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Abstract—The multisource unsupervised domain adaptation
(MUDA) scenario poses a significant challenge in the field of
intelligent fault diagnosis (IFD), where the goal is to transfer
the knowledge learned from multiple labeled source domains
to an unlabeled target domain. Existing IFD-oriented MUDA
approaches frequently fail to recognize the distinct importance
of each source domain relative to specific target samples, or lack
flexibility in integrating diagnostic insights from multiple sources.
In response, a novel MUDA approach is proposed for IFD,
termed point-to-set metric-gated mixture of experts (PSMMoEs).
This method leverages a mixture-of-experts (MoEs) framework
to automatically integrate the complementary information from
multiple source domains. It develops a deep point-to-set distance
(PSD) metric learning technique within the MoE’s gating mecha-
nism, effectively fusing domain-specific features by assessing the
similarity between individual target samples and each source
domain. The method ensures balanced training across progres-
sive stages, harmonizing multitask learning with joint training
for the MoE framework. Furthermore, a multilayer maximum
mean discrepancy (MMD) measurement is employed for domain
alignment, ensuring feature alignment across different domains
at multiple levels. In order to assess the efficacy of the proposed
method, it is compared with several leading domain adaptation
methods on publicly available and laboratory-based rotating
machinery fault datasets. The experimental results demonstrate
superior classification and adaptation capabilities of the proposed
fault diagnosis method.
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I. INTRODUCTION

AS SYSTEMS, including machinery, equipment, and pro-
cesses, become increasingly complex, the role of fault

diagnosis becomes more critical. Fault diagnosis involves
identifying and locating potential issues in systems, which is
crucial for ensuring the reliability, safety, and efficiency of
industrial operations. With the rapid advancement of artificial
intelligence (AI), fault diagnosis is evolving into a more
sophisticated technology known as intelligent fault diagnosis
(IFD). This evolution is characterized by the integration of
machine learning, deep learning, and other advanced technolo-
gies, which collectively automate and enhance the diagnostic
process. The application of these technologies improves the
accuracy and robustness of fault detection, thereby mitigating
potential risks associated with system failures [1], [2], [3].

Conventional IFD approaches predominantly focus upon
supervised learning methods, which are typically trained on
labeled data specific to a particular domain, such as a particular
machine type or specific operating conditions [4], [5], [6].
However, these methods suffer from two major limitations.

1) Data Dependence and Costly Labeling: These
approaches require a large amount of labeled data,
the acquisition of which is both cost-intensive and
time-consuming.

2) Distribution Assumption: There is an underlying
assumption that the training and testing datasets are
drawn from the same distribution. This assumption is
frequently invalidated in real-world scenarios due to var-
ious factors, such as environmental changes, operational
variations, or sensor noise [7]. Therefore, these con-
straints hinder the ability of conventional IFD methods
to generalize effectively to new or unseen domains.

To address the inherent limitations of traditional IFD meth-
ods, researchers have increasingly turned to unsupervised
domain adaptation (UDA) techniques. These techniques facil-
itate the transfer of knowledge from a source domain, where
labeled data are available, to a target domain that possesses
only unlabeled data. This knowledge transfer is primarily
achieved by minimizing the distribution discrepancies between
these two domains. Within the context of IFD, UDA methods
can be broadly categorized into four types based on the
strategies they employ to align domains.
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1) Discrepancy-Based Methods: These approaches focus
on reducing domain discrepancy by minimizing various
distance metrics between source and target distributions.
Notable examples include maximum mean discrepancy
(MMD) [8], correlation alignment (CORAL) [9], and
Wasserstein distance [10].

2) Adversarial Learning-Based Methods: Employing
adversarial learning techniques, these methods aim to
align source and target distributions within a shared
feature space. Examples include generative adversarial
networks (GANs) [11] and domain adversarial neural
networks (DANNs) [12].

3) Reconstruction-Based Methods: This approach employs
reconstruction techniques to develop domain-invariant
features by reconstructing input samples across different
domains. Examples involve autoencoders [13] and cycle-
consistent learning [14].

4) Self-Training-Based Methods: These strategies utilize
self-training techniques to leverage the unlabeled data in
the target domain by training models with target pseudo-
labels. Examples include pseudo-labeling [15], [16] and
co-training [17]. The growing interest in UDA meth-
ods is primarily due to their broader applicability and
superior generalization capabilities, which are crucial for
meeting practical diagnostic demands. Consequently, an
increasing number of IFD methodologies are now being
developed based on UDA principles, indicating a sig-
nificant shift toward more robust and flexible diagnosis
solutions.

In the field of cross-domain fault diagnosis, most existing
UDA approaches focus on learning from a single source
domain, typically referred to as single-source UDA (SUDA).
However, real-world scenarios frequently involve multiple
source domains that are relevant to the target domain, such
as various machine types or operational conditions. These
source domains may exhibit varying degrees of similarity or
dissimilarity to the target domain, challenging the fundamental
assumption of SUDA, which posits homogeneous source sam-
ple distributions. This discrepancy underscores the necessity
for research in multisource UDA (MUDA), where leveraging
knowledge from multiple sources could harness more valuable
information and enhance the generalization capability of fault
diagnosis models. However, MUDA introduces several new
challenges.

1) Source-Domain Selection or Fusion: Recent strategies
address how to select and combine multiple source
domains based on their relevance to the target domain.
Methods such as output weighting [18], output com-
bination [19], and output alignment [20] have been
developed. However, output weighting relies on broad
domain-level operations, output combination directly
integrates outputs without considering flexibility, and
output alignment lacks guaranteed consistency across all
source domains.

2) Management of Conflicting or Noisy Information: To
mitigate the impact of conflicting or noisy informa-
tion from various sources, recent studies have explored
approaches such as knowledge distillation [21], mul-

tiadversarial learning [22], and feature selection [23].
Nevertheless, knowledge distillation may struggle to
distill accurate insights from noisy data, multiadversarial
learning might not completely reconcile conflicts, and
feature selection risks omitting critical informative fea-
tures.

3) Balancing Domain Alignment With Task-Specific Learn-
ing: To address the tradeoff between aligning domains
and focusing on task-specific objectives, recent research
has proposed methods such as weighted learning [24]
and multistage alignment [25]. However, weighted learn-
ing can struggle with adapting to varying degrees of
domain dissimilarity, and multistage alignment intro-
duces increased complexity and computational demands.

