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Abstract—This article presents a new adaptive metric
distillation approach that can significantly improve the student
networks’ backbone features, along with better classification
results. Previous knowledge distillation (KD) methods usually
focus on transferring the knowledge across the classifier logits
or feature structure, ignoring the excessive sample relations in
the feature space. We demonstrated that such a design greatly
limits performance, especially for the retrieval task. The proposed
collaborative adaptive metric distillation (CAMD) has three
main advantages: 1) the optimization focuses on optimizing the
relationship between key pairs by introducing the hard mining
strategy into the distillation framework; 2) it provides an adaptive
metric distillation that can explicitly optimize the student feature
embeddings by applying the relation in the teacher embeddings as
supervision; and 3) it employs a collaborative scheme for effective
knowledge aggregation. Extensive experiments demonstrated that
our approach sets a new state-of-the-art in both the classification
and retrieval tasks, outperforming other cutting-edge distillers
under various settings.

Index Terms— Collaborative learning, deep neural networks,
knowledge distillation (KD), model compression.

I. INTRODUCTION

URING the last few years, deep convolution neural

networks (CNNs) have achieved many successes in a
variety of applications such as computer vision, natural lan-
guage processing, and reinforcement learning. Although large-
scale deep models have achieved overwhelming successes,
they often require considerable computational and memory
consumption, making it a huge challenge to deploy them
on mobile devices with limited resources. There are many
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efficient deep neural networks training techniques including
designing efficient building blocks for deep models [21],
[25], [31], [49], network pruning [24], quantization [42], and
knowledge distillation (KD) [20], [30]. The focus of this article
is KD, which has become an increasingly essential topic as it
is applicable to almost all network architectures and can be
easily combined with other strategies.

KD transfers the learned knowledge from a teacher model to
a student model, that is, it aligns the classification prediction
distributions between the two models [20]. Compared with
the one-hot labels, student models have been shown to benefit
from the richer informative signals contained in the predicted
probability distribution. Various distillation variants [1], [22],
[30], [37], [48] have been developed to explore what
knowledge should be transferred. All of these methods focus
on improving the classification results of the student model,
but the similarity between feature embeddings is considered
first when the task is some variation of image retrieval, like
face verification [32] and person re-identification (Re-ID) [43].
Such open-set classification and image retrieval problems are
more challenging than the classification problem because they
require feature embeddings to preserve semantic similarity
between samples. Therefore, the performance of a distillation
method should be evaluated in both classification and retrieval
metrics. However, when using the student backbone features
for image retrieval, the results of previous methods are usually
not as satisfactory as their classification performance, the
gap between the retrieval results of the distilled student
network and the teacher network is much larger than that
of the classification results (see Tables I-III). In particular,
many methods perform poorly in the person Re-ID [2] task,
which requires high representation quality (see Table VIII).
To tackle this problem, this article explores an effective
distillation method, which can encourage the student network
to learn a well-clustered embedding space from the teacher
network and significantly enhance its backbone representations
quality.

We revisit KD from the metric learning perspective. Deep
metric learning aims to map the input data into an embedding
space [57], which fits our objective of training a network
with good representation quality. Some recent works also
make attempts from this aspect. Yu et al. [45] minimize the
absolute and relative distance between the teacher and the
student. RKD [27] defines the distance and angle relations and
distills the structure-wise knowledge into the student network.
These carefully designed implicit relations between sample
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Fig. 1. Illustration of the proposed adaptive metric distillation. The backbone
network of the teacher and the student is f(-) and f*(-), respectively. (a) KD:
classification logits. Conventional KD [20] focuses on aligning the logits.
(b) RKD: feature structure. Representative methods [11], [27], [38], [45] align
the feature structures in the representation space. (c¢) Ours: metric relation.
We revisit the KD with metric learning. The relation between the teacher
feature is a “template” for each triple input, formulating a metric relation
distillation manner. This “template” controls the optimization strength between
the student and the teacher’s feature distance. In (a) and (b), x, x—, and x+
can be any randomly selected samples. In (c) (our method), x is the teacher
anchor. x* is the hardest positive sample, and x~ is the hardest negative
sample.

representations are defined as knowledge, but they are not a
guarantee of high-quality student representations. Moreover,
their relation knowledge is limited to some randomly selected
samples instead of all possible sample combinations. The
randomly selected sample combinations are mostly simple and
cannot make too much contribution to the distillation. Even
if some key combinations are lucky enough to be selected,
the domination of easy combinations will overwhelm the
contribution of key combinations, which makes their methods
tend to be driven to local minima by easy samples [32].

In this work, we introduce an adaptive metric distillation
approach, namely collaborative adaptive metric distillation
(CAMD). As shown in Fig. 1, we use the student and
teacher networks to map data into the same representation
space, and the adaptive metric distillation part directly
optimizes the explicit distance between data representations
of teacher and student networks in the form of a triplet
loss [40]. To take full advantage of the metric relations
contained in each representation, we consider as many sample
combinations as possible instead of only using the randomly
selected samples for training. To overcome the computational

8267

consumption brought by the excessive sample combinations,
we propose a hard mining strategy [26] in the distillation
framework, which optimizes the key pairs based on the
distance between the teacher and student representations.
This not only takes all samples in a batch into account,
but also reduces the computational complexity and prevents
easy pairs from overwhelming hard pairs. Since hard triplets
tend to cause over-fitting in training [32], we reweight each
sample pair to highlight the less-optimized pairs by adaptively
assigning the weights to different samples according to the
teacher templates. In this way, the metric relations in the
teacher network can also be fully utilized, and a sample
pair will be emphasized if its distance deviates far from
the teacher template distance. Finally, we incorporate a
collaborative scheme to aggregate the knowledge in the
distillation submodules. Our CAMD not only enhances
the representation quality, but also improves the results on
the original KD classification task. Additionally, our method
can also distill knowledge from a Nasty Teacher [58], which
is a more challenging network that cannot be distilled by the
conventional distillation method. In summary, our work makes
the following major contributions.

1) We address a new distillation problem for representation
transfer, requiring good performance on both the classi-
fication and retrieval tasks, which more comprehensively
evaluates the performance of a distillation method.

