×W×||Gi||

for localizing the parts in the group Gi. To let the group
feature map zi represent the specific relationship within the
corresponding group, its heat map Hi

t is supervised by the
heatmap-based loss for the ith group. Furthermore, we employ
an information-theoretic loss LInfo, which consists of Lvar,
Lcom, and Lred, to distill useful information from complex
part-wise relationships. Pose distillation aggregates all zi into
z̃. Then as shown in Fig. 2(d), combing z̃ and Ft, we compute
the overall heat maps H̃t ∈ RH×W×J of all parts. We use
an overall heatmap-based loss function H to supervise H̃t.
Below, we give more detailed descriptions of the architecture
and supervision of the pose distillation.

a) Multi-Branch Transformers: As illustrated in
Fig. 2(c), we concatenate the preliminary and synthesized
pose feature maps in F and F′. And apply a convolution
block to it to form a feature map z, which contains more
completed motion information. We divide all of the body parts
into N groups [28]. To learn part-wise relationships within
the individual groups, we build multi-branch transformers,
where each branch learns the specific part-wise relationship
within a group. For the part group Gi, we use a deformable
transformer to extract the ith group feature map zi from the
shared representation z. We pass zi into a convolutional layer
to predict the heat map Hi

t, which is concatenated with the
group feature map zi. We pass every pair of concatenated heat
map and group feature map into an convolution block, which
yields the overall feature map z̃ containing information of all
parts. As illustrated in Fig. 2(d), in the heat map generation,
z̃ and the preliminary feature map Ft are concatenated and
input into a transformer block for predicting the final heat
maps H̃t of all parts for the frame It.

b) Supervision for Part-Wise Relationship Learning: At
first, we compute the losses for supervising the prediction of
the overall heat maps H̃t and part locations in each group at
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the same time. The heat map loss can be defined as:

H = ||H̃t − Ĥt||+
N∑
i=1

||Hi
t − Ĥi

t||, (6)

where Ĥt represents the ground-truth heat map for the whole
human body of the frame It, the heat map Hi

t indicates the
part localization in the group Gi, and Ĥi

t is the ground-
truth heat map for the group Gi. The pose distillation learns
part-wise relationships from the preliminary and synthesized
poses. These relationships should be learned from the groups
with diverse visual patterns, thus allowing the relationships
to provide richer context information of parts. In addition to
the information richness, the learned relationships should be
useful for improving the performance of HPE.

To motivate the part-wise relationships to contain rich infor-
mation, we design the loss Lvar, which enhances the diversity
of different group-wise feature maps in Z. Lvar measures the
difference between each pair of group-wise feature maps as:

Lvar =
∑

1≤i≤j≤N

cos[zi, zj ], s.t., zi, zj ∈ Z. (7)

We denote cos[·] as the cosine similarity. We minimize Lvar

during the network training.
Furthermore, we compute the losses Lcom and Lred, letting

the group-wise feature maps in Z contain the task-relevant
information. Here, we formulate the lose Lcom as:

Lcom = M(Ĥt;Ft|z̃)−M(Ĥt; z̃|Ft), (8)

where M is the mutual information between two feature
maps. M(Ĥt; z̃|Ft) represents the amount of task-relevant
information contained in z̃, which is complementary to the
information from preliminary feature maps Ft. The task-
relevant information includes part-wise information in Z and
temporal information in F and F′. We maximize M(Ĥt; z̃|Ft)
to extract additional task-relevant information which includes
part-wise information in Z and temporal information in F
and F′. M(Ĥt;Ft|z̃) measures the vanishing of original task-
relevant information from Ft. As defined by [24], the first
term M(Ĥt;Ft|z̃) represents the information in Ft that is not
predictive of z̃, so it is the irrelevant information encoded in Ft

regarding z̃. Considering that z̃ is the learned representation
based on Ft, inspired by [24], M(Ĥt;Ft|z̃) is actually the
vanishing of original task-relevant information from Ft to
z̃ during the pose distillation. Minimizing it can prevent
excessive information loss in Ft. In other words, we keep the
useful information via this. So in the training, we minimize
M(Ĥt;Ft|z̃) to preserve information of Ft. Overall, Lcom is
minimized for training.