In response, a novel model, termed point-to-set metric-
gated mixture of experts (PSMMoEs), is proposed to address
the challenges of MUDA in fault diagnosis. Structurally, this
model is composed of a deep convolutional shared feature
extractor, an mixture-of-expert (MoE)-specific feature extrac-
tor, and a single classifier. Functionally, the model diagnoses
faults by exploiting both domain-shared and domain-specific
features extracted from raw vibration signals. Within the gating
mechanism of the MoE feature extractor, a deep point-to-
set distance (PSD) metric learning approach is developed.
This approach trains a transferability perception metric, which
subsequently facilitates the aggregation of features. These
ensemble features are utilized by the classifier to predict
fault types. To address the three aforementioned challenges
associated with MUDA, the model incorporates the following
strategies.

1) Upon receiving an input signal, the trained transfer-
ability measure dynamically integrates domain-specific
features from multiple experts based on the PSD
between the input and each source domain.

2) To deal with conflicting or noisy information from
different sources, a multitask learning loss is developed
to foster the independent training of each expert model,
enhancing specialization and diversity. Additionally, a
joint training loss is implemented to ensure collaborative
operation among all experts.

3) Domain alignment is achieved using a multilayer MMD
criterion that aligns both domain-shared and domain-
specific features. A dynamic parameter, which evolves
throughout the training process, is employed as a trade-
off between the MMD criterion and classification error,
thus striking a balance between domain alignment and
task-specific learning.

The major contributions of this article can be outlined as
follows.

1) A novel deep PSD metric learning method is pro-
posed, which incorporates multiple adaptive coefficient
vectors for leveraging source subsets to facilitate conve-
nient distance computation. A transformation network
is introduced to train the PSD metric simultaneously
with the entire model utilizing deep contrastive learn-
ing techniques. This PSD metric is both interpretable
and effective in reflecting the similarity between the
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input and each source domain, thus functioning as a
transferability perception metric to integrate expert-
specific outputs.

2) Both domain-shared and domain-specific features are
leveraged to determine the final fault prediction. Using
the metric-gated MoE feature extractor, domain-specific
features are integrated based on each source domain’s
transferability to the input signal. Two collaborative
losses, namely, multitask learning and joint training
losses, are introduced within the MoE framework to
enhance expert specialization and collaborative perfor-
mance, respectively. A multilayer MMD criterion is
implemented to ensure the alignment of both domain-
shared and domain-specific features within the MoE
module. Additionally, a dynamic tradeoff mechanism
is developed to prioritize different training objectives
as the model optimization progresses. These strategies
collectively empower the PSMMoE model to effectively
address the challenges in MUDA.

3) Extensive experiments are conducted on a variety of
publicly available and laboratory-based rotating machin-
ery datasets to evaluate the performance of the proposed
method. The results demonstrate that PSMMoE signif-
icantly outperforms several leading SUDA and MUDA
methods, showcasing its superiority in fault diagnosis.

The structure of the rest of this article is arranged as follows.
Section II covers the related work. Section III presents the
preliminaries. Section IV details the problem formulation and
proposed PSMMoE method. The experimental validation is
elaborated in Section V, and Section VI concludes this article.

II. RELATED WORK

A. Multisource Adaptation Fault Diagnosis

While SUDA has proven beneficial, its utility is often
constrained by the limited diversity of a single source domain
and a pronounced sensitivity to discrepancies between the
source and target domains. In response, MUDA has garnered
increasing attention, particularly for addressing more complex
scenarios in IFD.

Many MUDA methodologies extend classic SUDA tech-
niques to accommodate the difference of multiple source
domains. For instance, adversarial domain adaptation methods,
which leverage the DANN framework, have been further
developed by researchers such as Zhang et al. [19] and
Zhu et al. [22]. Concurrently, domain-specific feature adap-
tation techniques grounded in MMD have been introduced
by Wang et al. [20], Tian et al. [18], and Zhu et al. [25].
Expanding upon these foundational approaches, Feng et al.
[21] implemented dual alignment modules to synchronize both
local and global distributions, complemented by a distillation
strategy to optimize classifier performance. Further enhancing
the versatility of MUDA, Li and Yu [23] employed a multitask
learning framework to capture both domain-invariant and
task-specific features, utilizing a weighting scheme for source-
domain fusion. Additionally, Chen et al. [24] introduced an
open-set recognition module to address unknown fault types
in the target domain, incorporating a weighted approach to

Fig. 1. Architecture of the MoE model. wi is a parametric metric that measures
how much information from expert Ei is utilized for a given input.

balance the alignment of known and unknown classes effec-
tively.

Distinguishing from these methods, the proposed model not
only emphasizes the unique importance of each source domain
relative to specific target samples, but also ensures robust
domain alignment across the source and target domains while
concurrently facilitating effective task-specific learning.

B. MoEs Neural Networks

Introduced by Jacobs et al. [26], the MoE framework has
been widely adopted across various research domains. As
depicted in Fig. 1, MoE utilizes multiple specialized models,
known as experts, to tackle distinct subtasks within complex
problems. Each expert is trained on a specific subset of
input data, enhancing its specialization. A gating mechanism
determines the selection of the appropriate expert for a given
input. The final output is a combination of the experts’ results,
weighted according to the gating mechanism’s decisions. Sub-
sequent research has expanded MoE’s capabilities, focusing
on enhancements in model capacity [27], gating mechanisms
[28], and network structures [29].

MoE has gained prominence in machine learning fields such
as computer vision, natural language processing, and speech
recognition. For instance, Riquelme et al. [30] introduced
vision MoE, a sparse variant of the vision Transformer, tailored
for image recognition tasks. Lepikhin et al. [31] developed an
MoE approach for large-scale language modeling, employing
a top-k gating mechanism that assigns tokens to thousands of
experts simultaneously. Furthermore, Kumatani et al. [32] uti-
lized a sparsely gated MoE for multisource domain adaptation
in speech recognition, enhancing both network capacity and
accuracy. Despite its extensive contributions to machine learn-
ing, MoE has been relatively underexplored in the realm of
IFD. For instance, in neural machine translation (NMT), MoE
has seen considerable development in comparison, mainly
due to the following three factors: 1) the readily available
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multilingual data; 2) MoE’s capability to enhance performance
and generalization by leveraging diverse network architectures
and parameters, which is crucial for managing large-scale,
high-dimensional NMT data; and 3) MoE’s ability to improve
efficiency and scalability through sparse activation and parallel
computation. Recently, Chen et al. [33] employed a multigated
MoE in multitask learning for bearing and gear fault diagnosis
tasks. However, this article suggests that the potential of MoE
is underdeveloped in the context of MUDA fault diagnosis.