2) We design an adaptive metric distillation approach.
It prevents excessive sample combinations through a
hard mining strategy and weights the optimization
strength by adaptively utilizing the teacher template
supervision.

3) We introduced collaborative learning into our framework
and verify that the knowledge diversity of the submodule
can improve the quality of representations.

4) We conduct extensive experiments on multiple datasets
and tasks. Our method achieved much higher accuracy
than existing distillers and can also distill knowledge
from undistillable nasty networks.

II. RELATED WORK
A. Knowledge Distillation

KD usually refers to the process of transferring the
knowledge learned in a large-scale teacher network to a
small-scale student model [6], [46]. The seminal work
of Bucilud et al. [4] compressed an ensemble of neural
networks into a single network by matching output logits.
To obtain useful information from the predicted probabilities,
Hinton et al. [20] introduced a temperature parameter
in the softmax outputs to amplify the impact of small
probabilities, which are referred to as “soft targets.” They
achieved knowledge transfer by aligning the teacher and the
student’s soft output predictions in the logit space. In addition
to transferring the knowledge of the last output layer,
intermediate representations were introduced in FitNets [30],
where auxiliary linear projection layers were used to extract
supervision from the teacher’s intermediate representation.
Recently, several important works have been proposed to
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Framework of the proposed CAMD with a two-branch structure: 1) Classification baseline follows a standard multiclass classification flow, and it

is kept for testing; 2) adaptive metric distillation optimizes the student features in the embedding metric space by distilling the knowledge from the teacher
features; and 3) collaborative module is integrated to transfer the knowledge into the classification baseline.

transfer attention maps [48], mutual information [1], [37],
probability distributions [28], and maximum mean discrep-
ancies [22] from the teacher to student networks. Some
methods attempted to distill the relationship between samples.
DarkRank [11] formalized distillation as a rank matching
between the student and teacher network. SP [38] achieved
knowledge transfer by aligning pairwise sample similarity
matrices of the teacher and the student. These methods all
implicitly distill the sample relations without fully utilizing the
representation supervision provided by the teacher features.

B. Metric Learning

Deep metric learning [14] plays an important role in many
computer vision applications, such as image retrieval [34],
clustering [19], and transfer learning [26]. There are two
fundamental approaches when learning from data with class-
level or pair-wise labels. The former includes a weight matrix
by transforming the embedding features of samples into
the class logits vectors. The latter usually operates on the
relationships between the embedding features of samples in
a batch to optimize their similarity, and it is a suitable choice
in many cases such as face verification [32] and person Re-
ID [18]. Contrastive loss [16] based on siamese architecture
and triplet loss [40] based on triplet networks are two
fundamental approaches to deep metric learning. Contrastive
loss makes the distance between positive pairs closer and the
distance between negative pairs larger than some threshold.
Triplet loss makes the anchor-positive distances smaller than
the anchor-negative distances by a predefined margin. Hard
negative mining [59] is widely used to alleviate the excessive
sample pairs in deep metric learning. This strategy only
focuses on the pairs with the highest loss, learns the most
from them, and enhances the training efficiency. In this

article, we revisit KD from the perspective of metric learning.
Our method can optimize the explicit distance between data
representations of the teacher and student networks so that the
student network can learn a well-clustered embedding space
from the teacher model with better performance.

C. Collaborative Learning

Online distillation methods simultaneously update both the
teacher and student models using multiple peer networks in
the training process [12], [55] and require a large amount of
memory [7]. DML [52] collaboratively transferred knowledge
across the peer networks. Anil et al. [3] extended this idea
to train distributed networks. Their co-distillation transferred
knowledge from the other models after enough burn-in steps.
Recently, some works [5], [35], [S1], [54] have applied a
multibranch structure, sharing the shallow blocks to reduce
the training cost. Song and Chai [35] promoted each branch’s
diversity by scaling the gradient according to the number of
branches. In contrast, Chen et al. [5] assembled the knowledge
from diverse auxiliary peers into a group leader in an attention-
based way.

III. PROPOSED APPROACH

Our CAMD distills the knowledge from the metric learning
perspective in a collaborative learning manner. We first
review the original KD and then present the adaptive metric
distillation, which distills and optimizes the student features
with hard mining and an adaptive weighting strategy. Besides,
we introduce a new collaborative learning scheme to transfer
knowledge in submodules, as shown in Fig. 2. In the inference
phase, only the baseline classification stream is kept for
testing, and our approach does not increase any inference
computation, which is more consistent with the distillation
target.
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A. Background

KD [20] is defined as transferring the generalizability
of a large pretrained teacher network 7 to a small
student network S. Taking the classification task as an
example, KD is achieved by treating the predicted class
probabilities of 7 as “soft targets” to train the student
network S. For a multiclassification problem with C classes,
denoting the student output logits for sample x; with label
y; as z¥ {201,205, ... 20 ¢}, the teacher output logits
as zi {zi152i25 -+ +»Zic)s the training objective of the
student network is then represented by

Lya = Ly + 1Lu

—Zlog(

where N is the batch size and is a temperature parameter to
soften the output of networks. z iy, Tepresents the prediction
output of sample x; being correctly classified as y;. Lp is
the standard softmax cross-entropy loss and represents the
classification baseline. Ly is the distillation loss, aligning the
soft labels by student network S against the predictions of
the teacher 7. 1 balances the importance of the distillation
part.

B. Adaptive Metric Distillation

In original KD [20], the teacher logits provide a richer
training signal than the one-hot labels, so the student network
can learn knowledge and get a performance improvement. The
teacher network has learned a well-clustered embedding space,
so can we distill knowledge by reinforcing students to learn
the embedding space of the teacher network? When we use the
teacher network and the student network to map samples into
the embedding space, respectively, the positive sample pairs of
the two networks should be close and the negative pairs should
be far apart if the distilled student network has learned this
clustering relation. Since the teacher network is well trained
and does not change during the distillation, our goal is to make
the student features close to the positive teacher features and
far from the negative teacher features.

