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Abstract—Automatic recognition of 3D objects in a 3D model
by convolutional neural network (CNN) methods has been suc-
cessfully applied to various tasks, e.g., robotics and augmented
reality. 3D object recognition is mainly performed by analyzing
the object using multi-view images, depth images, graphs, or
volumetric data. In some cases, using volumetric data provides
the most promising results. However, existing recognition tech-
niques on volumetric data have many drawbacks, such as losing
object details on converting points to voxels and the large size of
the input volume data that leads to substantial 3D CNNs. Using
point clouds could also provide very promising results; however,
point-cloud-based methods typically need sparse data entry and
time-consuming training stages. Thus, using volumetric could
be a more efficient and flexible recognizer for our special case
in the School of Medicine, Shanghai Jiao Tong University. In
this paper, we propose a novel solution to 3D object recognition
from volumetric data using a combination of three compact
CNN models, low-cost SparseNet, and feature representation
technique. We achieve an optimized network by estimating
extra geometrical information comprising the surface normal
and curvature into two separated neural networks. These two
models provide supplementary information to each voxel data
that consequently improve the results. The primary network
model takes advantage of all the predicted features and uses these
features in Random Forest for recognition purposes. Our method
outperforms other methods in training speed in our experiments
and provides an accurate result as good as the state-of-the-art.

Index Terms—3D convolutional network, 3D recognition, vol-
umetric representation, surface normal, SparseNet.
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I. INTRODUCTION

Ith the rapid development of 3D reconstruction and

modelling techniques, the 3D model’s repositories have
become very large. These repositories may include a variety
of 3D models that requires categorization. However, this is an
arduous task to do manually, and thus, having automatic 3D
recognition methods is necessary. There exists a large number
of methods on 3D object recognition based on the use of point-
clouds [11, [2], [3], [4], volumetric information [5]], [6l], [7Z],
[8], or even multi-view images [9], [10[], [L1], [12]. Among
them, using volumetric data, similar to the pixels in a bitmap
that naturally encode the spatial distribution of 3D shapes, has
shown very promising results.

These days, volumetric CNN’s have already gained success
in shape classification and retrieval [S[], [6], [13], [14]. Al-
though some details of shape structures will be disappeared
during the voxelization procedure, the features encoding as
global information is already sufficient for some simple clas-
sification tasks. However, to be more accurate, it is desirable to
preserve as much detailed information as possible [15], [L6],
[17], and this has motivated recent papers such as [18] to
work on high-resolution volumetric data. In some other works,
to decrease the computational cost and memory consumption,
they use either more complex data formats such as octree [19]
or carefully designed convolutional operation [20]]. However,
there is an inevitable loss of details due to the sub-sampling
in feature extraction. In addition to this, features extracted by
these networks are not dedicated to the intended application.

In our approach, contrary to previous methods that using
unsupervised learned features, the combination of useful sur-
face features is used to achieve high-performance results. We
concentrated on building an efficient system for predicting a
fine-tuned object category on different types of 3D model
datasets. It ought to be mentioned that the features are not
hand calculated by us but anticipated as a port of the inference
pipeline by the network itself. We illustrate this by assessing
voxel curvature and voxel normal as the most crucial mesh
surface characteristic features that provide superior results
compared to those not utilizing them.

In our network, the revolutionary technique of sparsely ag-
gregated convolutional networks [21]] is redeveloped in three-
dimensions. It is preventing our 3D convolutional network
from having too many parameters. Although having a deeper
neural network can enable the model to learn more infor-
mation, it mainly causes to the vanishing gradient problem.
In SparseNet technique, the gradient decay is avoided by
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Fig. 1: The overall framework of our hybrid convolutional neural network for 3D object recognition purposed. In the first stage,
we first converted an input mesh to a volumetric model (voxelized). Two network models have been developed to estimate the
surface features like, voxel normal and voxel curvature, from the entry objects. Finally, the predicted results of the preliminary
networks are merged into the volumetric data and feed into the third network for classification. All the network models have

taken advantage of SparseNet topology for efficiency gains.

immediate access of the loss function to the essential layers.
Besides, according to the main idea of using hand-engineered
features, our proposed network decomposes into tree networks.
The VoxNormNet (voxel normal network) and VoxCurvNet
(voxel curvature network) are responsible for finding surface
direction and the curvature of a bunch of input volumetric
data. In our method, the main proposed model is responsible
for the recognition of the input model, as it is shown in Fig.
[[] The third network precisely employs features estimated
from two preliminary parts and provides our predominant
classification efficiency. To make the training and testing
procedure even more efficient, we also took advantage of the
Feature representation technique in our three network
models. In this method, features have to be extracted in sparse
layers, and for the training of the feature, machine learning
techniques, in our case, Random Forest, have been used to
interpret the output even more accurately.

Our key idea in this work is to effectively employ two extra
networks to preprocess the input data and estimate two useful
hand-crafted features that significantly improve the third net-
work’s processing time, by providing more descriptive shape
information. As some popular methods such as [23]], that
employing surface normal in the two-dimensional learning
process, our suggested method uses normal and curvature
networks. However, we are providing these features on 3D
volumetric data, which significantly improve our result on
our 3D convolutional network. These provided features have
more information to be identified in a recognition network.

Besides, dividing a part of feature extraction to the other
networks, assist the feature extraction method and leads to
faster training. Consequently, the two preliminarily models
can be trained separately, which makes our main suggested
model even more efficient. To demonstrate the performance
of our method, we also attempted for 3D model segmentation
with an almost similar structure as the proposed recognizer
method. To this purpose, we suggest an accurately inherited
network from our recognizer named SparseVoxNet-Part. This
network is designed to learn segmentation labels from sim-
ilar recognizer data entries effectively. Without reducing the
volume resolution, this model decreases the loss of detailed
structural information without reducing the volume resolution
generated by sub-sampling operations in CNNs, which is used
in sparse 3D blocks and label decoder stage. Our work makes
the following four main technical contributions:

e The SparseVoxNet is proposed, which is a novel 3D
convolutional neural network with sparse connectivity
between its network layers. The suggested structure pro-
vides higher efficiency and keeps our neural network
away from vanishing gradient issues.

e Two other models are proposed to preprocess the 3D
models for estimating important local features such as
surface normal and curvature. Merging these features
with voxel data, significantly improved the accuracy and
efficiency of our suggested 3D recognition method.

o Using Feature Representation techniques to improve the
classification and regression models. It means, CNN
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model has to be trained once and then part of the model
will be used to extract features and will be used in
Random Forest for another training.