By resolving conflicts from diverse sources and integrating
the expertise of multiple domain-specific experts through an
innovative gating mechanism, the proposed method seeks to
demonstrate the versatile applications of MoE in complex
diagnostic scenarios in the field of IFD.

III. PRELIMINARIES

A. Point-to-Set Distance

The PSD is a metric used to quantify the distance between a
single point p ∈ Rm and a set of points D ∈ Rm×n. The specific
definition of PSD can vary depending on the application, with
the concept rooted in point-to-point distances. The point-to-
point distance is denoted as dp2p(·, ·), which may represent
any distance metric, such as Euclidean or Manhattan distance.
One of the most common measures of PSD is the minimum
distance, representing the shortest distance between the point
p and any point q in the set D

dmin
p2s (p, D) = min

q∈D
dp2p (p, q) . (1)

Similarly, PSD can be defined for the maximum distance,
which measures the farthest distance between the point p and
any point q in D. However, these PSD measures are highly
sensitive to outliers in the set D, as a single distant point can
significantly influence the measure.

To address this sensitivity, more robust PSD metrics have
been proposed. One such metric is the Mahalanobis distance
[34], which accounts for correlations between variables in the
set and measures the distance between a point and a set in a
multivariate space

dM
p2s (p, D) =

q
(p − µ)> Σ−1 (p − µ). (2)

Here, µ and Σ are the mean vector and the covariance matrix of
the set D, respectively. Specifically, the Mahalanobis distance
assumes that the set D follows a Gaussian distribution, which
may not always be accurate.

An alternative approach is the linear combination distance,
which uses a coefficient α ∈ Rn to compute a linear sum of
the set D

dlin
p2s (p, D) = dp2p (p, Dα) = dp2p

 
p,

nX
i=1

αidi

!
(3)

where αi are the elements of the coefficient, and each di ∈ R
m

is a point in the set D. This method allows for a weighted
combination of distances, making it applicable even when the
distribution of D is complex or non-Gaussian. To obtain the
optimal value of α, Zhu et al. [35] proposed using least-squares
regression and ridge regression to solve the minimization

problem α̂ = arg minα d(p, Dα). However, this solution has
the following issues.

1) The entire set D is employed concurrently for matrix
operations. The computational complexity associated
with these operations will increase exponentially with
the size of D.

2) If the set D is singular or ill-conditioned, the desired
solution for α̂ cannot be obtained using the normal
equation.

B. Metric Learning

Metric learning is a subfield of machine learning focused
on developing algorithms to learn distance metrics directly
from data. These learned metrics are tailored to specific tasks,
enabling more accurate and effective distance measurements
compared to predefined metrics like the Euclidean distance.
The fundamental goal in point-to-point distance metric learn-
ing is to learn a distance function dp2p(p, q) that quantifies the
similarity or dissimilarity between data points p and q.

Linear metric learning methods involve learning a linear
transformation of the input space to optimize a specific dis-
tance metric. A common approach in linear metric learning is
Mahalanobis distance learning [36], which involves learning
a positive semidefinite matrix M that defines the distance
between two data points p and q as follows:

dM
p2p (p, q) =

q
(p − q)> M (p − q). (4)

While effective for many tasks, these linear methods may be
inadequate when dealing with complex, high-dimensional data.

Nonlinear metric learning methods extend linear approaches
by introducing nonlinear transformations, which can be
achieved through kernel methods or, more powerfully, deep
learning techniques. Utilizing deep neural networks to learn
a distance metric leads to the field of deep metric learning
(DML) [37]. Here, a neural network fθ, parameterized by θ,
maps input data points to feature representations in a learned
feature space. The distance metric in this feature space is
typically represented as

dDML
p2p (p, q) = dp2p ( fθ (p) , fθ (q)) . (5)

DML aims to learn representations of data such that similar
data points are closer together in the learned feature space,
while dissimilar points are farther apart. This is achieved by
training the parameter θ to optimize the distance metric using
specialized loss functions, such as contrastive loss and triplet
loss. These loss functions and training methods enable DML
to create highly discriminative and task-specific feature spaces
through the trained neural network.

IV. PROPOSED METHOD

Problem Formulation: Fault data collected from various
machinery conditions exhibit significant distribution differ-
ences, making it inappropriate to treat these data as originating
from a single distribution. Consequently, N labeled source
domains {Si}

N
i=1 are considered, where each source domain

Si =
n�

x j
i , y

j
i

�oni

j=1
consists of ni sample pairs. In this context,
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x j
i denotes the jth data sample in the ith source domain, and y j

i
represents the corresponding label. The data in Si are sampled
from the distribution Psi . The target domain T = {x j

t }
nt
j=1

consists of nt unlabeled samples, which are drawn from the
distribution Pt. It is assumed that the input feature space and
label space are shared across all domains. However, the feature
distributions of Psi and Pt may differ due to domain shift, i.e.,
Psi , Ps j , Pt for any i, j ∈ {1, 2, . . . ,N}, i , j. The objective
is to utilize {Si}

N
i=1 and T to train a target model θT capable

of accurately predicting the corresponding label for a given
sample x ∼ Pt.

Overall Framework: The proposed model, termed PSM-
MoE, is designed for the problem of MUDA in the context
of IFD. The architecture of PSMMoE is illustrated in Fig. 2.
Structurally, the model consists of three main components:
a deep convolutional shared feature extractor Gs, an MoE
specific feature extractor Gp, and a single classifier C. Within
the MoE feature extractor, the gating mechanism employs
multiple adaptive coefficient vectors {Vi}

N
i=1, which facilitates

the extraction of salient information from each source domain.
Additionally, a transformation network φ is optimized using
both positive and negative sample pairs to learn the opti-
mal PSD metric. Each expert in the MoE is dedicated to
learn specialized features for distinct source domains, and
their outputs are integrated using the learned PSD metric.
To address the challenge of domain adaptation, the model
leverages the multilayer MMD criterion, which enhances the
alignment between the source and target domains.