For a teacher model 7 and a student model S, their
backbone networks are f'(-) and f*(-), respectively. The
annotation label for an image x; is y;. In general, the cum-
bersome teacher network has learned semantic relationships
between samples and has a well-clustered embedding space.
The goal is to pull the teacher feature f'(x;) and the student
feature f°(x;) closer while pushing the teacher feature f'(x;)
and the student feature f°(xy) apart, where y; = y; and
vi # yx. Note that i can be equal to j, which means that
the features are from the same image in both models. D(-)
is a function measuring the embedding distance. A larger D
indicates a lower similarity between two images. We use dl.’;
and d}, to represent D(f'(x;), f*(x;)) and D(f"(x;), f*(xx)),
respectively. The learning target is defined as

dp <dj) Vi, jk. (D)
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1) Online Hard Triplet Selection: After defining the
learning target, the way of selecting sample pairs needs to
be clarified. If f*(x;) and f*(x;) are selected randomly for
each f’(x;), this triplet is likely to be simple and cannot
contribute much to the distillation. However, considering
all possible combinations will generate excessive triplets
to be optimized. Generating and optimizing these triplets
is quite time-consuming. The sample selection strategy in
the distillation framework has not been explored. To solve
this, we propose an online batch hard triplet selection
strategy [18], [41] in the distillation framework. In every batch,
we calculate the cross-relation feature distance of every image
pair. Considering that teacher models are prelearned, we treat
the fixed teacher embeddings as the anchors for stable training.
For each f'(x;), we select the hardest student embeddings

P _ n __ : n
d; = dl = k:IlI}%F}Nn djy (2)

max d?’

b
j=l..,N, Y

where d’/d! represents the distance between the hardest
positive/negative samples and the anchor f'(x;). Let N, and
N, be the average number of positive and negative student
embeddings in the sampled batch for each anchor, and the
number of sample pairs to be optimized in a batch is reduced
from NN,N, to N.

2) Weighted Soft-Margin Triplet: Although hard mining
can significantly reduce the computational cost and focus on
optimizing key samples, it is sensitive to noisy data and will
lead to over-fitting in some cases [32]. Thus, we distill the
metric knowledge by a weighted soft-margin triplet loss [43]

Zlog +exp(y (afd! — a!'d!))] 3)

amd

where y is a scale factor. a/ and a are nonnegative

weighting factors. The softplus function log(1+exp(+)) is
a smooth approximation of the hinge function, which decays
exponentially, resulting in more stable convergence for large-
scale scenarios. The challenge of learning good features is how
to assign smaller weights to pairs that tend to be outliers and
cause over-fitting, and larger weights to difficult key pairs [61].
In circle loss [36], the weighting factors are predetermined
optimal similarity values and then each pair’s similarity is
weighted by its deviation from these values, but these values
are hyperparameters, making it sensitive to changing network
structures and tasks. Moreover, it seems impossible to denote
the best weights to different pairs with fixed hyperparameters.
So, can we define the weights in a parameter-free manner,
such that the distance between teacher and student features is
at least as good as the distance in teacher embedding space in
some cases such as outliers and difficult samples?

3) Teacher-Guided Adaptive Optimization: The well-trained
teacher network provides good guidance to adaptively set
the weighting factors in the distillation task. First, we find
the hardest positive and negative samples x; and x; from the
student feature in the batch for every f’(x;) and then define

al and a! by the template distances D(f'(x;), f'(x;)) and

1

D(f"(xi), f'(xx))
af = [df = D(f' (). /' (x;))],
al = [D(f’(xi), f’(xk)) — a’i"]+ 4)

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 13,2025 at 08:49:19 UTC from |IEEE Xplore. Restrictions apply.



8270

@ ® ®)
() fre)
) @
@
© () () JAen) °
Teacher Anchor fs(x;;) Teacher Anchor fs(x,;)

Hardest Negative Hardest Negative

® ()

Hardest Positive

@ £ ()

Hardest Positive

ACD) { ) '@

Teacher Anchor

/ Hardest Negative

o/ )

(C) Hardest Positive

Negative Margin

Fig. 3. Illustration of the teacher-guided adaptive optimization. (a) Procedure
of online triplet selection. (b) Find the corresponding teacher embeddings.
(c) Calculate weights and optimize toward their respective convergence status.
(d) Optimized results. The student embeddings (both positive and negative)
are optimized using the teacher as the target supervision.

where [-]+ = max(0,:). Our design of (4) has some
important properties: 1) each sample pair has a corresponding
weighting factor. When d/” > D(f"(x;), f'(x;)) or D(f'(x;),
f'(xx)) > d'. the teacher distances serve as criteria to
assign various gradient values to different d” and d!" during
optimization; 2) we utilize a “cut-off at zero” strategy to
stop the optimization process when the student network
outperforms the teacher network. This also stabilizes the
training process and results in better discriminability; and
3) instead of constantly making positive samples closer and
pushing negative samples farther away, d and d!' only need
to be better than the teacher’s template distance. This allows
the distillation progress to be robust to outliers and improves
its generalization ability. In addition, this operation promotes
the accurate convergence status of the student network [36].
Consider the case of binary classification, in which the
decision boundary is achieved at a’d] — a'd!" = 0, with (4),
the decision boundary is achieved as

2 2
D(f"(xi), f'(x;) D(f"(xi), f'(xk)
2 2

dj’ — +\ar - =R

in which R = (D(f'(x). f'(x)* + D(f* (o). £ (x0))?) /4,
the decision boundary is the arc of a circle. The center
of the circle is at d/ = D(f'(x;), f'(x;)/2,d" =
D(f"(x;), f'(xx)/2, and its radius is R. Each sample has
a unique decision boundary for the student network to
converge. Our method can be regarded as an extension of
circle loss [36] in the framework of KD, but compared
to circle loss, our proposed strategy avoids manually fine-
tuning the hyperparameters, and different samples have
their corresponding weights. Further analysis with extensive
experiments in Section IV-D demonstrates that our approach
consistently achieves much better results in a more elegant
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parameter-free way. The illustration of adaptive metric
distillation is shown in Fig. 3.