We use the lose Lred to penalize the redundant information
in the group-wise feature maps as:

Lred =

N∑
i=1

M(Ĥt; zi|z̃), (9)

where M(Ĥt; zi|z̃) measures the task-irrelevant information
in the group-wise feature map zi. Here, we minimize Lred.

We factorize each term in Lred as:

M(Ĥt; zi|z̃) → M(Ĥt; zi)− I(zi; z̃) +M(zi; z̃|Ĥt). (10)

where the third term M(zi; z̃|Ĥt) represents the task-
irrelevant information both in zi and z̃. Naturally, we think
that M(zi; z̃|Ĥt) will be negligible with sufficient training.
So the objective can be simplified as:

M(Ĥt; zi|z̃) → M(Ĥt; zi)−M(zi; z̃). (11)

Similarly, the two regularization terms in the Eq. (8) can be
also simplified as:

M(Ĥt;Ft|z̃) → I(Ĥt;Ft)− I(Ft; z̃),

M(Ĥt; z̃|Ft) → I(Ĥt; z̃)− I(z̃;Ft).
(12)

Then the minimization of Eqs. (8) and (9), which have the
terms of conditional mutual information, can be done by the
variational self-distillation [32].

The part related information-theoretic objective can be for-
mulated as:

Linfo = γvarLvar + γredLred + γcomLcom, (13)

where the γvar, γred and γcom are the hyper parameters of
the corresponding information-theoretic objectives. Combining
all above objectives in the pose distillation and the interim
pose synthesis, the overall training objective of the whole
framework can be formulated as:

L = H+ γinfoLinfo + γsLs, (14)

where γinfo and γs are the hyper parameters of corresponding
loss functions. In the training, we minimize L.

V. EXPERIMENTAL RESULTS

In this section, we show the details of the experimental
settings and the results obtained by the proposed model on
several video-based human pose estimation datasets. In the
tables, the best performance results are bold.

A. Dataset And Evaluation Metric

a) Dataset: We use PoseTrack2017, PoseTrack2018,
PoseTrack2021 and Sub-JHMDB to evaluate our method.
PoseTrack2017 is the first large-scale public dataset for multi-
person keypoints estimation and tracking in videos. There are
514 videos and 16,219 pose annotations. It has been split
into 250, 50, and 214 videos for training, validation, and
testing. Then PoseTrack2017 is extened to the PoseTrack2018.
There are 1,138 videos with 153,615 posture annotations in the
PoseTrack2018. It contains 593/170/375 for training, valida-
tion, and testing. PoseTrack2021 is the latest extension of the
above two datasets. There are over 420,000 box annotations
of humans in this dataset. It provides annotations for more
frames in the training and testing sets of PoseTrack2018. In
these datsets, each human body is labeled with 15 parts, with
extra labels for visibility of parts. a unique person ID and a
head bounding box for each person in the annotated frame.
In the training set, the 30 frames at the middle of video
have annotations. For the validation, every four frames in the
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video provide a complete set of part annotations for a human
body. Besides, we also conduct experiments on the Sub-
JHMDB datasets. It contains 316 videos with 11,200 frames.
Only visible parts are annotated. This dataset is divided into
three subsets. There are 75% training images and 25% testing
images in each subset.

b) Evaluation: The PoseTrack dataset includes three
different tasks. Task 1 and Task 2 evaluates the pose estimation
performance using the mean average precision (mAP) in a
single frame and in videos, respectively. Task 3 focuses on
the task of multi-person pose tracking. In this paper, we focus
on the task 2, which evaluates the pose estimation performance
using the standard evaluation index for human pose estimation,
the average precision (AP). We calculate the APs for all body
joints of each instance and then average these APs to obtain
the mean average precision (mAP).