A. Deep Point-to-Set Metric Learning

In the context of MUDA, two critical challenges should
be addressed: the integration of outputs from multiple source
domains and the alignment between source and target domains.
In the proposed method, the PSD metric serves as a measure of
transferability, adaptively combining the output features from
N source domains to ensure effective integration.

Given a point x and a source domain S ∈ Rm×n comprising n
samples, the PSD is defined considering the linear combination
method in (3). In response to the existing issues in the method
by Zhu et al. [35], a trainable coefficient matrix V ∈ Rn′×m is
introduced to collaborate with x and replace α, where n′ is
substantially smaller than n (n′ � n). Furthermore, to rectify
the assumption in the linear distance metrics that features
maintain a linear relationship with the distance measures, a
nonlinear transformation is implemented via a transformation
network φ. The PSD formulation now considers a subset S ′,
where S ′ ⊆ S and S ′ ∈ Rm×n′ . It is characterized by the
squared Euclidean distance as follows:

d
�
x,S ′

�
=


φ (x) − φ

�
S ′Vx

�

2
2 . (6)

This formulation extends the point-to-point distance metric
from (5) into the PSD context. Consequently, d(x,S ′) not only
enhances computational efficiency by avoiding the need to
consider all samples in S, but also adeptly captures the inher-
ent nonlinearity of the dataset. However, fully optimizing this
PSD metric necessitates addressing two primary challenges:
determining the optimal configuration of V that captures

the most salient features of S effectively and refining the
transformation network φ to ensure accurate transformation
of the input data into the desired feature space.

The coefficient matrix V fulfills two crucial roles: first, it
projects the input x onto a subspace delineated by the most
salient features of S, and second, it quantifies the significance
or contribution of each feature within this new subspace.
By reducing the dimensionality of a dataset while retaining
as much information as possible, optimizing V can be akin
to conducting a form of principal component analysis. The
objective function for optimizing V is proposed as follows:

J (V) =


x − S ′Vx



2
2 + β ‖V‖22 (7)

where β represents the parameter controlling the regular-
ization term. The L2-norm regularization term, ‖V‖22, not
only penalizes the magnitude of the coefficients to balance
the model’s complexity, but also ensures that the objective
function remains convex, thereby simplifying the optimization
process.

To minimize this objective function, the gradient of J(V)
with respect to V can be derived as follows:

∇V J (V) = 2S ′>S ′V − 2S ′>x + 2βV. (8)

Given that the objective function J(V) with respect to V is
convex, the optimal V̂ can theoretically be determined by
setting ∇V J(V) = 0, where V̂ = (S ′>S ′+βI)−1S ′>x. However,
given the challenges in fully capturing all characteristics of S
with a considerably smaller subset S ′, it is proposed to employ
a gradient descent method for gradually leveraging data from
the entire S. This approach iteratively updates V using mini-
batches of S until V̂ is optimally determined. In this context,
n′ can be set as the size of each mini-batch.

The objective of deep PSD metric learning is to leverage an
optimal V̂ to train a transformation network φ that effectively
quantifies the similarity between a sample x and a source
domain S ′. Utilizing the mapping function φ(·) facilitates
nonlinear transformations and restructures features within a
new space. The distance metric, modified from (6), is defined
as follows:

d
�
x,S ′

�
=






φ (x) − φ
�
S ′V̂x

�
dmax







2

2

. (9)

This formulation employs the predefined normalization factor
dmax, bounding the distance metric d(x,S ′) within a range
from 0 to 1. This normalization ensures that the PSD metric
is comparable across different samples and source domains.
Moreover, it avoids the metric becoming overly large or small
due to variations in the scale of φ(·).

The transformation network φ plays a pivotal role in the
computation of d(x,S). For each sample x and a subset S ′i ⊆
Si, an effective φ should minimize the PSD between x and S ′i
when x ∈ Psi , while enlarging it when x < Psi . To facilitate the
training of φ, both positive and negative pairings are generated

D+ =
˚�

x,S ′i
� ˇ̌

x ∈ Si, i ∈ [N]
	

D− =

��
x,S ′k

� ˇ̌̌̌
x ∈ Si, k = arg min

j,i
d
�
x,S ′j

�
, i, j ∈ [N]

�
. (10)
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Here, [N] denotes the set {1, 2, . . . ,N}. Each positive pair
(x,S ′i ) is constructed using x and a subset of its respective
source Si, while negative pairs (x,S ′k) are identified by deter-
mining the minimal PSD distances d(x,S ′j) for j , i, indicating
the closest incorrect source domain. This selection process
is applied across all samples and source domains, forming
a collection of positive and negative pairs, denoted as D+ and
D−, which accurately reflect the similarities and differences
between the samples and source domains.

The training of parameters within φ utilizes a contrastive
loss function designed to minimize the PSD metric for positive
pairs in D+ and maximize it for negative pairs in D−. Fig. 3
demonstrates the contrastive learning process for PSD metric
optimization. The deep PSD metric learning loss is formulated
as

Lpsd =
X

(x,S)∈D+

d (x,S) +
X

(x,S)∈D−

max (0, 1 − d (x,S))

+
X

(x,S)∈D−

max (0, d (x,S) − 1) . (11)

Given that the distance metric d(x,S) is normalized, the
second and third terms of the loss employ a dual strategy to
ensure that d(x,S) remains close to 1 for negative pairs. Con-
sequently, setting dmax to an appropriately estimated value will
enable the loss function Lpsd to adaptively constrain d(x,S) to
dmax. Through iterative optimization of the contrastive loss, φ
is refined to capture and discriminate the relationships between
samples and their respective source domains.

B. Mixture of Experts

Considering an input sample from the target domain x ∈ T ,
x is first processed through a deep convolutional shared feature
extractor, denoted by z = Gs(x). The primary function of this
extractor is to map the input sample into a feature space that
captures general information useful across all source domains.
Following this, domain-specific features are derived through
the MoE feature extractor, which is expressed as

Gp (z) =

NX
i=1

w (z,Si) · Gpi (z) (12)

where Gpi (z) corresponds to the output features produced by
the ith domain-specific extractor (or expert). The weighting
function w(x,Si) serves as a confidence metric to assess the
importance of domain Si for the input x. The weights are
computed using softmax normalization, leveraging a pretrained
PSD metric to evaluate the transferability of each source
domain with respect to z, as shown in the following:

w (z,Si) =
exp (1 − d (z,Gs (Si)))PN

j=1 exp
�
1 − d

�
z,Gs

�
S j
��� . (13)

A lower PSD value d(z,Si) indicates a higher similarity
between the sample z and the source domain Si. Consequently,
1 − d(z,Si) inversely scales the distance, making it a direct
indicator of transferability. This transformation ensures that
domains with greater relevance (lower distances) are assigned
exponentially higher weights, aligning with the objective of
giving more importance to more relevant domains.