+ We also expand the suggested recognition network to the
3D mesh part annotation network by replacing the last
classification part of the model with a decoder stage to
provide the segmentation results.

II. RELATED WORK

A large number of researches in the computer vision and
graphics fields community has been devoted to constructing a
way of recognizing 3D objects. Different representations are
used to describe these 3D models, there are some works on
shape descriptors for the voxel and projected view represen-
tations, in some other researches. Here we describe some of
the publications which have some improvement in this field.

Shape descriptors There are various methods related to
the video analysis and image understanding challenges that
utilize different descriptors to provide more accurate classi-
fication [25]. For instance, Czajewski and Kotomyjec [26]]
published a stunning paper in 3D object recognition based
on RGB-D images. They proposed a method employed VFH
(Viewpoint feature Histogram) and CRH (camera roll his-
togram) as their descriptor, and ICP (Iterative closest point)
was the main matcher afterward. As they mentioned, their
recognition performance was even better than the CNN-RNN
method of Socher et al. [27], which introduced a model that
combines convolutional and recursive neural networks (RNN)
for learning features and classifying RGB-D images. Gomes
et al. [28] proposed the usage of a moving fovea approach
to down-sample 3D data and reduce the processing of the
object retrieval system from point clouds. They mentioned
their object recognizer could work 7x faster than a non-
foveated approach. The main idea was that the point density
is higher close to the fovea and that this density decreases
according to the distance from the fovea, which means they
can be reducing the number of points and processing time at
the same time.

Convolutional descriptor Convolutional neural networks
(CNN) have achieved the best performance in many computer
vision tasks, including object recognition such as large-scale
classification [29] and action recognition [30]. By jointly
encoding convoluted information in the learning process, 2D
convolutional networks have achieved state-of-the-art perfor-
mance in object detection and classification. Other researches
use 3D CNN structures to perform recognition and detection
tasks in a video by tuning the networks using video frames
[31]. Gkioxari and Malik [32] proposed an action detection
method that trained to detect bounding boxes of actions frame-
by-frame from a video. VoxNet [S] by Maturana and Scherer
focused on LIDAR and RGB-D cameras to increase the robot
conception in a real environment. Their proposed method,
integrating a volumetric occupancy grid representation with a
supervised 3D Convolutional Neural network. We can mention
VoxNet as a foundation of many other proposed methods now.
The other similar work is Wu et al. [6], which focused on
extracting a volumetric representation of a 3D model from a

dataset of 2.5D range data. This method achieved an exciting
result in depth sensor such as Kinect on its publication time.

At the same time, Su et al. [9]] suggested to render 12-views
for 3D meshes and classify the rendered images. To do the im-
age classification, they have used VGG [33] which is already
trained on ImageNet data [34]. The MVCNN-MultiRes [35]]
improved MVCNN by using rendered images from a variety of
resolutions. FusionNet [36] tackled the 3D object recognition
of ModelNet dataset using two data representation: Volumetric
representation and Pixel representation. They combine two
different voxel CNNs with a single multi-view network, which
could achieve accuracy 92.11 on modelnet10 and 90.8 accura-
cy in modelnet40, which was the highest recognition accuracy
in 2016. Supervised training from labeled mesh datasets is
achieved on mesh segmentation and part labeling by Yi et
al. [37]. However, such methods rely on annotated databases
of segmented meshes, which is an extremely labor-intensive
process. Capturing the right scale part is very difficult with
non-expert manual annotation. Besides, SyncSpecCNN [3§]]
is investigated on a spectral CNN learning on a graph of
triangulated vertices by Yi et al.

Additionally, VoxelNet [39] by Zhou and Tuzel had an
investigation in 2017 using a CNN method and voxelizing
data to achieve an accurate 3D recognizer. The results were
achieved by not only the classification result but also to
localize the objects in The Kitti dataset. Zhi et al. [40]
introduced a real-time method of predicting class label and
orientation information simultaneously without additional an-
notation. They designed a shallow network competing for 3D
object recognition accuracy with some of the state-of-the-art
techniques in training parameters. Furthermore, there is anoth-
er type of system that concentrated on different connectivity of
the network blocks [41]], [42]], which can address some of the
challenges efficiently. In the mean time, submanifold sparse
convolutional networks [18] is also introduced to process the
sparse data efficiently.

Liang et al. [43] concentrated on 3D object recognition and
pose estimation of multiple projected view of a 3D model.
They have used two Deep Belief Networks to extract the image
features, and they connect the last layer to match features and
classify the input data. Besides, they apply a new deep brief
network that combines the two traditional DBFs and estimates
the related position similar to classification issue. They also
presented the K-means clustering to overcome the shortcoming
in object detection, which ends to the accurate result. PointNet
[L] could not recognize local features by the metric space
points, limiting its ability to extract fine-grained patterns, and
It has difficulties in complex scenes. Qi et al. [2] introduced a
hierarchical neural network that used PointNet recursively on a
nested partitioning of a point cloud. By applying metric space
distances, the system is capable of learning local features with
increasing contextual scales; this method is called PointNet++.
Liu et al. [44] proposed to use volumetric representation and
unsupervised deep learning networks to extract the features
of point cloud data directly. They also applied the Hough
Forest method on the extracted features and achieve object
detection and pose estimation simultaneously. They compared
their results based on Tejani et al. [45] dataset of 2.5D data
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and reached 0.741, which was almost acceptable. Ma et al.
[46] studied a new type of volumetric CNN named binary
volumetric CNN, which could decrease the model parameters
and make the network much more efficient.