B. Implementation Details

a) Hyper-Parameters: Our framework is implemented
based on PyTorch. We use a single Nvidia GeForce RTXTM

3090 GPU with 24GB memory to train and test the framework.
The resolutions of the input image and the feature maps are
set to uniform sizes of 384 × 288 and 96 × 72. The number
of body part groups N is set to 5, and the division strategy of
part groups is the same as PBN [28]. As for the deformable
transformer architecture, we follow the original settings in
[31]. We set the number of encoders in each branch as 4,
the embedding size for attention as 128, and the dimension
of the feedforward network as 256. We use an image-based
HPE framework called HRNet-W48 [7] as the backbone model
in this work. The backbone HRNet-W48 is pre-trained on the
COCO dataset. For the hyperparameter , γvar, γred, γcom, and
γs are all empirically set as 1, and γinfo is set as 0.1. As for
the conovlution operations C in the network, we adopt a set of
basic residual convolution blocks with kernel size 3× 3. The
number of the blocks is set as 3.

b) Bounding Boxes: We follow the two-stage top-down
HPE methods [22], [23] to use each bounding box for a
single person as the ground truth for training. For validation
and testing, we adopt the widely-used person detector [20] to
predict the bounding boxes of human. We crop input frames,
including the current frame and its temporal neighbors, from
the predicted bounding boxes.

c) Training Setting: We set the training epochs to 25.
The length of temporal window W is 4. We utilize Adam
solver with an initial learning rate of 1e-4 for optimizing
the network. The learning rates are decayed linearly in 10th,
16th and 20th epochs by the factor of 0.1. We conduct data
augmentation [23] on the training images by random rotating
[−45◦, 45◦], scaling [0.65, 1.35], and horizontal flipping.

C. Ablation Study

We conduct ablation experiments on the validation set of
PoseTrack2017 to evaluate the effectiveness of our method.

TABLE II
ABLATION STUDY ON THE NETWORK COMPONENTS. WE REPORT THE

RESULTS ON POSETRACK2017 VALIDATION SET.

Method Pose Synthesis Pose Distillation Sw mAP

HRNet [7] 77.3
DCPose [22] 82.8

(a) ✓ 83.3
(b) ✓ ✓ 83.8
(c) ✓ 85.0
(d) ✓ ✓ 85.4
(e) ✓ ✓ ✓ 86.2

TABLE III
SENSITIVITY TO THE NETWORK ARCHITECTURE. WE REPORT THE

RESULTS ON THE POSETRACK2017 DATASET.

Method Pose Synthesis Pose Distillation mAP

HRNet [7] 77.3
(a) convolution convolution 84.8
(b) convolution transformer 85.8
(c) transformer convolution 85.3
(d) transformer transformer 86.2

a) Effectiveness of Network Components: In Table II,
we report the performances of different methods in terms
of mAP. These methods are the alternatives without one or
more components (i.e., pose synthesis and distillation) of our
full model. In the first row of Table II, the backbone HRNet
achieves 77.3 mAP. We only use the pose synthesis to compute
interim pose feature maps, which are used to compute the
shared representation z. We use a simple transformer to predict
the human pose based on z. The pose synthesis improves the
accuracy by a remarkable margin of 6.5 mAP (see Table II(b)),
compared to the backbone HRNet. This result demonstrates
that the synthesized interim pose features provide more com-
plete motion information. In Table II(c), we only use the
pose distillation to learn the part-wise relationship from the
preliminary pose feature maps F. Although the synthesized
pose feature maps are removed here, the pose distillation still
significantly improves the mAP from 82.8 mAP to 85.0 mAP,
compared to the backbone HRNet. By combining the pose
synthesis and distillation in Table II(e) as the full model, we
improve the performance to 86.2 mAP, which is better than
the result achieved by the pose synthesis only. This result
evidences effectiveness of the pose distillation, which learns
useful motion information from the mixture of preliminary and
synthesized pose feature maps. To illustrate the effectiveness
of Sw, in Table II(a) and Table II(d), we remove the loss
Sw with different component settings. Compared with DCPose
which employs similar temporal information learning module,
without Sw, the network in Table II(a) cannot regress interim
pose, obtaining a lower performance. Similarly, the 85.4 mAP
of Table II(d) is lower than the 86.2 of the complete framework
Table II(e). These results validate the effectiveness of the
synthesized interim pose features.