Algorithm 1 Adaptive Metric Distillation on Mini-Batch

1: Mini-Batch Settings: The batch size N;

2: Parameters: The scale factor y;

3: Input: X = {(x;, y;)}_,, the teacher and student backbone
network f' and f*, the embedding block f¢, the learning
rate f3;

4: Output: The Updated f* and f°;

5: Step 1: Feed all images {xi}f\’= , into f' to obtain the
teacher normalized features { f' (xi)}f\': \» then feedforward

all images to f° and f¢ in turn to get the normalized

embedding features { f*(f*(x))}Y;

. Step 2: Iterative loss calculation

6
7. for all f! e {f'(x;)}Y, do
8.
9

Get cross-relation distance with { f¢(f* (x,~))}f\’= B
Mine the hardest positive distance d! using Eq.(2);

10: Mine the hardest negative distance d';

11: Get the selected positive and negative indexes;

12: Calculate corresponding teacher template distance;
13: Calculate a and @' using Eq.(4);

14: Compute the metric distillation loss as Eq.(3);

15:  end for

16:  Compute L,, using Eq.(5);

17: Step 3: Gradient computation and back-propagation to
update the parameters of f* and f¢:

4) Distance Measure: Considering that the gradient’s
magnitude for each sample pair is inversely proportional to
the embedding norm, a feature embedding with different
norms will have varying gradients [50]. The variation is more
drastic because d] and d! are distances between the teacher
and student features. Moreover, embeddings with different
norms also make it extremely challenging to compute the
weighting factors ¢, and a!' uniformly. Therefore, we adopt
the normalized embedding to compute (3). We observe that the
training becomes stable when applying £>-normalization to the
features, and the overall accuracy is also greatly improved.
To measure the distance between two normalized embedding
features f(x;) and f(x;), we adopt the Euclidean distance,
which is the most commonly used distance in deep metric
learning [18], [32], [43], where d;; = D(f(x;), f(x;)) =
ILf(xi) — fx)la-

To tackle the network structure difference, an embedding
block e(-), which consists of a FC layer followed by BN
and ReLU, is added to encode f*(x). It can not only map
student backbone features into the teacher representation
space, but also bring in stronger generalizability for the
learned representation on the testing set because of the
nonlinear projection for feature embedding, as verified
in [10]. Experimentally, our method is not sensitive to
embedding transformations, and using an embedding block
with more layers does not further improve the results. We also
incorporate a classification layer to guide embedding learning.
Specifically, we represent this classifier output logits as

z;' = {1, 2}y, ..., 2j'c} for sample x;. The widely used
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softmax cross-entropy loss is adopted. With the adaptive
metric distillation loss, the overall loss for this branch is
represented as

c lexpzlc

Our adaptive metric distillation is illustrated in Algorithm 1.

Z log( Chy ) + Lamd- Q)

C. Collaborative Module

Although the above process can get a well-optimized
backbone network, in the classification baseline, the final FC
layer cannot be improved directly. Therefore, we introduce
a collaborative module to aggregate the knowledge of the
submodule into the baseline as

L= KL(Z?”,Z )
p(clzi's 7)
= T P T log . 6)
=35 entri e S

We align the logit distribution between the adaptive metric
distillation module and the classification baseline. This is
similar to the well-known KD [20], which aligns the logit
distribution between the student network and the teacher
network. However, applying the vanilla KD will introduce a
performance decline, especially in the retrieval results. We
speculate that during back-propagation, a poor classification
baseline affects the well-distilled submodules. To this end,
we added a stop-gradient operation. Experiments show that
this operation can effectively prevent performance degradation
and bring a slight improvement by revising (6) as

L, = KL(s topgrad(zﬁ"), zf’) 7
The overall loss for CAMD is as
Leavp = Ly + Ly + Le. (8)

During the evaluation, only the classification baseline is
kept. The extra structures introduced by adaptive metric
distillation will all be removed for a fair comparison with other
distillers, that is, our method does not increase any inference
computation.

1V. EXPERIMENTAL RESULTS
A. Image Classification and Retrieval

This section demonstrates that our CAMD consistently
outperforms state-of-the-art methods on both classification and
retrieval tasks, even achieving teacher-level performance.

1) Datasets and Experimental Settings: We evaluate our
approach on two classification datasets, including CIFAR-100
and TinylmageNet. CIFAR-100 [23] contains 100 classes
of 50k training images and 10k test images with image
size 32 x 32. TinylmageNet [13] is a subset of the original
ImageNet. It contains 64 x 64 images from 200 classes, each
of which contains 500 training images and 50 validation
images. For all the compared methods, we follow the training
settings of [37] with the standard data augmentation methods
including horizontal flip and random crops and adopt the
stochastic gradient descent (SGD) optimizer with weight decay

NEW FRAMEWORK OF COLLABORATIVE LEARNING FOR ADAPTIVE METRIC DISTILLATION
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5¢~* and momentum 0.9 for training with 240 epochs. The
batch size N is 64 and the initial learning rate is 0.05.
For MobileNet and ShuffleNet, the initial learning rate is
0.01. The learning rate drops by 0.1 after 150, 180, and
210 epochs. We set y to 80. The temperature hyperparameter
7 is set to 4. We select teacher—student combinations of
VGG [33], ResNet [17], Wide-ResNet [47], MobileNet [31],
and ShuffleNet [25], [49]. We evaluate the classification
accuracy (Top-1) and retrieval accuracy (Ranks 1 and 2),
respectively, on the test set. For retrieval, we use the
normalized backbone feature f*(x). To slightly improve the
performance, we average the feature of an image and its
horizontally flipped copy before retrieval.

Tables I and II list the results on CIFAR-100. Table III
shows the results on TinylmageNet. The accuracies of the
vanilla training of the teacher and student models are presented
in the third partition after the header. We list as many results of
teacher—student pairs with similar and different architectures as
possible to verify the robustness. Table I (see Table II) transfers
knowledge across similar (different) architectures. CAMD
achieves consistent improvements in all teacher—student pairs.
Compared with CRD, our method achieves an average
improvement of 0.83% in the classification results and
1%-3% improvements in the image retrieval results. In par-
ticular, our Rank 1 accuracy surpasses other methods by a
large margin, indicating that CAMD is an expert in transferring
representation knowledge. When the original KD [20] is added
to the baseline (CAMD + KD), the classification results are
further improved.