Wang et al. [47] depicted the EdgeConv layer in deep learn-
ing, capturing local geometric features of point clouds. The
entire architecture followed the PointNet architecture except
applying EdgeConv Blocks that has a considerable effect on
the results. They performed 92.2% accuracy for classification
of ModelNet40, which was higher than the state-of-the-art
such as VoxNet, PointNet++, and KD-Net. Accordingly, Xie
et al. [48]] concentrated on using nonlinear distance metric be-
tween 3D shape descriptors for retrieval. They evaluated their
data on McGill, SHREC’10, ShapeGoogle, and SHREC’14
datasets, which are different from datasets we required to use.
Also, several 2D recognition methods have been studied in
terms of investigation on recent research in recognition topics.
For instance, if we concentrate on image recognition, RVM
(representative vector machine) [49] is highlighted, focusing
on character recognition PC-2DLSTM (principal component
2-D long short-term memory) [50]. And, metric-learning-
based recognition [S1]] achieved the precise result using a
deep neural network. In terms of face recognition and facial
expression, SSP (superimposed sparse parameter) classifier
[52] and AFERS (automatic facial expression recognition
system) [53] have been proposed, and their classifiers are
among the top methods.

Feature Representation The idea of using CNN features
in different techniques of machine learning is not new. The
activations, which are the output of CNN layers, can be
interpreted as features. Trained CNN models for classification
can be used as feature extractors by removing the output layer.
There are a variety of techniques in supervised learning, such
as SVM, SGD, Random Forest, and decision-tree. Among
them, the Random Forest(RF) algorithm has been extensively
applied for classification or regression tasks by building a
large number of classification or regression trees (CART) and
combining bootstrap and aggregation ideas [22]. When RF is
used for regression problems, the output variables are fitted
by using samples of the input variables. For each of the input
variables, the data are divided into several points, and the
Sum of Square Error (SSE) is calculated at each divided
point for predicted and actual values. Then, the minimum
SSE value is chosen for this node. In addition, the variable
importance can be obtained by permuting all the values of the
input variables and measuring their difference in prediction
accuracy [54]. In the forest generation process, the number
of decision trees N and the candidate split attribute value
M are two parameters that notably influence the performance
of the model. According to the law of large numbers, when
the value of N increases, the generalization error converges,
which can effectively avoid data over-fitting, but increasing
this value after it reaches a certain threshold does not increase
the accuracy of the model [55]]. The idea of using feature
extracted by CNN in Random Forest or other classifiers has
shown a variety of benefits on different applications such as
face recognition [S6], software defect prediction [S7], and even
Genomic Science [58]].

Fig. 2: Voxelizing a scanned 3D model can be much more
efficient in the suggested voxelizer than interpolation or any
other methods. It shows a point cloud generated from the
scanner, which can directly be used in the voxel grid method.
The left side shows a bunny 3D model, and the right side is
the voxelized model generated directly from the 3D grid.

III. APPROACH OVERVIEW

Fig.[I]depicts an overview of the proposed novel volumetric
object recognition and segmentation system. The proposed
system consists of three main components in each task:
one of the networks is provided to construct the 3D voxel
normal information from the input volume. The second one
is responsible for estimating the voxel curvature from the
volumetric data. The third one utilizes these important surface
features along with voxel information to precisely achieve
the task of 3D model recognition. Moreover, after training
the network, Random Forest regressor has been used to learn
features more effectively. Another sparse network model uses
the two preliminary network’s output and voxel data to provide
segmentation results.

A. Surface Feature Extraction

Using just volumetric data as the input is not sufficient
to train and test the suggested recognition. In the proposed
method, two preprocessing novel networks are responsible
for estimating two vital surface feature voxel normal and
curvature. These networks receive a window of volumetric
data as their input and estimate their output layers’ expected
features. To improve it, the feature representation technique
has been used. Having normal and curvature features as
the entry for the classification model would result in more
efficiency, which is explained in the result section.

B. Object Recognizer

After preprocessing the volumetric data using VoxNormNet
and VoxCurvNet networks, the extracted data have to be
concatenated with raw volume information to feed the third
network. The SparseVoxNet as the third network is responsible
for processing the merged features effectively and estimates
the entry object category. The main structure of SparseVoxNet
contains two stages: one is the deep sparse connected dense
blocks and fully connected layers to train the input volume
data once, and the second one is to use the part of the trained
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Fig. 3: Three different meshes of the human skeleton are
shown that converted to volumetric data with different resolu-
tions. It is clearly shown that the high-res voxel grid can keep
the details more than low-res grids. It has to be mentioned
that previous methods are designed to employ low-res volume
to be capable of processing large amounts of data.

model for feature extraction and train the Random Forest
classifier to reach a higher accuracy than using the network
model individually.

C. Object Part Annotator

A similar structure is provided to reach the segmentation
result on a 3D model dataset. The only and main difference
between recognition and part segmentation networks is the last
part of the structure, which carefully replaced the classification
part with a 3D convolutional network to reconstruct the same
size volumetric information as the input data.

IV. 3D OBJECT RECOGNITION

The main superiority of our recognizer is to take advantage
of some hand-crafted features that have information from the
surface points, such as normal which illustrates the surface
point’s direction, and curvature which is providing information
of surface shape. The proposed method is efficient in train and
test stage by having a modern technique in the connection
between its layers. This section will outline all the steps from
the recognition section, such as training on the input dataset
and predicting the test entries.