In Table III, we replace the deformable transformer encoders
with the deformable convolution blocks, which are used in
the pose synthesis and distillation. In Table III(a), we replace
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TABLE IV
SENSITIVITY TO THE PROPOSED PART RELATED OBJECTIVES. WE REPORT

THE RESULTS ON POSETRACK2017 DATASET.

Loss Functions Ls Lvar Lcom Lred mAP

HRNet [7] 77.3
(a) 83.0
(b) ✓ 83.9
(c) ✓ ✓ 84.1
(d) ✓ ✓ ✓ 85.3
(e) ✓ ✓ ✓ ✓ 86.2

all transformers with deformable convolutions, yielding 84.8
mAP higher than the backbone HRNet. It means that our
network works reasonably without the help of advanced trans-
formers. In Table III(b–d), we add one or more transformers
to the pose synthesis and distillation, which produce better
results than the model without transformer. It shows a stronger
ability of the deformable transformers for learning motion
information.

b) Effectiveness of Critical Loss Functions: To investi-
gate the effectiveness of the proposed objectives for dynamic
HPE, we change the combination of these objectives and report
the mAP in Table IV. In Table IV(a), we only employ the
traditional heatmap-based loss function H to supervise the
model. Even without an extra objective, our model (83.0 mAP)
still outperforms the baseline HRNet 77.3. In Table IV(b), we
add the interim pose synthesis loss Ls for the pose synthesis,
achieving 83.9 mAP. The comparison between Table IV(a)
and Table IV(b) validates the effectiveness of synthesized
poses. In Table IV(c), we add the loss function Lvar to
supervise the part group representations. The improved result
of 84.4 mAP shows that diversifying specific features of
part groups promotes the extraction of part-wise information.
In Table IV(d) and Table IV(e), we add Lcom and Lred

for promoting the relevance between group features. These
additional objectives consolidate mAP from 84.1 to 85.3 and
86.2.

c) Sensitivity to Part Grouping: We conduct experiments
with different settings of part groups in Table V. The part
divisions are obtained by applying spectral clustering to the
normalized matrix of mutual information between each pair
of body parts [28]. The more considerable number of groups
means the more grained division, and each group is smaller.
The results of different group settings are shown in Fig. 4.
Account for the mean values, it is easy to tell that the
performance improves with increasing group number from 1
to 3 or 5. The results demonstrate that smaller groups can
bring more detailed part-wise relationships. However, using
more groups (i.e., 8 and 15 groups) can hardly result in
further improvement. We conjecture that too complex part-
wise relationships are unhelpful for the generality of learning
motion information. Besides, we can see that for prediction
accuracy of head elbow, wrist and ankle obviously changes
with the increasing of the group number. On the other hand,
the OKS values of the shoulder, hip and knee seems staying
static. We conjecture that the more the parts are close to the
torso, the parts are more easy to detect, otherwise, the parts are

TABLE V
THE GROUP DIVISION SETTINGS FOR THE ABLATION STUDY ON THE

GROUP NUMBER.

Group Number Parts

1 all parts

3 head, upper limb, lower limb

5 head-shoulder, left-lower arm,
right-lower arm, thigh, lower limb

8

head-shoulder, left-upper arm,
left-lower arm, right-upper arm,

right-lower arm, thigh,
left-lower leg, right-lower leg

15

right ankle, right knee, right hip,
left hip, left knee, left ankle,

right wrist, right elbow, right shoulder,
left shoulder, left elbow, left wrist,

head bottom, nose, head top

TABLE VI
SENSITIVITY TO THE WINDOW LENGTH. WE REPORT THE RESULTS ON

POSETRACK2017 SET.