For computational complexity, our time complexity comes
from the operation of finding the maximum and minimum
values in a batch. The CRD maintains two huge memory
banks of the same size as the training set to calculate the
contrast loss, which takes up a lot of storage space, and the
CRD has to update the embeddings in the memory banks for
each iteration, which is also time-consuming. In addition, the
functions for taking min and max are optimized in PyTorch,
so these operations do not significantly increase the runtime
of CAMD. We test the runtime on one Tesla V100 GPU.
When the student is ResNet 8 x 4 and the teacher is ResNet
32 x 4 on the CIFAR-100 dataset, the required runtime per
epoch for CAMD is 54.42 s, while the time required for CRD
is 95.36 s.

2) Ablation Study: We evaluate the effect of each
component, as shown in Tables [-IIl and Fig. 4. AMD(b)
means that only L,ng is integrated, that is, £, + Lamg, and
Lama 18 calculated by the backbone features. Since there is no
embedding block, the student feature dimension must equal
the teacher dimension (see Table I). AMD(e) means the results
without the collaborative loss L., and only L, is kept, that is,
Ly + L,,. CAMD refers to our complete method, that is, (8).

3) Effects of Luna, Lm, and L.: The results of AMD(b)
show that our adaptive metric distillation has already
outperformed the state-of-the-art methods and can bring a
large gain compared to baseline, especially in the retrieval
results, verifying the effectiveness of our “adaptive metric
distillation” and showing the advantage of the explicit feature
alignment using the supervision from the teacher features.
The comparison between AMD(e) and AMD(b) verifies the
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TABLE I

COMPARISON DISTILLATION RESULTS ON CIFAR-100 DATASET FOR DISTILLING ACROSS SIMILAR TEACHER AND STUDENT ARCHITECTURES.
BOTH CLASSIFICATION ACCURACY (%) AND RETRIEVAL ACCURACY (%) ARE REPORTED. AVERAGE OVER THREE RUNS

WRN (T:40-2, S: 16-2) ResNet (T:110, S: 32) ResNet (T:32 x4, S: 8 x 4) VGG (T:13, S:8)
Methods Top-1 Rank1 Rank2 Top-1 Rank1 Rank2 Top-1 Rank1 Rank2 Top-1 Rank1 Rank2
Teacher 75.61 70.18 77.90 74.31 67.67 76.33 79.42 75.04 81.47 74.64 69.88 77.04
Student 73.29 63.73 73.56 71.14 61.33 72.08 72.80 60.04 70.75 70.75 61.10 70.88
KD [20] 75.30 66.78 75.96 73.34 66.03 74.99 73.44 64.83 74.63 73.41 67.26 75.39
RKD [27] 73.92 63.93 73.50 72.04 63.21 72.80 72.57 56.18 67.76 71.24 61.43 70.92
PKT [28] 74.70 67.64 76.52 72.68 64.04 73.96 74.75 65.64 74.89 73.19 67.43 76.04
VID [1] 74.36 63.70 73.99 73.03 63.63 73.42 73.03 58.91 69.71 71.20 62.80 72.38
SP [38] 74.09 65.80 75.24 73.03 63.96 73.84 73.48 63.45 73.64 72.74 66.76 74.80
CRD [37] 75.44 67.44 76.76 73.52 65.21 74.72 75.27 64.87 74.09 73.99 67.17 75.21
AMD(b) 75.86 69.67 77.94 73.85 66.04 75.05 75.30 67.76 76.36 74.01 68.17 75.93
AMD(e) 76.27 70.39 78.57 73.66 66.99 75.92 75.66 67.80 76.40 74.15 68.53 75.44
CAMD 76.45 70.53 78.85 73.30 66.79 75.48 76.58 68.01 76.51 74.43 68.87 76.76
CAMD+KD|| 76.52 70.36 78.90 73.62 66.50 75.44 76.60 67.42 76.69 74.46 68.52 76.23
TABLE II

COMPARISON DISTILLATION RESULTS ON THE CIFAR-100 DATASET FOR DISTILLING ACROSS DIFFERENT TEACHER AND STUDENT ARCHITECTURES.

BOTH CLASSIFICATION ACCURACY (%) AND RETRIEVAL ACCURACY (%) ARE REPORTED. AVERAGE OVER THREE RUNS

T:ResNet 50, S:MobileNet V2 T:ResNet 50, S:VGG 8 T:ResNet 32x4, S:Shuffle VI T:ResNet 32x4, S:Shuffle V2
Methods Top-1 Rankl Rank2 Top-1 Rank1 Rank2 Top-1 Rankl Rank2 Top-1 Rankl Rank2
Teacher 79.34 74.60 81.75 79.34 74.60 81.75 79.42 75.04 81.47 79.42 75.04 81.47
Student 64.60 53.60 64.61 70.75 61.10 70.88 71.61 62.64 72.08 73.37 65.18 74.44
KD [20] 68.62 61.45 70.56 73.89 66.28 74.87 74.78 68.75 76.73 74.87 68.75 77.56
RKD [27] 65.67 54.69 66.78 71.51 59.31 68.99 72.60 64.22 73.44 73.63 66.01 75.31
PKT [28] 67.57 59.04 68.43 73.08 65.46 74.04 74.26 69.22 76.81 75.50 70.19 77.66
VID [1] 65.83 53.75 6591 70.79 60.84 69.57 74.06 66.38 75.32 74.15 66.47 75.85
SP [38] 67.37 58.72 68.87 73.84 65.88 74.56 75.49 70.24 71.78 76.04 70.89 78.21
CRD [37] 69.22 60.48 69.66 74.50 66.95 75.05 75.40 70.67 77.25 75.72 69.59 78.03
AMD(e) 69.88 62.90 7177 74.72 67.06 75.39 75.87 71.63 78.69 76.14 70.93 78.46
CAMD 70.10 63.48 71.96 74.94 68.79 76.38 76.00 72.38 78.96 76.47 72.34 79.10
CAMD+KD|| 70.15 63.44 71.69 74.56 67.53 75.52 76.09 71.64 78.46 76.72 71.33 78.20

TABLE III

COMPARISON RESULTS ON THE TINYIMAGENET DATASET. BOTH CLASSIFICATION ACCURACY (%) AND RETRIEVAL ACCURACY (%)
ARE REPORTED. AVERAGE OVER THREE RUNS