A. Voxelization

Voxelization of a 3D model is the process of converting
the geometric information of a mesh into a discrete domain
grid. The method has to be chosen according to the type
of 3D models. In this section, the technique of voxelizing
ShapeNetCore-part dataset is explained, which contains un-
structured point clouds similar to the 3D scanned objects. To
process this point cloud data, we need to specify the grid size
as the first step. The 3D positions of the selected 3D model
have to be converted to the grid size domain, and consequently,

Algorithm 1 Voxelization

Require: Position data in 3 axis Py, Py, P, , gs
Ensure: Voxelized data V'
1: procedure NORMALIZATION(])
find ming;
Decrease miny from I;
find maxy;
Out = I/mazxr;
return Out;
: end procedure
: [Nz, Ny, N.] = Normalize([P;, Py, P.]);
: Ind, = N X gs;
: Indy = Ny X gs;
: Ind, = N, X gs;
: V = Initialize a 3D Array(gs,9s.9s);
: Set V[Ind,, Indy,, Ind.] to the value of 1;

R A A A S o

— e e
W N = O

the founded grid-cells has to be triggered. Each grid position
that is found should be set with the value of one, and the
other would be zero. As an example of our voxelization, Fig.
[ illustrates a sample voxel data of the bunny 3D object and
Fig. [3| represent three parts of the human body skeleton that
directly achieved from the 3D grid of the object. The procedure
of this approach is shown in Algorithm |1} where the P, P,
P, are the points from our point clouds, and g represents the
grid size. In Algorithm T} at the first step, position data should
be normalized (between 0-1) and the multiplication of the g,
by Ind,, Ind,, and Ind, provides values that directly point
to the index of each voxel grid. Thus, the V' as the Voxelized
output data contains a 3D matrix with a specific size and binary
values. Each voxel represents a sample on a three-dimensional
grid-cell. This procedure is developed using matrix calculation
to be more optimized, fast, and able to process on tensors. The
designed method is a simple procedure that is demonstrated
in Algorithm [T]

B. Normal and Curvature Estimation

The surface normal is the essential properties of a 3D model.
Normal vector estimation is also important in the calculation of
curvature and surface reconstruction. There are two approaches
to normal estimation: Firstly, the surface must be obtained
by meshing techniques, and then the provided surface mesh
is used to compute surface normal. Secondly, whenever the
data of surface mesh is not reliable, normal data have to
be achieved by approximation on point cloud directly. Our
proposed approaches are reaching the point normal by using
either of them. The first one would be beneficial when dataset
containing surface mesh, and the other one is more likely to
be used on a dataset containing unstructured point clouds.

Many different normal estimation methods are investigated
in terms of estimating normal using point cloud directly. The
point normal is determined according to [59], and they take
this issue as a least square plane fitting estimation. Thus,
this estimation can reduce to eigenvectors and eigenvalue of
the covariance matrix, and the principal component analysis
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Fig. 4: Two-dimensional illustration of the averaging surface
normal in a grid cell. From left to right, the K parameter
changes to 3, 5, and 7. Decreasing the number of neighbours
would provide voxel normals in more details. The red arrows
show the average normal direction.

(PCA) would be an efficient method. In this technique, for
each point p;, we consider covariance matrix M via Eq. (I):

K
- @)

where, p; is considered as a point on the surface, p is the
centroid of the nearest neighbours, K represents the number
of point neighbours, A; is j-th eigenvalue and I_/J shows
the j-th eigenvector. The issue of determining the sign of
the normal is ambiguous, and there is no mathematical way
for this problem. Still, in this issue which is considering
point cloud to estimating surface normal, using PCA and
extended Gaussian image (EGI) are well known. However,
when the viewpoint is already known, no one has to follow
those complex computation. Instead, the normal cloud orients
consistently toward the viewpoint, and we have to satisfy Eq.
@) as:

;. (Vp —pi) >0 ()

The other challenge is determining the /K parameter or
the radius parameter to finding the nearest neighbour of the
selected point because a surface normal at a point should be
estimated from its adjacent points. Defining K is constituting
a limiting factor in the normal estimation, and it is the crucial
parameter to reach the actual point’s normal. Therefore, this
parameter has to be selected based on the detail of the point
cloud. Hence, the scale parameter is needed, and it has to
be small enough to capture tiny details and be large enough
to skip unnecessary data. We also provide another stage to
average the normal data through the voxels, which assist
in reaching more smooth normal data and ignoring the tiny
normal changes. Fig. ] shows the stage of averaging on 2D
voxel normal data which is customized by K parameter that
defines the number of the neighbor grid cell to compute
the average. This stage can abstract the estimated data to
comprehensive and trainable information. At the top side of
this figure the surface pointclouds and normals are converted

TABLE I: The network structure of SparseVoxNet. Multiple
DB layers (Dense-Block layers) are responsible for extracting
features in a very efficient way of sparse connectivity between
them. The second stage of the network is the classification
stage that receives the information from DB layers and esti-
mates the input object class.

Layers Input Shape Output Shape In
Inputl | 50x50x50x1 | 50x50x50x1
Con3D1 | 50x50%x50x1 6XxX6Xx6x16 [Inputl1]
DB1 6XxX6x6x16 6X6x6x16 [Con3D1]
Concatl [Conv3D1], [DBI1]
DB2 6X6x6x32 6X6Xx6x16 [Concatl]
Concat2 [DB1], [DB2]
DB3 6X6Xx6x32 6XxX6x6x16 [Concat2]
Concat3 [DB2], [DB3]
DB4 6X6X6x32 6X6XxX6x16 [Concat3]
Concat4 [DB1], [DB3], [DB4]
DB5 6X6Xx6x48 6X6X6x16 [Concat4]
Concat5 [DB4], [DB5]
BatchNorm1 6X6X6x32 6X6X6x32 [Concat5]
Activationl 6X6x6x32 6X6X6x32 [BatchNorm1]
Conv3D2 6X6x6x32 6X6X6X16 [Activation1]
Flatten1 6xX6Xx6x16 3456 [Conv3D2]
Densel 3456 256 [Flatten1]
Dense2 256 64 [FC1]
Dense3 64 10 [FC2]
Activation2 10 10 [FC3]

to a grid cells, to be ready for the stage of averaging. After
preparing the normal information, the mean data of normal
has to be calculated in each voxel grid that we call it voxel
normal.