Method Temporal Window Speed(FPS) mAP

FAMI-Pose [23] W = {−1, 0, 1} 6.9 83.9

FAMI-Pose [23] W = {−2,−1, 0, 1, 2} 3.1 84.8

TDMI [24] W = {−1, 0, 1} 2.7 84.2

TDMI [24] W = {−2,−1, 0, 1, 2} 1.1 85.7

ours W = {0} 54.4 77.3

ours W = {−1, 0, 1} 2.1 84.8

ours W = {−2,−1, 0, 1, 2} 0.9 86.2

ours W = {−3,−2,−1, 0, 1, 2, 3} 0.3 85.7

ours W = {−4,−3,−2,−1, 0, 1, 2, 3, 4} 0.1 85.6

hard to recognize. And the appropriate part grouping setting
can help the learning of these parts, such as the setting of 5
groups. In our work, we adopt the division of 5 part groups.

d) Sensitivity to Window Length: In Table VI, we change
the length of window that contain adjacent frames and examine
the effect on the performance. By enlarging the window from
3 to 5, we improve mAP from 84.8 to 86.2. This is because
more adjacent frames provide richer temporal information for
synthesizing the interim poses. But using larger windows (i.e.,
7 and 9) saturate the performance. We conjecture that the
long-term information of more frames is less useful for pro-
ducing the interim poses and even deteriorates the extraction
of temporal-spatial information. Compared with the previous
methods FAMI-Pose and TDMI, with same temporal window
setting, our method can apparently achieve higher mAP with
a competitive speed, respectively.

e) Discussion on Pose Synthesis: We can choose any
point of the linear trajectory to regress the part location of
synthesized poses. To synthesize different points on the line
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Fig. 4. Sensitivity to the group number. We report the OKS values for different numbers of group in our method on PoseTrack2017 set. We give the OKS
values of 7 symmetric parts separately and compare the individual differences among the different group settings.

Previous Frame Next Frame Next FramePrevious Frame
Synthesized 
Heat Map 

Synthesized 
Heat Map 

Previous Frame Next Frame Next FramePrevious Frame
Synthesized 
Heat Map 

Synthesized 
Heat Map 

Fig. 5. Visual examples obtained by the pose synthesizer. There are four cases. for each case, The first and third columns are adjacent frames, which are
attached with the predicted heat maps of the identical part. the second column is heat maps of the same part of the synthesized interim pose. The pink boxes
select the areas with dynamic part locations. In the enlarged boxes in the second and fourth rows, we zoom in the parts of the right knee and the left wrist.
The green and cyan circles represent the locations of the same part in the adjacent frames. The blue arrows in the zoomed synthesized map represent the line
trajectory. The blue stars are the synthesized locations of parts in the interim interval.
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TABLE VII
ABLATION STUDY ON THE POSE SYNTHESIS. WE REPORT THE RESULTS

ON POSETRACK2017 DATASET.

Points α = 1.5, β = 0.5 α = 1, β = 1 α = 0.5, β = 1.5 mAP

(a) ✓ 85.1
(b) ✓ 86.2
(c) ✓ 85.4
(d) ✓ ✓ 86.0
(e) ✓ ✓ 86.1
(f) ✓ ✓ 85.7
(g) ✓ ✓ ✓ 86.3

trajectory, we re-formulate the loss Sw as:

Sw = ||(α ·Rw + β ·Rw)− 2Rw,w+1||,
s.t. α+ β = 2, α ∈ [0, 2], β ∈ [0, 2].

(15)

By setting the α and β to different values, the synthesizer
can specify different points of the trajectory. The ratio of
α/β is lower/higher, the synthesized points are closer to the
corresponding part locations in Rw/Rw+1. In our work, we
set α and β both equal to 1, which means the middle point of
the trajectory.

With the above loss, we compare the performances of using
three settings of α and β, i.e., (α = 1.5, β = 0.5), (α = 1,
β = 1), and (α = 0.5, β = 1.5). We combine these settings
to synthesize the interim poses and report the performances in
Table VII. In Table VII(a–c), we employ only a single setting
of α and β. The comparison demonstrates that the middle
point of the line trajectory is more effective. In Table VII(d-
g), we combine one or more settings to learn more points,
yielding better results than the single setting. More points
of the trajectory help the network to recognize the motions
and improve the performance. Yet, in consideration of the
computational complexity, we use the middle point as default.