For training the MoE feature extractor with source domains,
two distinct loss functions are employed: the multitask learn-
ing loss and the joint training loss. The multitask learning loss,
aimed at optimizing each expert model independently for its
respective domain data, is defined as

Lmtl = −
1
N

NX
i=1

1
ni

niX
j=1

log C
�

y j
i

ˇ̌̌
Gpi

�
Gs

�
x j

i

���
. (14)

This loss promotes the independent training of each expert
model, enhancing specialization and diversity within the MoE
framework.

Conversely, the joint training loss seeks to optimize all
expert models collaboratively, using the combined outputs
from the ensemble

Ljoint = −
1
N

NX
i=1

1
ni

niX
j=1

log C
�

y j
i

ˇ̌̌
Gp

�
Gs

�
x j

i

���
. (15)

This loss ensures that all experts work together harmoniously,
aligning with the outputs of the gating mechanism. The dual
loss strategy balances the need for expert specialization and
collaborative performance, making the MoE module robust
and effective for domain-specific feature extraction.

C. Domain Alignment

In the context of MUDA, the integration of outputs from
multiple source domains is addressed through the PSD metric-
gated MoE. The other significant challenge in this context
is the alignment of features between the source and target
domains. If discrepancies are not addressed in the initial
stages, they may propagate and potentially become amplified
in the deeper layers of the network. Consequently, the initial
step involves the alignment of the input features of the MoE
module (the domain-shared features), formulated as

Lmmd-s =
1
N

NX
i=1

D2 (Gs (Si) ,Gs (T )) (16)

where

D2(X ,Y) =
1
n2

nX
j=1

nX
k=1

k(x j, xk) +
1

m2

mX
j=1

mX
k=1

k(y j, yk)

−
2

nm

nX
j=1

mX
m=1

k(x j, yk)

represents the MMD between two sets of samples, X = {x j}
n
j=1

and Y = {y j}
m
j=1, in a reproducing kernel Hilbert space

(RKHS). k(·, ·) is a positive-definite kernel function, with the
Gaussian kernel being utilized here.

The feature extractor Gs typically learns low-level, generic
features that are universally applicable and less specific to any
particular domain. However, aligning these features might not
fully address the more complex and domain-specific variations
present in higher level features. To tackle this issue, the con-
cept of multilayer MMD is introduced, which simultaneously
aligns low-level and high-level features across domains. To
mitigate the impact of discrepancies in high-level features on
final predictions, MMD is also applied to the outputs of the
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MoE feature extractor. For the ensemble output of the MoE
module, the discrepancy in the weighting metric w between
source- and target-domain samples is inevitable. Therefore,
it is proposed to align the output features of each expert
individually

Lmmd-p =
1
N

NX
i=1

D2 �Gpi (Gs (Si)) ,Gpi (Gs (T ))
�
. (17)

The comprehensive MMD loss is then formulated by com-
bining these two terms

Lmmd = Lmmd-s + Lmmd-p. (18)

Through the optimization of this composite loss function, both
the domain-shared and domain-specific features are aligned
within the framework of the MoE module.

D. Optimization and Fault Diagnosis

The training of the PSMMoE model utilizes a composite
loss function that consists of four distinct components: the
PSD metric learning loss Lpsd, the MoE multitask learning
loss Lmtl, the MoE joint training loss Ljoint, and the MMD
loss Lmmd. This combined loss function is formulated as

L = λLjoint + (1 − λ)Lmtl + λLmmd + Lpsd (19)

where λ > 0 modulates the balance among these terms.
Notably, the training of the PSD metric learning occurs
simultaneously with that of the backbone network, yet their
parameters are independent. Therefore, there is no need for a
distinct balancing factor for the Lpsd component.

The adjustment of λ during the training process is described
by

λ =
2

1 + exp (−ζp)
− 1 (20)

where p increases gradually from 0 to 1 throughout the training
period, and ζ is a parameter that determines the rate of this
increase. Initially, λ is near zero and progressively converges
toward one as training progresses. This dynamic adjustment
of λ serves two primary functions.

1) Initially, when the PSD metric is underdeveloped, the
MoE ensemble output may not be fully effective. During
this phase, the loss function primarily emphasizes the
individual losses of each expert, optimizing them for
their respective source domains. As training progresses,
the emphasis shifts toward the joint loss of the ensem-
ble output, thereby optimizing the expert networks to
cooperate with the gating mechanism output.

2) In the early stages of training, minimizing the MMD
loss is less effective due to the lack of meaningful or
representative characteristics from the feature extractors.
The early focus is on enhancing the feature discrim-
inability for classification tasks. As training advances,
the parameter adjustment for Lmmd increases, indicating
a shift in focus toward enhancing feature transferability
and thus improving generalization to the target domain.

Algorithm 1 outlines the pseudocode for the optimization
algorithm based on gradient descent. Algorithm 2 describes the
practical application of the trained model for fault diagnosis
upon receiving a new fault signal.

Algorithm 1 Training PSMMoE
Input: Labeled source domains {Si}

N
i=1, unlabeled target

domain T , learning rate η, hyperparameters ζ, β and dmax.
Output: Trained shared feature extractor Gs, MoE specific

feature extractor Gp, transformation layer φ, classifier C,
and vectors {Vi}

N
i=1.

1: Initialize the coefficient vectors {Vi}
N
i=1 as I.

2: repeat
3: Sample N mini-batches {(X s

i ,Y s
i )}Ni=1 from each source

domain.
4: Sample a mini-batch X t from the target domain T .
5: Extract domain-shared features {Z s

i }
N
i=1 ← Z s

i = Gs(X s
i ).

6: for each source domain i = 1 to N do
7: Calculate the gradient ∇Vi J(Vi)← Eq. (8).
8: Update coefficient vector Vi = Vi − η∇Vi J(Vi).
9: Compute PSD {d(Z s

i ,Gs(S j))}Nj=1 ← Eq. (9).
10: Determine transferability metric {w(Z s

i ,S j)}Nj=1 ← Eq.
(13).