The extracted voxel normal is the target information of
the VoxNormNet. The estimation by VoxNormNet can pro-
vide normal voxel information much faster than conventional
methods to provide it from raw point clouds. This network is
shown in Fig. 5] In the end, the result of the voxel-normal
can be averaged, one more time, to provide more smooth
and continuous normal information on the voxel structure.
Generally, when the voxel-normal is calculated, they consider
tiny details of the surface, and these details would affect
the voxel-normal to be discontinuous and inaccessible from
our network to train. But, with the averaging technique of
the voxel-normals, we can prepare much more smooth and
trainable voxel-normal, which is shown in Fig. [ in two
dimension. A Part of our implementation is done using PCL
Library in C++ and Meshlab scripting. This part our coding
provides volumetric data generation, surface-normal , and
curvature. But another part which is responsible to generate
our suggestion in voxel-normal and voxel-curvature is purely
implemented in Python scripting.

C. Deep Neural Network Structure

In this work, we propose the SparseVoxNet, a 3D convolu-
tional network that integrates a number of 3D convolutional
layers through sparse aggregated connectivity [41]. The sparse
connectivity enables our network to have deeper network
layers without losing the value of the neurons (Vanishing
Gradient). This structure not only provides an opportunity to
have a deeper network but also having an efficient network
and accurate results. The other paper inspiring our suggested
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TABLE 1II: The dense block structure is the block that
mentioned in Table [If as DB. Sparse Connectivity of the
dense blocks can improve the estimation accuracy with very
few parameters rather than previous methods that handle the
performance in very large networks.

layers | Input Shape | Output Shape In
BatchNorml | 6xX6x6x16
Relul 6X6x6x16 [BatchNorm1]
Conv3D1 | 6x6x6x16 6X6x6x64 [Relul]
BatchNorm2 | 6x6x6x64 [Conv3D1]
Relu2 | 6x6x6x64 [BatchNorm?2]
Conv3D2 | 6x6x6x64 6XxX6x6x16 [Relu2]
DropOutl 6X6x6x16 [Conv3D2]

method is DepthMapNet [60], which was followed from
DenseNet [[61] in its network’s structure, estimates the dense-
map of the input stereo images. The DenseMapNet follows
the same layer connectivity as DenseNet, but, it is suggested
to use a series of provided network layers called dense blocks,
which could extract vital information from the input data.
We redesign the dense block in three-dimensions, but rather
than using dense connectivity, the sparse connectivity has
been used, which shows much more efficiency in its provided
results. Fig. [6{d) demonstrates the suggested 3D dense block
in the proposed method. As we have already mentioned, there
are three main networks in the suggested method:

e Network that estimates voxel normal (VoxNormNet)

o Network that estimate voxel curvature (VoxCurvNet)

o Network that employs the prepared volumetric inputs to
classification purposes (SparseVoxNet)

Fig. 5] demonstrates our proposed advanced network struc-
ture to preprocess the volumetric input and extract voxel
normal and curvature. The suggested network is a supervised
method; the network requires to receive the ground truth
normal voxel as the target data. The procedure of arrang-
ing these input data explains in Section [[V]B, which is a
calculation of normal and curvature and averaging them in
a voxel grid structure. The third network, SparseVoxNet, is
responsible for the classification of the objects, and it contains
two main stages. The first stage is a sequence of the 3D dense
blocks that are thoughtfully connected based on SparseNet
[41]. The second part is having a series of convolutional
layers to abstract more highlighted features and two fully
connected layers to classify the information according to the
target data. The detailed description of the main network is
shown in Table [l Each Dense Block in Table [l contains series
of CNN layers which is shown in Table [l We implement our
networks based on the Keras platform and use its element-
wise product and convolution operation for our SparseVoxNet
implementation.

Dividing the network structure to three separate networks
has two advantages: Firstly, it prevents our model from being
very large, and consequently, the requirements of memo-
ry and processing units will be reduced. Secondly, having
fewer parameters in the recognizer’s network can lead to a
faster training procedure. Generally, the suggested method has
demonstrated more efficiency by utilizing hand-crafted fea-
tures as its entry. Fig. [6{c) shows the SparseVoxNet receiving
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Fig. 5: Our network trains supervised and estimates voxel
normal and voxel curvature with the same size as the input
voxel. Densely connected layers assist the model in extracting
significant related features in a compact size, and the decoder
stage interprets the features and reconstruct the volumetric data
containing the normal or curvature information. The predicted
results of the preliminary networks are merged into the volu-
metric data and feed into the third network for classification.
After training of each model, we train the Random Forest with
features extracted from by the first part of the network.

its inputs from voxelizer, VoxNormNet, and VoxCurvNet. In
this network, the Adam function is used as an optimizer.
Almost all the activation functions are Relu (Rectified Linear
Unit), except the last one, which is the SoftMax function.

D. Feature Representation

We consider training Random Forest with features provided
by our sparse 3D block layers to provide even more accurate
results. It has already been studied that using some of the
machine learning techniques to interpret the features provided
by CNN would provide more accurate results than using
dense layers in a neural network. Athiwaratkun and Kang [22]]
demonstrated series of experiences that shows that Random
Forest can outperform the others to interpret features provided
by CNN. Therefore, at the first stage, the model has to be
trained fully on the neural network model. After the training,
the first stage of the trained model can be used to train random
forest. We use our suggested CNN to extract features for
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Fig. 7: The overall procedure of 3D object part annotation vi

a the proposed approach. The network learns all the 3D volume

labels through one training level. It means the output of this network would be the same voxel size data as the input data.
VoxNormNet, VoxCurvNet, and sparsely connection stage are similar to Fig. [6} The contribution of estimated hand-crafted
features and volumetric data shows undeniable progress in part segmentation challenge. Each model will be trained twice as
we consider using the first train’s features for the second train using Random Forest.