f) Discussion on Synthesized Poses: To illustrate the ef-
fectiveness of the pose synthesis, we visualize the synthesized
poses in Fig. 5. In Fig. 5, we provide 4 example pairs of
the adjacent frames from PoseTrack2017, which are attached
with the heat maps of the identical part. These heat maps
are predicted by the preliminary pose feature maps of the
corresponding frames. In the middle column between each
pair, we provide the same part’s heat map of the synthesized
pose, where the part locates at the middle of the linear tra-
jectory formed by the neighboring frames. The crimson areas
in the middle column contain the possible locations of the
part, showing that the pose synthesis completely understands
the intermediate motion. Although our objective is to regress
the middle point of the line formed by joint locations from
neighboring frames, the learning of the synthesizer focus
on a non-linear area in-between, which indicates that the
synthesizer acquires motion information from massive training
with a large number of images.

D. Comparison with State-of-the-Art Approaches

a) Accuracy Analysis: In Tables VIII and IX, we repro-
duce different methods and compare their results on Pose-
Track2017 and PoseTrack2018 validation dataset. In addition

to mAP, we report the average precision (AP) of different parts.
Note that other methods work without the help of synthesized
poses. Following the TDMI [24], we extend our framework
into the multi-stage version (MS) where we leverage the
multi-stage features extracted by the backbone HRNet to
yield preliminary visual feature maps with richer information.
Our method outperforms the state-of-the-art methods [24],
[41]. The comparison demonstrates that the preliminary and
synthesized poses provide more complete motion information.
Currently, the comparisons on the test sets of PoseTrack2017
and PoseTrack2018 are unavailable due to the expiration of
dataset entrances.

Next, we evaluate our method on the validation set of
PoseTrack2021 in Table X and the test set of Sub-JHMDB in
Table XI. It should be noted that a large amount of invisible
parts exist in the PoseTrack2021. These invisible parts easily
lead to erroneous detection of human bodies. Our method still
achieves 83.5 mAP, 83.6 mAP and even 84.1 mAP, which
are higher than the state-of-the-art methods. Compared to the
latest methods, our method also overcomes all state-of-the-
art methods on Sub-JHMDB. It shows the robustness of our
method. It is noted that with different backbones, our method
can achieve better results than the original backbone network.
And when compared with the state-of-the-art regression-based
method DSTA [41], our method achieves much higher perfor-
mance on all datasets based on different backbones HRNet and
ViTPose respectively. It validates that our method can distillate
the useful information from the additional motion contexts by
itself instead of heavily relying on the feature extraction ability
of any backbone network.

b) Efficiency Analysis: In Table VIII, we also present
the parameters, flops and speed of our method, along with all
state-of-the-art methods. The speed results are obtained based
on a single GeForce RTXTM 3090 GPU card. The flops of our
method without/with VFIT [10] are 230G/476G. Compared
with the real-time HPE method [37], our methods can achieve
much higher prediction accuracy. When it comes to the same
type of dynamic HPE methods, although the complexity of
our model is a little higher compared with them (183G of
FAMI-Pose [23] and 198G of TDMI [24]), we can obtain
better results in all datasets, while the speech is competitive.
Our full model is only slower than TDMI about 0.2 fps with
0.5 mAP improvement. And when we apply VFIT into the
model, we can achieve the state-of-the-art performance in
all these datasets. It means that the VFIT can provide extra
information for the pose synthesizer, effectively improving the
performance. This demonstrates the effectiveness of the usage
of VFIT. In addition, our primary contribution is not em-
ploying VFIT but generating intermediate motion information
with our proposed supervision. As shown in Tables VIII–X,
even without VFIT, our model still achieves the best perfor-
mance with little parameter increase (6.4M) and acceptable
Flops increasing (47G) while retaining same inference speed
compared with TDMI, which also validates the effectiveness
of our whole framework rather than VFIT. And with the
huge backbone ViTPose-H, our method can achieve the best
performance in all datasets. Using a simple linear regression
module for possible intermediate motion trajectory detection
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TABLE VIII
COMPARISONS WITH STATE-OF-THE-ART METHODS. WE REPORT THE RECOGNITION ACCURACIES OF DIFFERENT PARTS ON THE POSETRACK2017

DATASET. EACH ACCURACY ACCOUNTS FOR THE SYMMETRIC PARTS.