VGG (T:13, S:8) T:ResNet 32x4, S:Shuffle V1 T:ResNet 50, S:VGG 8 T:WRN-40-2, S:Shuffle V1
Methods Top-1 Rank1 Rank2 Top-1 Rank1 Rank2 Top-1 Rank1 Rank2 Top-1 Rank1 Rank2
Teacher 62.65 52.19 61.38 66.00 53.62 63.30 68.40 59.31 66.86 62.77 47.73 58.25
Student 56.94 38.27 48.95 62.51 45.17 55.66 56.94 38.27 48.95 62.51 45.17 55.66
KD [20] 61.72 48.44 58.08 66.39 55.63 64.57 60.86 48.52 58.39 65.08 51.88 61.75
RKD [27] 58.15 38.77 48.56 63.22 47.00 57.34 57.78 36.67 47.65 63.04 47.52 57.64
PKT [28] 58.53 42.50 52.62 63.97 48.29 58.50 58.41 41.60 52.17 63.96 48.37 58.25
VID [1] 57.86 39.29 49.47 63.93 47.03 57.55 57.26 37.77 48.45 64.51 46.48 57.03
SP [38] 59.39 43.63 54.21 65.47 51.02 61.11 59.18 43.24 53.92 65.82 52.43 62.04
CRD [37] 61.48 44.87 55.62 65.62 52.23 62.22 61.25 43.48 53.80 65.40 51.02 60.79
AMD(e) 62.83 48.78 58.50 66.46 57.30 65.79 62.38 49.54 58.89 65.94 54.87 64.28
CAMD 62.97 50.46 60.17 66.80 57.55 66.04 62.74 50.22 59.90 65.90 55.01 64.48
CAMD+KD|| 63.38 50.04 59.89 67.23 56.82 65.89 62.92 50.47 59.58 66.41 54.16 63.53

effectiveness of the embedding block in our KD framework.
Compared to AMD(e), the improvement of our CAMD
validates the feasibility of transferring knowledge of the
submodule into the baseline by L.. Although adding the
embedding block and £, will cause a slight decrease in
the classification result when the teacher network is ResNet
110 and the student network is ResNet 32, the retrieval
results are still improved. In conclusion, all these components
contribute consistently to the overall performance gain.

4) Impact of the Hyperparameter: We performed the
ablation study on the scale factor y in (3) on both the
classification and retrieval tasks. In many softmax loss
variants, the scale factor is an important one [36]. We vary
y from 10 to 150. The experimental results are summarized
in Fig. 5. It can be seen clearly from Fig. 5 that our approach

is quite robust to y, which can be set to any value between
40 and 100 with only a slight change in result.

B. Image Classification on Large-Scale Dataset

These experiments are conducted on ImageNet [13], which
provides 1.28 million images from 1000 classes for training
and 50000 for validation. We apply ResNet-34 as the
teacher and ResNet-18 as the student, following the standard
100 epoch training of ImageNet on PyTorch (y = 30).
AMD(b) also means that the results when only the “adaptive
metric distillation” is used directly on the backbone features
of the student without the embedding block. As shown in
Table IV, AMD(b) performs better than CRD, and CAMD
reduces the Top-1 accuracy between the teacher and the
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Evaluation of different components on CIFAR-100. (a) Top-1 classification results. (b) Rank-1 retrieval results. AMD(b) represents the baseline

performance when only L£;mg is applied to the student backbone features. AMD(e) represents the performance with £,,. And, CAMD further integrates the

collaborative loss L.
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results. (b) Rank-1 retrieval results.

Sensitivity analysis of our CAMD to the hyperparameter y. We compared the results of two models on the CIFAR-100. (a) Top-1 classification

TABLE IV

Top-1 AND TOP-5 CLASSIFICATION ACCURACY (%) OF STUDENT NETWORK RESNET-18 SUPERVISED BY
TEACHER NETWORK RESNET-34 ON IMAGENET VALIDATION SET

| Teacher Student | KD [20] AT [48] SP [38] CC[29] ONE [54] CRD [37] WCoRD [8] Review [9] | AMD(b) CAMD

Top-1 | 73.31 69.75 70.66 70.70 70.62 69.96 70.55 71.17 71.49 71.61 71.39 71.65

Top-5 | 91.42 89.07 89.88 90.00 89.80 89.17 89.59 90.13 90.16 90.51 90.41 90.58
TABLE V

student by 1.9%. Results on ImageNet demonstrated the
scalability of our approach to large-scale benchmarks.

C. Collaborative Module

1) Impact of a Larger Embedding Block: We also evaluated
CAMD with a deeper embedding block (two or three layers
MLP), as shown in Table V. We find that CAMD did not
improve under these conditions. We conjecture that an overly
large MLP will compete with the student backbone for the
limited knowledge in the teacher network, resulting in the
performance degradation of the student network.

2) Comparison With Online Distillation: Online distillers
update the teacher and student networks simultaneously and
commonly use the multibranch collaborative learning struc-
ture, which can improve student performance by increasing

PERFORMANCE OF CAMD oON CIFAR-100 WITH DEEPER MLP

T:WRN-40-2 T:ResNet 32x4

S:WRN-16-2 S:ResNet 8x4
Description Top-1  Rankl Top-1  Rankl
CAMD 7645  70.53 76.58  68.01
CAMD w 2-layer MLP 75.34  68.40 76.01 66.01
CAMD w 3-layer MLP 7520  67.09 7492  65.79

the knowledge diversity in different branches [15], [35], [54].
We compare CAMD with some recently proposed online
methods, including DML [52], KDCL [15], and network-
based OKDDip [5], under the same experimental settings.
The results are shown in Table VI. For DML, we use the
teacher network and the student network for mutual learning.
Our classification and retrieval results outperform the best
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COMPARISON WITH ONLINE DISTILLERS ON THE CIFAR-100 ONLY

TABLE VI

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 6, JUNE 2024

REPORT THE RESULTS OF THE STUDENT NETWORK

T:ResNet 32x4 T:VGG 13
S:ResNet 8x4 S:VGG 8
Method Type Top-1  Rankl Top-1  Rankl
Student Baseline 72.80  60.04 70.75  61.10
DML [52] Online 7450  62.01 72.60  63.45
KDCL [15] Online 7453 6546 72,70  67.59
OKDDip [5] Online 75.91 66.41 74.13  68.69
CAMD Offline 76.58  68.01 7443  68.87
TABLE VII

ANALYSIS OF DIFFERENT PARTS OF ADAPTIVE
METRIC DISTILLATION ON THE CIFAR-100

g 20
’_'Q'::\.'. &l -.'c'!;‘
S LWt ¢ {.’,‘
gy
o T,

X = s
fc;._ﬂ%- * "?*
g -;-r . ‘”..;?