Random Forest that can interpret the results more accurately
than fully connected layers in CNN models.

V. 3D MODEL SEGMENTATION

To verify the suggested strategy, the method has been re-
designed to fit on the part-segmentation challenge. The overall
architecture of the part annotation approach is explained in Fig.
[7} which contains two well-designed preprocessing networks,
similar to the recognition approach, and a network that em-
ploys provided normal, curvature, and raw volumetric data to
learn the segmentation. The suggested method is using almost
the same procedure as the proposed recognizer. However,
the network uses an optimized decoder stage to reconstruct
the volumetric segmentation data instead of the classification

stage. The main structure of the suggested method is illus-
trated in Fig. [7]] Same as the proposed recognition method,
the segmentation approach includes two extra networks to
estimate voxel normal and voxel curvature, which then will
be employed by the segmentation network. Fig. [6(a) and Fig.
|§kb) illustrates the VoxNormNet and VoxCurvNet, which are
already explained in the section of 3D recognition. These
networks are just useful when the dataset has the ground
truth normal and curvature information. The only difference
between VoxNormNet and VoxCurvNet is in their output
layers. The output layer in the VoxNormNet requires to have
three channels representing the normal directions by three
values of nX, nY, nZ. But the VoxCurvNet output requires
one channel that belongs to curvature value. The structure of
these networks is demonstrated in Fig. [5] in more details.
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Fig. 8: To distinguish a wrong classification result of the deep
neural network, the mesh part’s histogram is used, which
is shown in this figure. The mean of the ground truth data
category should be compared to the new categorized data.

Vox to segmented Point cloud

[ i

Point cloud to Vox

I '

SparseVoxNet-Part

Fig. 9: The input point cloud is converted to volumetric data
at the first step, and in the end, the segmented volume would
switch to a point cloud.

The main section of the network is shown in Fig. [7] This
network gathers all the preprocessed useful information and
considers all of them to annotated the parts of the entry model.
When the voxel normal and voxel curvature are prepared, they
will be merged with the raw binary volume data. The merging
process prepares a voxel with 50x50x50 size and five chan-
nels, which include the binary volume, voxel normal (three
channels), and curvature(one channel). The third network that
we call it SparseVoxNet-part, contains a series of dense block
layers with sparse connections according to the SparseNet
[41] method. But contrary to the recognizer, the second part
of this network is not a classification stage, and it contains
another decoder network similar to the VoxNormNet to rebuild
a volume data with segmentation values.

The SparseVoxNet-part is prepared to demonstrate the
performance of the suggested network to 3D segmentation
purposes. Furthermore, the segmentation results can provide
more information to assist the recognizer network; the result
of segmentation in each class is almost unique, which makes
them capable of being employed in the recognizer and veri-
fying the final classification results. In this paper, the method
prepares a histogram of the segmentation result without apply-
ing them to the automatic recognizer. The procedure contains
segmenting the object according to the recognized class label
and compare the histogram of the segmented object with the
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Fig. 10: Accuracy results by applying grid size from
10x10x10 to 60x60x60 in 200 epochs of training. It shows
that the accuracy will increase by a larger grid size, but
increasing it to more than 50 not only does not have a
significant implication on the accuracy but also negatively
affects the duration of the training process.

average histogram of that class, which is demonstrated in Fig.
Bl This stage has not been used to improve our accuracy
in comparison with other methods and only provides more
trustability in detecting the wrong recognition. We provide this
information to comfort the School of Medicine, Shanghai Jiao
Tong University, enabling them to verify their classification
results manually. Another function that is provided in our
method is to converting the segmented result to point cloud.
This function is almost the reverse procedure of Algorithm
[} Fig. O] illustrates a point cloud that has to be converted in
volume for the segmentation process and again converted to
point cloud after segmentation for comparison purposes.

VI. EXPERIMENTAL RESULTS

Dataset: In our suggested approach, two datasets are used.
Firstly, the ModelNet10, a dataset prepared by Princeton
University, was used as a test-bed for 3D recognition methods.
The data contained 4899 objects across ten categories. The
ModelNet10 dataset is already split to train and test objects.
Secondly, the ShapeNetCore-part, which is one of the most
popular datasets in terms of 3D object segmentation, was used
that already provided normal and curvature information; this
dataset was used for segmentation evaluation. The comparison
of 18045 shapes across 16 categories has done. Both the
datasets were used for recognition evaluation. Train-test split
is considered according to [37].

Device: The lightweight structure of the suggested method
provides us to train the network on a consumer PC; with Intel
Core i7 4 GHz processor, NVIDIA Geforce GTX 1050Ti, 16
GB RAM, with 64-bit Windows 10.

A. Voxelization Configuration

To explore the parameters in the proposed method, we con-
duct a series of experiments on the analysis of the different size
of the voxel grid. For this investigation, the ShapeNetCore-part
dataset is used, which contains 16 different categories that
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TABLE III: Classification accuracy in comparison with some of the state-of-the-art methods on ModelNet10. The results show
our superior training speed, which makes it very easy to retrain and adapt to a new dataset.