Method Backbone Params GFLOPs Speed (FPS) Head Shoulder Elbow Wrist Hip Knee Ankle Total

PoseTrack [20] ResNet-101 - - 0.8 67.6 70.2 62.0 51.8 60.8 58.8 49.9 60.7
PoseFlow [33] ResNet-152 - - 6.7 66.6 73.2 68.2 61.0 67.4 67.0 61.2 66.4
FastPose [34] ResNet-101 78.68M 154.8 8.7 80.0 80.3 69.5 59.1 71.4 67.5 59.4 70.3

SimeBaseline [6] ResNet-152 68.6M 35.6 33 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.7
SE+TE [35] ResNet-152 - - 2.3 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0
HRNet [7] HRNet-W48 63.6M 32.9 54.4 82.1 83.6 80.4 73.3 75.5 75.3 68.5 77.3

HRNet+STIP [36] HRNet-W48 63.6M 35.4 48.1 83.0 82.5 81.6 73.9 76.1 74.9 69.9 77.9
RTMO [37] CSPDarknet 44.8M 8.1 56.1 81.9 82.3 81.9 72.5 74.1 75.5 68.9 77.1
MDPN [38] ResNet-152 - - - 85.2 88.5 83.9 77.5 79.0 77.0 71.4 80.7

Dynamic-GNN [39] HRNet-W48 - - - 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1
PoseWarper [21] HRNet-W48 71.1M 192.2 4.5 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2

DCPose [22] HRNet-W48 68.0M 46.5 5.0 88.0 88.7 84.1 78.4 83.0 81.4 74.2 82.8
FAMI-Pose [23] HRNet-W48 64.5M 183 3.1 89.6 90.1 86.3 80.0 84.6 83.4 77.0 84.8

TDMI [24] HRNet-W48 66.2M 198.6 1.1 90.0 91.1 87.1 81.4 85.2 84.5 78.5 85.7
ViTPose [40] ViTPose-H 630.7M 121.1 10 88.8 89.6 85.8 80.7 80.4 83.5 75.7 83.8
DSTA-H [41] HRNet-W48 63.9M 35.7 6.7 89.8 90.8 86.2 79.3 85.2 82.2 75.9 84.6
DSTA-V [41] ViTPose-H 631.0M 123.9 1.2 89.3 90.6 87.3 82.6 84.5 85.1 77.8 85.6

ours (w/o VFIT) HRNet-W48 70.8M 230 1.1 89.8 91.0 87.3 82.2 85.3 85.7 78.0 85.9
ours HRNet-W48 99.1M 476 0.9 91.0 91.2 87.1 82.9 85.1 85.2 78.6 86.2

ours-MS HRNet-W48 105.3M 492 0.8 91.1 91.5 87.6 82.1 85.9 85.0 79.4 86.4
ours-ViT ViTPose-H 666.8M 585.0 0.4 90.7 91.1 87.9 83.6 85.3 86.3 80.0 86.7
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Fig. 6. Part recognition results of different methods. These examples are taken from the PoseTrack2017 and PoseTrack2018 datasets, including different
challenging cases, such as complex backgrounds and occlusions. Inaccurate part recognition results are highlighted by the red dotted circles. Compared with the
other models, our model can obtain more accurate human pose results in all these hard cases by leveraging more complete motion and part-wise information.

and a multi-branch pose estimation module, our framework
can significantly improve dynamic HPE performance based on
any backbones in any datasets with a competitive time cost.

c) Visual Results: To illustrate the robustness of our
model, we provide some visual results of our model compared
with other methods namely PoseWarper [21], FAMI-Pose
[23] and TDMI [24] for challenging cases with fast motion,
crowded background, or occlusions on PoseTrack17 dataset in
Fig. 6. These methods ignore the continuity of human motion
and just simply estimate a shared representation, leading
to poor performance especially for challenging cases with
crowded person instances. In contrast, the accurate human
pose estimation results of our methods validate that learning
specific information of part-relationships from the completed

continuous motion can help to handle visual degradation.