11: end for
12: Formulate positive and negative sets D+ and D− ← Eq.

(10).
13: Compute Lpsd using D+ and D− ← Eq. (11).
14: Compute Lmtl with {(X s

i ,Y s
i )}Ni=1 ← Eq. (14).

15: Calculate Ljoint with {(X s
i ,Y s

i )}Ni=1 and w← Eq. (15).
16: Compute Lmmd with {X s

i }
N
i=1 and X t ← Eq. (18).

17: Update trade-off parameter λ← Eq. (20).
18: Determine the combined loss L← Eq. (19).
19: Update parameters of Gs, Gp, φ and C with gradients of
L.

20: until converge.
21: return Gs, Gp, φ, C, and {Vi}

N
i=1.

Algorithm 2 Fault Diagnosis With Trained PSMMoE
Input: Trained Gs, Gp, φ, C and {Vi}

N
i=1, input signal x ∼ Pt, the

mean µ and standard deviation σ of T , source embeddings
{S ′i }Ni=1, hyperparameters β and dmax.

Output: Fault diagnosis result.
1: Normalize the input signal x̂← x̂ =

x−µ
σ

.
2: Extract domain-shared features z← z = Gs(x̂).
3: for each source domain i = 1 to N do
4: Compute PSD d(z,Gs(S ′i ))← Eq. (9).
5: Determine transferability w(z,S ′i )← Eq. (13).
6: Extract domain-specific feature z′i ← z′i = Gpi (z).
7: end for
8: Aggregate {z′i}

N
i=1 to form the ensemble feature ẑ ← Eq.

(12).
9: Obtain the fault prediction ŷ← C(ẑ).

10: return ŷ.

V. EXPERIMENTS

To assess the efficacy of the proposed PSMMoE, com-
prehensive experiments are conducted using both publicly
available and laboratory-collected datasets, derived from
diverse operational conditions. The performance of the
PSMMoE is benchmarked against several leading methods
under identical training configurations to ensure a fair and
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TABLE I
CONDITION INFORMATION OF CWRU

TABLE II
CONDITION INFORMATION OF MFPT

rigorous comparison. Additionally, subsequent experiments are
designed to specifically investigate and analyze the perfor-
mance contributions of the PSD metric component, multitask
learning, and joint training within the PSMMoE framework.

A. Data Description

1) CWRU Dataset: The CWRU dataset originates from
Case Western Reserve University [38]. Defects are inten-
tionally introduced into bearings through electrical discharge
machining at a single point. Vibration data are collected using
an accelerometer at a sampling rate of 48000 samples/s.
The dataset includes recordings from four motor loads: 0,
1, 2, and 3 horsepower (hp), corresponding to 1797, 1772,
1750, and 1730 revolutions per minute (r/min), respectively. It
categorizes bearing faults into inner ring faults (IF), outer ring
faults (OF), and rolling element faults (RF), each presented in
three fault sizes: 7, 14, and 21 mil. This configuration results
in nine distinct fault classes under each working condition,
such as 7-mil IF, 14-mil IF, and 7-mil OF. Data segmentation
is performed using a sliding window with a length of 1024
samples. The condition information is summarized in Table I.

2) Mfpt Dataset: The MFPT dataset is provided by the
Society for Machinery Failure Prevention Technology [39].
It features NICE bearings under normal and fault conditions,
with vibration data captured for three operational states: nor-
mal, OF, and IF. The dataset is recorded under varying loads at
the sampling frequencies of 97.656 kHz for normal conditions
and 48.828 kHz for fault conditions. Each condition is divided
into segments of 1024 samples for experiments. Despite identi-
cal load for the normal state across all conditions, the vibration
data are derived from different bearings. The organization of
these conditions is detailed in Table II.

3) FB Dataset: The faulty bearing (FB) laboratory dataset
is collected using the experimental bench shown in Fig. 4. The
setup includes a two-stage planetary gearbox with a 27:1 gear
ratio, featuring four planets in stage 1 and three in stage 2, and
a two-stage parallel shaft gearbox. The parallel shaft gearbox
contains three in-line parallel shafts configurable as single- or

Fig. 2. Illustration of PSD metrics. (a) Minimum distance (red double
arrow) and Mahalanobis distance (with purple dashed lines indicating different
distance levels). Query points p1 and p2 have equal Mahalanobis distances, as
they reside on the same distance level. (b) Linear combination distance (red
double arrow). The distance can be the residual vector when p is projected
onto the linear subspace defined by the columns of D. Better viewed in color.

TABLE III
LABEL INFORMATION OF FB

two-stage reduction/increaser, with six rolling element bear-
ings. The setup is driven by a 3-hp variable frequency ac motor
with a multifeatured front panel programmable controller,
powered by a 220-VAC one-phase supply. Vibration signals
are recorded at a frequency of 12.8 kHz under three distinct
conditions: 1) a 0.2-A load with a constant speed of 30
revolutions per second (r/s); 2) a 0.5-A load at 30 r/s; and
3) a 0.5-A load with a variable speed ranging from 0 to 30 r/s.
Faults are induced at four points on either bearings or gears,
resulting in eight specific fault types for each condition. The
data are sampled using a length of 1024, with label information
and sample counts detailed in Table III.

B. Experimental Settings

1) Compared Methods: To assess the performance of the
proposed model, PSMMoE is compared with several leading
SUDA and MUDA methods.

1) Convolutional Neural Network: This baseline approach
utilizes the convolutional neural network (CNN) without
incorporating any adaptation techniques. It is trained on
the source domain and evaluated directly on the target
domain.

2) DCTLN [40]: This SUDA approach incorporates a
condition recognition module for fault classification
and employs a domain adaptation module based on
MMD.
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Fig. 3. Proposed architecture of PSMMoE.

Fig. 4. Bearing and gear testing bench for the FB dataset.

3) DATN [41]: This SUDA method features dual asymmet-
ric encoder networks for feature extraction and a domain
alignment module leveraging DANN.

4) ACDANN [42]: An improved iteration of DANN, this
SUDA method enhances domain alignment by utilizing
both the feature outputs from the generator and the
predictive insights from the classifier.

5) ADACL [19]: This MUDA strategy uses adversarial
learning and incorporates domain classifier alignment to
manage discrepancies among multiple classifiers.