Methods  Accuracy (%) Size (M)  Training time Inference time Device
DeepPano [62] 85.45 - - -
VoxNet [3] 92 0.9M 12 hours 6 ms K40
OctNet [19] 88.03 - - -
3D ShapeNets [6] 83.54 38M 48 hours -
VRN Ensemble [63] 97.14 90M 6 days - Titan X
SliceNet [8] 92.7 0.24 8.65 hours 37ms GTX1070/1920
SparseVoxNet (Ours) 92.7 1.5M 36 min 8.1ms GTX1050Ti
SparseVoxNet with RF (Ours) 93.5 1.4M+ 38 min 7.8ms GTX1050Ti
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Fig. 11: The confusion matrix describing the performance
of a classification model on the ModelNetl0 dataset. Our
SparseVoxNet shows significant results just by preparing voxel
data as its input. After the second training in Random Forest
(RF), the accuracies are increased in most of the categories,
as it is shown in the single raw at the bottom.

are divided to train, test, and validation based on [37]. The
result shows, in the designed model, increasing the grid size
will increase the accuracy by having more details of the input
model. However, when the grid size is increased, the more
network’s parameters are required to keep the efficiency of our
method. Additionally, the training level would require a high-
performance processor and much more memory by having
a larger grid size. In this case, the proposed method shows
notable performance with just 1.5M parameters, meanwhile
a considerable number of input, which is 125,000 values for
each input 3D object. The comparison of Fig. [10] depicts that
the grid size with the value of 50 in all directions could be
the most efficient options amoung the series of diffrent sizes
such as 10, 20 , 25, 35, 45, 50, 55, 60. It does not require
much memory, as the higher resolutions need, the training
process is less time consuming, and it shows one of the highest
performances, especially in comparison with the volumetric
recognizer methods.

B. 3D Recognition

The comparison of our approach with state-of-the-art meth-
ods shows undeniable progress in 3D mesh recognition of
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Fig. 12: The confusion matrix describing the performance of a
classification model on the ShapeNetCore-part dataset. Our S-
parseVoxNet achieves this result with all the extra information,
such as voxel normal and voxel curvature information.

different datasets. There are two main applications for the
proposed method: recognizer and part annotator. Firstly, the
estimation of voxel normal is fulfilled by training and predict-
ing VoxNormNet as one of the preprocessing stages. Secondly,
another essential feature is voxel curvature, which estimated by
VoxCurvNet. These features allow us to have more information
on the 3D object surface in a volumetric data format. Finally,
for recognition purposes, the SparseVoxNet is provided. This
well-structured network classifies the input 3D model through
a deep and supervised neural network. By combining the
preliminary networks’ output to the third one, we achieve the
best performance in recognition challenge according to the
number of parameters we have used.

Table [ presents the overall classification results of dif-
ferent methods on the ModelNet10 dataset. It shows that our
merged network result is superior compared with state-of-the-
art comparative methods when measured for its training speed,
and it is also one of the top methods in terms of network
size that make it easier to train in average GPU devices. The
comparison demonstrates the power of combined normal and
curvature data in the SparseVoxNet network for classification.
In contrast to image-based techniques such as MVCNN [9],
our approach does not require rendering of the model in
different view angles; the only time-consuming task is prepro-
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Fig. 13: Our recognition accuracy on two different datasets
with and without surface features. The red bars represent
recognition accuracy using just the voxels, and the blue bars
represent the results using voxel, surface-normal, and surface-
curvature. Top chart shows the results on ShapeNetCore-part
and the bottom one is the result of Modelnet10.

cessing the data to extract voxel, normal, and curvature. This
task is much faster than most other conventional methods by
taking advantage of suggested VoxNormNet and VoxCurvNet.
Training speed is also quicker on a similar challenge, which is
due to employing a fewer number of parameters and a delicate
network design. For our suggested structure, the SparseNet
architecture has been leveraged to have fewer parameters in
the network model while providing higher training efficiency.

Fig. [T1] and Fig. [I2] illustrates the confusion matrixes
of the proposed deep neural network on Modelnetl0 and
ShapeNetCore-part, respectively. Note that ShapeNetCore-part
is not designed as a test-bed for object recognition. However,
because of the provided normal and curvature data, the method
could draw advantage of all the abilities of the suggested
network. Table demonstrates the results of the recogni-
tion using our method with a different combination of the
inputs and features used. Table presents the progress of
recognition accuracy after concatenating networks that take
advantage of VoxNormNet and VoxCurvNet. The precise result
of using volumetric data separately verifies the importance of
raw volumetric data as our main entry, but by concatenating
normal and curvature data, improved classification is achieved.

Fig. illustrates the list of recognition accuracy of our
method with and without extra input models. The results of the
first bar of each category demonstrate the recognition accuracy

TABLE IV: The classification accuracy of our network by dif-
ferent combinations of data on the ShapeNetCore-part dataset.
Using only voxel data in our method, achieved acceptable
performance. But to increase the accuracy, the mixture of
different preprocessed data with the input network is proposed.

Input Volumetric Data | Point’s Normal | Curvature | Accuracy
v 91.85%

v 74.10%

v 42.34%

v v 92.48%

v v 92.83%

v v 77.10%

v v v 93.21%

TABLE V: Comparison of train, inference time, and GPU
device used for the experiments of our approach with three
other state-of-the-art methods. It shows the suggested method
is faster than the point cloud based method in ModelNet40.

inference time  training time = GPU
Ours 7.8 ms 1h 55 min GTX 1050 Ti
PointCNN | 12 ms - Tesla P100
PointConv | 62ms - GTX 1080 Ti
KPConv 543 ms 134h 33 min ~ RTX 2080 Ti

based on the voxel input data, and the second one shows the
precision with voxel normal and curvature data. The enhance-
ment in the second bar is provided by the surface features,
which are estimated by other networks. The best classification
accuracy of SparseVoxNet on ModelNet10 is 92.7%. That is
a significant improvement according to its number of network
parameters (1.5M) compared to the pioneering work [, [63].
There are also some drawbacks to the extra features that cause
the method to achieve less accuracy in some of the objects.
Here are our explanation of such problems:

« Firstly, the procedure of estimation of surface normal and
curvature may not provide correct features for all the
objects. This alone can prevent the training stage to get
enough reached data and as the result we are losing the
performance for some categories.

o Furthermore, considering all the provided features are
accurate, the complexity of these features can alone
cause this problem. The number of the extra data that
we provided for the model entry gets very huge. Some
of these extra data require more training time or more
provided neurons to be learned that was not affordable
for us to handle and it may cause the method to lose the
efficiency.