VI. CONCLUSION

We present a novel framework named Intermediate Pose
Synthesis and Distillation, which aims to synthesize inter-
mediate human poses between preliminary captured frames,
providing more complete motion information for human pose
estimation. Our framework utilizes a pre-trained VFIT to
generate visual contexts of the short-time interval. And we
employ regression-based objective to supervise the interme-
diate pose synthesis based on the assumption of the linear
trajectory in motions. Moreover, we build multiple branches
of transformers to distill part-wise relationships, which are
learned from the real and synthesized poses. The distillation
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TABLE IX
COMPARISONS WITH STATE-OF-THE-ART METHODS. WE REPORT THE

RECOGNITION ACCURACIES OF DIFFERENT PARTS ON THE
POSETRACK2018 VALIDATION SET. EACH ACCURACY ACCOUNTS FOR

THE SYMMETRIC PARTS.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

RMPE [42] 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9
MDPN [38] 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0

Dynamic-GNN [39] 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.9
PoseWarper [21] 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7
PT-CPN++ [43] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9

DetTrack [9] 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5
DCPose [22] 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9

FAMI-Pose [23] 85.5 87.7 84.2 79.2 81.4 81.1 74.9 82.2
TDMI [24] 86.2 88.7 85.4 80.6 82.4 82.1 77.5 83.5

DSTA-H [41] 86.2 88.6 84.2 78.5 82.0 79.2 73.7 82.1
DSTA-V [41] 85.9 88.8 85.0 81.1 81.5 83.0 77.4 83.4

ours (w/o VFIT) 86.4 88.4 85.7 81.2 83.0 82.0 76.9 83.6
ours 86.6 88.9 85.9 80.5 83.1 82.8 77.8 83.9

ours-MS 87.0 89.0 85.6 81.5 83.4 82.4 78.2 84.1
ours-ViT 86.9 89.0 86.0 81.6 83.3 83.3 78.0 84.2

TABLE X
COMPARISONS WITH STATE-OF-THE-ART METHODS. WE REPORT THE

RECOGNITION ACCURACIES OF DIFFERENT PARTS ON THE
POSETRACK2021 DATASET. EACH ACCURACY ACCOUNTS FOR THE

SYMMETRIC PARTS.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Total

FastPose [34] 56.0 55.9 52.6 48.5 51.0 48.6 44.8 51.4
Tracktor++ w. poses [44] - - - - - - - 71.4

CorrTrack [45] - - - - - - - 72.3
CorrTrack w. ReID [45] - - - - - - - 72.7
Tracktor++ w. corr [44] - - - - - - - 73.6

DCPose [22] 83.2 84.7 82.3 78.1 80.3 79.2 73.5 80.5
FAMI-Pose [23] 83.3 85.4 82.9 78.6 81.3 80.5 75.3 81.2

TDMI [24] 85.8 87.5 85.1 81.2 83.5 82.4 77.9 83.5
DSTA-H [41] 87.5 86.6 83.3 78.7 82.7 78.3 73.9 82.0
DSTA-V [41] 87.5 87.0 84.2 81.4 82.3 82.5 77.7 83.5

ours (w/o VFIT) 86.5 86.9 84.8 81.3 83.8 82.3 77.2 83.5
ours 87.1 86.9 84.9 81.0 83.8 82.0 78.0 83.6

ours-MS 87.0 87.6 85.3 81.5 84.0 82.6 77.9 83.9
ours-ViT 87.7 88.0 85.0 81.7 83.4 82.8 78.3 84.1

process offers helpful part-wise relationships for improving
the final performance of the dynamic human pose estimation.
Substantial experimental results on several evaluation datasets
demonstrate the excellent intermediate pose generation per-
formance and strong dynamic feature extraction skill of our
proposed framework. However, there is still a limitation in our
method: we only adopts specific grouping patterns which are
decided previously by manual designs. These fixed patterns
unavoidably constraints the part-wise relationship learning.
In the future, we will investigate a smarter scheme for
extracting part-specific features in motion. We will seek a
way to automatically group the body parts during the feature
learning process with the visual contexts, instead of using the
manually designed grouping patterns. Besides, rather than the
current way that extracts part features in the combination of
different frames, we will investigate the combination way of
part features from individual frames.
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