(@) (b)

Fig. 6. t-SNE visualization of the features from ten randomly selected classes.
(a) Features of vanilla ResNet 8 x 4 on the CIFAR-100 (Vanilla student).
(b) Same student network optimized by CAMD (ours).

TABLE VIII

COMPARISON WITH OTHER DISTILLATION METHODS ON THE
MARKET-1501 DATASETS. THE TEACHER IS
RESNET-50 IN ALL CASES

T:ResNet 32x4 T:WRN-40-2
S:ResNet 8x4 S:WRN-16-2
Methods Setting Top-1 Rank1 Top-1 Rank1
Teacher Baseline 79.42 75.04 75.61 70.18
Student Baseline 72.80 60.04 73.29 63.73
(a) Eq.(7) without vs. with stop-gradient operation
Stop-gradient. w/o 75.74 66.90 75.95 70.02
w 76.58 68.01 76.45 70.53
(b) Eq.(4) Fixed vs. adaptive weights
Weight. Fixed 74.75 66.49 74.92 67.52
Adapt 76.58 68.01 76.45 70.53
(¢) Batch all vs. batch hard
Sampling Way. All 76.03 67.84 76.06 68.78
Hard 76.58 68.01 76.45 70.53

ResNet-18 MobileNetV3
Methods Rankl Rank5 mAP Rankl Rank5 mAP
Teacher 89.01 9542 7196 89.01 9542 7196
Student 85.80 94.71 64.35 77.73 90.43  48.72
KD [20] 88.77 95.14  71.44 86.43 9423  65.25
PKT [28] 87.71 95.21 69.74 83.25 93.11 60.46
RKD [27] 86.81 95.16  67.46 81.14 91.86  55.24
CRD [37] 86.63 95.10 67.53 86.49 95.04  67.78
CAMD 89.10 9540 7191 89.31 96.02  72.25

competing methods by 0.49% and 0.89% on average. Note
that OKDDip needs much more computing resources because
they have to train three teacher networks to capture peer
diversity. Generally speaking, network-based online methods
perform better than branch-based ones. Nevertheless, CAMD
surpasses online network-based OKDDip by a large margin,
which verifies that our collaborative module can improve the
performance of the student network by increasing knowledge
diversity more effectively.

D. Analysis and Discussions

1) Without Versus With Stop-Gradient Operation: In
Section III-C, we emphasized the importance of the stop-
gradient operation. Here, we list results after removing it, and
the results are shown in Table VII(a). Compared with AMD(e)
in Table I, the classification result is reduced by 0.12% on
average, and the retrieval result has dropped by 0.64% on
average. The stop-gradient operation can effectively prevent
the classification baseline from affecting submodule and bring
a slight improvement.

2) Using Fixed Versus Adaptive Weights: As discussed in
§ HI-B, we use a teacher-guided strategy instead of manually
designed weighting factors. Here, a/’ and a!' are replaced by
a fixed constant 1, that is, we remove all adaptive weighting
factors and regard them as manually designed hyperparameters
as [36]. This also means that we treat all samples equally
and directly pull positive samples closer and push the
negative samples farther. As shown in Table VII(c), both the
classification and retrieval performance are much lower than
when CAMD employs adaptive weights. This demonstrates
that merely increasing the training model’s parameters and
simply zooming in and out the distance between samples are

not the main reasons for the effectiveness of CAMD. In fact,
using teacher guidance to generate weighting factors means
that teacher’s supervision of student features is strengthened.

3) Batch All Versus Batch Hard: The sampling way also
plays an important role. We use the Batch Hard strategy as (2)
when forming the triplets for £,mq. Another common sampling
way is Batch All [18], which uses all possible combinations
of triplets in a batch. When N is 64, the number of triples
increases from 64 to thousands, and generating these triples is
time-consuming. This will greatly increase the training time
(about three times). We compare the results in Table VII(d).
Surprisingly, Batch Hard consistently outperforms Batch All.
A common conjecture is that the excessive nonhard triplets
will wash out the few useful terms in hard triplets [18]. Most
importantly, it also verifies that only a few key triples hidden in
the thousands of all possible triples make contributions to the
whole distillation process. Our hard mining strategy not only
has the advantage of Batch All, that is, considers all possible
combinations in a batch, but also saves training time.

4) Visualization: In order to intuitively show the improve-
ment brought by our method, we randomly select ten classes
in the CIFAR-100 test set and visualize the features of all
the samples by #-SNE. Fig. 6(a) is their backbone features
of the vanilla student network ResNet 8 x 4, while Fig. 6(b)
shows those optimized by our CAMD under the supervision
of ResNet 32 x 4. Obviously, Fig. 6(b) has a much shorter
intraclass distance and a longer interclass distance. We also
plot the test accuracy and average distance changes between
positive and negative pairs with the training epoch. The
student network is ResNet 8 x 4 distilled by ResNet 32 x 4.
Fig. 7(a)—(c) presents a comparison on “CAMD versus Batch
All sampling way” and “CAMD versus fixed weights.”
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TABLE IX

RESULTS OF DISTILLATION FROM THE NASTY TEACHER ON CIFAR-100 DATASET. BOTH
CLASSIFICATION ACCURACY (%) AND RETRIEVAL ACCURACY (%) ARE REPORTED