6) MSSA [18]: This MUDA method utilizes a multi-
branch network for feature extraction, employs local
MMD for distribution alignment, and calculates a
weighted score computed from MMD for prediction
combination.

TABLE IV

IMPLEMENTATION DETAILS OF EXPERIMENTS

7) MFSAN [43]: This MMD-based MUDA method aligns
not only the source- and target-domain distributions, but
also predictions across multiple classifiers.

8) MANMoE [44]: This adversarial learning-based MUDA
method employs domain-invariant and domain-specific
features extracted by MoE networks, with the MoE
output features integrated by a multilayer perceptron
(MLP) gating network.

Methods 2–6 were originally developed for IFD, Method 7
was evaluated on image datasets, and Method 8 was designed
for NMT. Here, both Methods 7 and 8 are adapted for
application in IFD.

2) Implementation Details: To facilitate a fair compari-
son across all methods, including the proposed model, the
network architectures and hyperparameters are standardized.
A multiscale convolutional network serves as the backbone
for all methods. This architecture integrates five CNNs,
each with varying kernel sizes of 4, 8, 16, 24, and 32, to
effectively capture diverse signal features at different scales.
Additionally, an MLP is employed as the classifier for these
methods. Stochastic gradient descent (SGD) is utilized as the
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TABLE V

CASES OF EXPERIMENTS

optimization technique for training. Detailed settings of the
parameters are enumerated in Table IV.

The datasets used in this experiment include CWRU, MFPT,
and FB, which are segmented into nine multisource transfer
scenarios, as detailed in Table V. Given that Methods 2–4
are inherently designed for single-source applications, they are
adapted for multisource scenarios through a source-combined
standard. For this standard, all source domains are integrated
into a single composite source for the purpose of SUDA
training. During training, models have access to the complete
set of signals and labels from the source domains but are
limited to a specific subset of the target-domain signals. The
remaining segments of the target domain are reserved for
testing. In the experimental setup, 80% of the target-domain
samples are randomly selected for training, and the residual
20% are reserved for testing purposes.

C. Fault Classification Performance

Table VI details the fault diagnosis results across nine cases,
with outcomes reported as the mean ± variance of accuracies
over five trials. From these results, several critical conclusions
can be drawn.

1) Methods incorporating UDA techniques consistently
outperform those without UDA, thereby effectively miti-
gating domain-shift issues. Methods 2–8, along with the
proposed method, consistently achieve higher accuracy
compared to the CNN across all cases, underscoring the
benefits of integrating UDA strategies.

2) The homogeneity of the source-domain distribution
plays a crucial role in the effectiveness of SUDA
methods. Combining source domains with diverse distri-
butions often results in minimal improvements or even
a reduction in accuracy compared to the best single-
source transfer. For instance, ACDANN achieves a peak
accuracy of 99.48% in single-source transfer at C6, but
its performance drops to 90.95% when trained with com-
bined sources. This discrepancy underscores the need for
enhanced MUDA to address these shortcomings.

3) Some existing MUDA techniques struggle to effec-
tively fuse information from multiple source domains,
sometimes resulting in accuracies that do not sur-
pass those of SUDA methods. This issue highlights
a common challenge: many MUDA methods, despite
employing specialized feature extractors or classifiers for

multisource scenarios, still fall short in efficiently syn-
thesizing outputs from various sources. Methods based
on MoE, such as MANMoE and the proposed model,
demonstrate distinct advantages, particularly in scenarios
like C1, C2, and C3, where the number of source domains
is more.

4) The proposed method exhibits outstanding multisource
transfer capabilities. PSMMoE generally achieves the
highest accuracies in comparison with other SUDA
and MUDA approaches, with the exception of a slight
underperformance in C4 and C5. Remarkably, in C9,
PSMMoE surpasses other methods by at least 2.78%.

Fig. 5 employs t-SNE for feature visualization, illustrating
the features input to the classifier from both source and
target domains after dimensionality reduction in condition C1.
For clarity, 100 random samples from each fault status are
selected for visualization. Fig. 5(a)–(c) delineate s the top
three comparison methods (excluding the proposed method)
that demonstrate the highest accuracy under source-combined
or multisource standards. Fig. 5(d)–(f) present s the feature
distributions from individual experts within PSMMoE for their
respective source domains. Fig. 5(g) displays the integrated
feature distribution achieved by PSMMoE. The analysis yields
the following insights.

1) Comparison of Fig. 5(a)–(c) with Fig. 5(g) demonstrates
PSMMoE’s superior feature extraction and domain
adaptation capabilities relative to other methods. The
second-best method, MANMoE, shows significant fea-
ture mixing (e.g., between RF-14 and IF-14) and
apparent disparities (especially for IF-14) in feature
distributions for the same fault across source and tar-
get domains. This suggests that while the accuracy
improvement might be modest, PSMMoE offers sub-
stantial benefits in terms of more pronounced feature
distributions.

2) Drawing comparisons of Fig. 5(d)–(f) with Fig. 5(g),
it illustrates that PSMMoE, which integrates insights
across all source domains, outperforms the individual
domain experts. Although the feature overlap by the S3
expert shows reasonable alignment, certain health states
(e.g., RF-07 and OF-07) demonstrate poor performance.
In contrast, PSMMoE’s fusion of source-domain fea-
tures adeptly aligns all health states, with only minor
mixing observed between IF-14 and IF-21.

3) Observations from Fig. 5(d)–(f) reveal that feature over-
lap tends to increase with the similarity of working
conditions. Specifically, S1 and the target domain T
exhibit the least overlap due to their contrasting condi-
tions. Conversely, the proximity of working conditions
between S3 and T facilitates more substantial feature
overlap.

D. Effect of Core Components

To empirically validate the efficacy of the PSD metric,
multitask learning, and joint training within the proposed
PSMMoE framework, a detailed comparative analysis is con-
ducted using a series of modified models.
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TABLE VI

CLASSIFICATION ACCURACY (%) FOR CASES

Fig. 5. Feature visualization. Identical colors indicate the same category, while identical shapes represent the same domain. In the legend, S represents the
source domain, and T denotes the target domain. (a) ACDANN. (b) ADACL. (c) MANMoE. (d) S1 expert. (e) S2 expert. (f) S3 expert. (g) PSMMoE.
(h) CNN. (i) Legend.

1) Sum Combination: This method directly aggregates the
outputs from multiple domain-specific feature extractors
to obtain the ensemble feature.