Although we believed that using Modelnet40 is not fully
matched with our future target dataset in medical school, we
considered applying the suggested method on ModelNet40 to
have a comparison with some of the state of the arts. In a
couple of research in the past, people have researched using
sparse data for processing 3D objects, especially in deep neural
networks such as SparseConvNet [[18]. However, based on our
target dataset, which is provided in the School of Medicine,
Shanghai Jiao Tong University, the 3D objects could be point
clouds or volumetric data; we considered using volumetric
data, as all other types could easily be converted. Therefore,
sparsity comes from the connectivity between layers, which
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TABLE VI: Segmentation accuracy comparison of our part-annotator network with state-of-the-art methods. Inference time
and model size are added for those provided such information. We show the accuracy in different object categories separately.

Voxel CNN  ACNN  Yietal 2016 Qietal 2016 Pointnet++ 2017  Yi et al. 2016 ~ Ours

knife 79.58 81.98 85.4 85.9 85.9 86.1 88.43

aero 75.14 76.35 81 83.4 82.4 81.6 75.6

cap 73.28 70.8 71.7 82.5 87.7 81.9 93.4

lamp 74.43 77.43 82.5 80.8 83.7 84.7 73.31

guitar 88.35 87.84 92 91.5 91 93 93.63

mug 91.79 89.49 91.9 93 94.1 92.7 96.51

skate 65.25 82.05 69.8 72.8 76.4 82.9 83.82

rocket 51.16 49.23 53.1 57.9 58.7 60.6 73.17

pistol 76.41 77.41 85.9 81.2 81.3 81.6 86.35

laptop 93.92 95.49 95.7 95.3 95.3 95.6 96.55

earphone 63.5 71.14 61.9 73 71.8 74.9 83.38

motor 58.67 45.68 70.6 65.2 71.6 66.7 77.69

bag 72.8 72.89 78.4 78.7 79 81.7 93.08

car 70 72.72 75.7 74.9 713 75.2 84.99

chair 87.17 86.12 87.6 89.6 90.8 90.2 83.95

table 77.08 76.71 75.33 80.6 82.6 82.1 77.3

mean 74.76 75.77 79.28 80.39 81.8 81.96 85.07

Inference Time (s) 0.23 5 60 0.011 0.087 - 0.052
Model Size (MB) 3.75 - - 9.4 12 - 4.02

increases the efficiency and accuracy of our method. Although
3D SparseConvNet has also provided a fast training procedure
still our suggested method outperforms it to get 0.83 mean
accuracy on ModelNet40 rather than 0.81 of SparseConvNet.
We also considered ModelNet40 for comparison of training
and testing time. We compare the training stage of our model
with some of the point cloud based methods. Table [V] shows
the result of our comparison, which explain that our efficient
model using volumetric data can be much faster than point
cloud methods on the ModelNet40 dataset.

C. 3D Segmentation

The main proposition in this paper is about finding an
acceptable and accurate method for recognizing 3D models.
However, by expanding the approach and applying almost the
same procedure, just by modifying the final part of the sug-
gested recognition network, the segmentation challenge can be
explored. For comparison in this challenge, the ShapeNetCore-
part dataset has been applied, which contains 16 different
categories. As in the recognition structure, at the first stage,
the parameters such as voxel normal and voxel curvature have
to be prepared. This extra information will be merged into the
voxel data and then feed the SparseVoxNet-part, which is the
proposed network to untangle the segmentation challenge.

Table shows the results on 3D model segmentation on
ShapeNetCore-part dataset. Our method acquired very precise
results in comparison with some of the state of the arts such
as PointNet++ [2], VoxNet [3], or SyncSpecCNN [38]]. As the
results indicate, we achieved the highest performance by a
large margin and thus validating our method. We also added
inference time to Table making it comparable with other
techniques for their process timing. Moreover, the Model
size, which is in MB (Megabytes), is the network’s size in
GPU memory. The comparison of the results shows that the
number of objects in each category is an important factor.
If there are many different shapes in a category and it has
variety in shapes, the accuracy will be increased. Conversely,
if the number of objects is fewer, the network will not be

Fig. 14: Part annotation results in 6 categories of the
ShapeNetCore-part. For each object pair, the left shows the
original point cloud without segmentation, and the right point
cloud shows the segmented counterpart.

able to segment the category as accurately as the first group.
Therefore, the best network results are in categories that have
an adequate number of objects. Fig. [[4] demonstrates some
samples of the segmentation result on ShapeNetCore-part.
In our comparison, we found the results from our network
to be able to capture better structures from the 3D models
than that of other state-of-the-art methods. There are some
results presented in Fig. [I5(a) that shows a failure on the
recognizer caused by the similarity of two different object
classes. This also affect the segmentation in some object’c
categories that intrigues us to plan to continue this research
for further improvements.
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Fig. 15: (a) Some of the classification errors that happen
between similar shape objects, (b) some samples of part
annotation faulty result on the ShapeNetCore-part dataset.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a deep neural network
which can classify 3D objects and verify it by statistical
information from part annotator neural network. Our approach
explores two essential features of the 3D meshes comprising
of the surface normal and surface curvature; the first fea-
ture leverage directional variations while the second feature
concentrates on changes through the point cloud’s surface.
Our experimental data suggest using surface features along
with raw volumetric data to train rapidly and reach a high
accuracy. Furthermore, employing Sparse connectivity among
our convolutional layers, assist us to decrease the number
of parameters required in the suggested network. We also
described principle ways to define convolution operation on
3D input data and the process of concatenation in these 3D
layers. Experimental results demonstrate that the proposed
method is competitive with the state-of-the-art techniques on
ModelNet10 and ShapeNetCore-part datasets. In the future, we
will further employ segmentation results in the evaluation of
the recognizer. If the recognition stage classified the model
in the correct category, the segmentation stage would be
statistically matched to the selected category. However, if the
3D model is classified as a wrong category, the segmentation
of that object can be used to distinguish false recognition. We
will further enhance the segmentation as our future work.
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