Nasty | Nasty Teacher | Method | Students performance
Teacher performance
| | | ShuffleV2 | ResNet-18 | Teacher Self
| Top-1 | Rankl | | Top-1 | Rank1 | Top-1 | Rank1 |  Top-1 | Rank1
Baseline | - | - | - | 71.75 | 60.75 | 77.62 | 72.71 | - | -
ResNew1g | 7705 | 7104 | KD | 65.02(6.73) | 53.82(:693) | 7489(:2.73) | 66.50(6.21) | 74.89(-273) | 66.50(:6.21)
| [77.62] | [72.71] | CAMD | 74.18(+2.43) | 68.46(+7.71) | 78.60(+0.98) | 74.34(+1.63) | 78.60(+0.98) | 74.34(+1.63)
ResNet-50 ‘ 77.16 ‘ 70.27 ‘ KD ‘ 62.96(-8.79) ‘ 51.43(-9.32) ‘ 72.12(-5.50) ‘ 64.51(-8.20) ‘ 74.84(-3.26) ‘ 66.38(-7.21)
| [78.10] | [73.59] | CAMD | 72.82(+1.07) | 66.95(+6.20) | 77.75(+0.13) | 73.28(+0.57) | 79.01(+0.91) | 74.66(+1.07)
ResNex(2o | 8042 | 7136 | KD [ 59.68(-12.07) | 49.16(-11.59) | 67.92(:9.70) | 59.97(-12.74) | 74.58(-6.79) | 61.69(-14.79)

‘ [81.37] ‘ [76.48] ‘ CAMD ‘ 70.77(-0.98) ‘ 63.02(+2.27) ‘ 76.58(-1.04) ‘ 72.08(-0.63) ‘ 80.85(-0.52) ‘ 76.01(-0.47)

The training strategy and all hyperparameters are kept
unchanged. The red and green lines in Fig. 7(b) and (c) are
the average distances between the teacher representations of
positive and negative samples. For positive pairs, the smaller
the distance, the better, and vice versa for negative pairs. The
results obtained by Batch All are close to our results, but it
requires three times as much training time as our method.
Fig. 7(d) presents some key variable changes during training,
the dashed lines are the changes of a” and a” in (3) and the
solid lines are the changes of d” and d" in (3). All values
are averaged over an epoch. Since d” and d" are from hard
examples, d? is larger than that in (b) and d” is smaller than
that in (c).

E. Person Re-ID

We further evaluate our method on the challenging person
Re-ID datasets. For a person-of-interest query, the purpose is
to find the exact position of this person appearing in other
different camera views [43].

1) Datasets and Experimental Settings: We evaluated our
CAMD on the Market1501 [53]. It has 12936 training
images with 751 identities, and 19732 testing images with
750 identities. 3368 images from another 750 identities are
used as a probe set, while the remaining images are used
as the gallery. Here, the testing and training sets do not
share common categories. All the networks are initialized with
weights pretrained on ImageNet. For training, all images are
resized to 256 x 128. We use SGD with a momentum of
0.9 for optimization. The initial learning rate is set to 0.005.
We train the model over 60 epochs and decrease the learning

rate by a factor of 0.1 after 40 epochs. The batch size is 32.
Since person Re-ID is a fine-grained recognition task, we set
y to 1 for stable convergence. Specifically, we select ResNet-
50 as the teacher network. Two different student networks
are evaluated: ResNet-18 [17] and MobileNetV3 [21]. For all
competing methods, we adopted their original hyperparameter
settings, but made some necessary modifications. For example,
the number of negative samples K for NCE in CRD, whose
default value is larger than the whole Re-ID dataset. Perhaps,
the insufficient negative sample is the main reason for their
poor results on Re-ID tasks. The results in Table VIII
demonstrated that CAMD consistently outperforms other
distillation counterparts. The person Re-ID task requires
better generalizability for the features. The student network’s
distilled accuracy is even higher than the complicated teacher
network in most cases.

F. Distillation From Nasty Teachers

Recently, Ma et al. [58] proposed that nasty teachers
prevent knowledge from being transferred to a student. The
classification performance of a nasty teacher is similar to
that of a normal teacher, but the performance of the distilled
student by a nasty teacher is even worse than the baseline.

1) Datasets and Experimental Settings: To evaluate the
efficiency of our CAMD, we perform the experiments
on CIFAR-100 [23] with ResNet-18, ResNet-50 [17],
ResNeXt29 [60], and ShuffleV2 [25] models. We use three
networks including ResNet-18, ResNet-50, and ResNeXt-29
as teacher networks. And two common lightweight networks
including ShuffleNetV2 and ResNet-18 are employed as
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student networks. We follow the experiments and hyperpa-
rameter settings in [58] to get a nasty teacher. We initialize
the learning rate as 0.1 and optimize all the networks by an
SGD optimizer with momentum 0.9 and weight decay Se™*.
The networks are trained by 200 epochs with the learning rate
decayed by a factor of 5 at the 60th, 120th, and 160th epochs.
y is set to 80. “Teacher Self” means the student architectures
and the teacher are set to be identical. “Baseline” means the
student network trained by a standard softmax cross-entropy
loss following the same training settings. We also report the
classification accuracy (Top-1) and retrieval accuracy (Rank 1),
respectively, on the test set. Table IX shows the student
performance when distilled from a nasty teacher. The numbers
in the bracket represent the performance improvement of the
student network compared to their “Baseline.” The results
in the square bracket are the normal counterparts of the
nasty teachers, and they are the “Baseline” of the teacher
network. The retrieval performance of the nasty teachers
drops more than their classification performance compared
with their normal counterparts. By the original KD [20],
no student network can improve their performance by distilling
from nasty teachers, and the toxic knowledge in the nasty
teachers makes the student performance drop dramatically.
In contrast, the CAMD students overcome the toxic knowledge
and outperform their normal counterparts with better accuracy.

V. CONCLUSION

In this article, we distill the teacher supervision at
metric levels with our newly proposed CAMD framework,
and the results of the distilled student are evaluated in
both classification and retrieval tasks. The adaptive metric
distillation optimizes the student features by applying relation
in the teacher features as supervision, in which we also
introduce a hard mining strategy. Besides, a collaborative
scheme is designed to enrich the diversity and fully aggregate
the knowledge in the submodule. We conducted sufficient
experiments on multiple classification datasets and a large-
scale benchmark to prove the effectiveness of our approach.
Extensive experiments have shown that our proposed approach
could also work well in more challenging person Re-ID and
nasty teacher distillation scenarios.
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