2) MMD Weights: Utilized within the MSSA framework,
this technique employs the MMD metric as a weighting

mechanism to gauge the similarity between target and
source domains during feature fusion.

3) MLP Gating: Predominantly applied in MoE networks,
this strategy utilizes an MLP as a gating network, akin
to the approach in the MANMoE framework.
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Fig. 6. w distributions across source domains for randomly selected 200 target samples. (a) PSMMoE. (b) MLP gating.

TABLE VII

ACCURACY (%) FOR CASES

4) PSD Meta-Training: A meta-learning-based PSD met-
ric learning strategy proposed for MoE networks, as
detailed in [45].

5) PSMMoE w/o Lmtl or Ljoint: The PSMMoE framework
excludes either the multitask learning loss (Lmtl) or the
joint training loss (Ljoint).

For this experiment, six cases are chosen: three with class-
balanced data (C1–C3) and three with class-imbalanced data
(C7–C9), to assess the core components of the proposed
method. The experimental outcomes, as shown in Table VII,
consistently demonstrate that PSMMoE surpasses other fusion
methods and ablated models in accuracy across all cases.
These findings confirm that the PSD metric learning strategy
effectively promotes the MoE-based networks. Moreover, the
collaborative effect of the multitask learning and joint train-
ing losses markedly enhances the functionality of the MoE
extractor. Notably, the exclusion of Ljoint leads to a more pro-
nounced performance drop than removing Lmtl, underscoring
the importance of optimizing the classification capabilities of
the MoE networks in conjunction with the gating mechanisms.

Fig. 6 illustrates the distributions of the transferability factor
w across source domains for selected samples in experiments
of C1–C3. For the proposed model, the heatmap depicted in
Fig. 6(a) underscores that different target samples benefit from
distinct combinations of source-domain insights. Typically,
the distribution of w exhibits a preference for certain source
domains, indicating that the model assigns greater importance
to domains that are more informative for the specific target
sample. In contrast, the MLP gating method, as shown in
Fig. 6(b), displays an extreme bias, indicating that it inclines
to select the most informative domain instead of integrating
insights from all source domains. However, the proposed

Fig. 7. Classification accuracy of the gating mechanisms. (a) C1. (b) C4.

deep PSD metric learning strategy adeptly combines insights
from a variety of domains, thereby emphasizing its advanced
capability to leverage a holistic domain knowledge.

Fig. 7 provides a detailed depiction of the classifica-
tion accuracy of identifying the source domain from which
domain-shared features of a sample are derived. This analysis
highlights several key findings.

1) PSD-based gating mechanisms demonstrate faster con-
vergence and superior accuracy compared to the com-
monly used MLP gating mechanisms. This observation
underscores the effectiveness and potential for the devel-
opment of PSD-based strategies within this application.

2) The advanced PSD metric learning method manifests
its strengths early in the training process. Remarkably, it
achieves a classification accuracy of nearly 100% within
just a few epochs.

3) An interesting observation emerges when integrating
insights from both Figs. 6(a) and 7. Despite achieving
exceptional classification accuracy for source-domain
samples, the gating mechanism maintains balanced PSD
outputs for target-domain samples. This ensures that
the PSD across different source domains is distinct yet
not excessively different, facilitating a balanced and
comprehensive consideration of source knowledge.

E. Parameter Sensitivity

This section delves into the sensitivity of the hyperparameter
ζ and its influence on the model’s performance through
modulation of the loss function behavior. Fig. 8 delineates the
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Fig. 8. Influence of hyperparameter ζ. (a) Fault classification accuracy with
different ζ. (b) Values of λ over successive training epochs.

fault classification accuracy for selected cases (C1, C4, and C7)
as a function of varying ζ values, alongside the evolution of
λ during training under different ζ settings. Analysis of these
observations reveals the following.

1) The rate of increase in λ, which is critical for controlling
the balance between different loss terms, is significantly
affected by ζ. A smaller ζ results in a gradual increase of
λ, sometimes failing to reach 1.0 even by the training’s
end. This slow pace can impede adequate learning of
domain alignment and MoE joint training, negatively
impacting the overall training effectiveness. Conversely,
an excessively high ζ causes λ to rise too quickly,
potentially reaching 1.0 too early. This rapid escalation
can hamper the early phase of MoE multitask learning
and may cause domain alignment to excessively influ-
ence the model before its classification capabilities are
fully developed. Optimal tuning of ζ is crucial as both
extremities can detrimentally affect model performance.

2) Further insights are drawn by comparing Fig. 8(b) with
Fig. 7, which shows a clear link between the progression
of λ and the accuracy trajectory of the PSD gating
mechanism. Notably, during the initial training epochs,
the PSD metric is in its learning stages. It is only after
approximately five epochs, when the accuracy of the
PSD gating mechanism has sufficiently improved that
the joint output of the MoE network becomes reliable.
This pivotal observation validates the strategic selection
of λ, which is carefully designed to ensure that both
the MoE multitask learning and joint training losses are
optimized to contribute effectively to the total loss, thus
enhancing the robustness of the training process.

VI. CONCLUSION

In this article, a novel model termed PSMMoE is intro-
duced, specifically designed for MUDA cross-domain fault
diagnosis. The model is characterized by several innovative
contributions.

1) A deep PSD metric learning method is proposed within
the gating mechanism of the MoE architecture. This
method adaptively and effectively integrates domain-
specific features based on their transferability for each
individual target sample.

2) The model incorporates multitask learning and joint
training techniques to collaboratively train the MoE

module, which strikes a balance between expert special-
ization and the optimization of ensemble output.

3) A multilayer MMD is tailored to address complex
domain shifts, ensuring alignment of both domain-
shared and domain-specific features. Extensive experi-
ments conducted on publicly available and laboratory
datasets for IFD demonstrate that PSMMoE consistently
outperforms several leading SUDA and MUDA meth-
ods.

For the advantages, the PSMMoE model adeptly integrates
complementary information from multiple source domains,
thus enhancing diagnostic accuracy across varied operating
environments. This model develops key components that
offer valuable insights for addressing diagnostic challenges
in MUDA scenarios. However, the simultaneous optimization
of the PSD metric with the overall network demands more
computational resources and introduces complexity in training.
These are potential drawbacks that need to be addressed in
future developments to enhance the model’s applicability in
industrial applications.
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