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Abstract—Active learning (AL) aims to sample the most
valuable data for model improvement from the unlabeled pool.
Traditional works, especially uncertainty-based methods, are
prone to suffer from a data bias issue, which means that selected
data cannot cover the entire unlabeled pool well. Although
there have been lots of literature works focusing on this issue
recently, they mainly benefit from the huge additional training
costs and the artificially designed complex loss. The latter causes
these methods to be redesigned when facing new models or
tasks, which is very time-consuming and laborious. This paper
proposes a feature matching-based uncertainty that resamples
selected uncertainty data by feature matching, thus removing
similar data to alleviate the data bias issue. To ensure that our
proposed method does not introduce a lot of additional costs,
we specially design an Unsupervised Fusion Feature Matching
(UFFM), which does not require any training in our novel AL
framework. Besides, we also redesign several classic uncertainty
methods to be applied to more complex visual tasks. We conduct
rigorous experiments on lots of standard benchmark datasets
to validate our work. The experimental results show that our
UFFM is better than the similar unsupervised feature matching
technologies, and our proposed uncertainty calculation method
outperforms random sampling, classic uncertainty approaches,
and recent state-of-the-art uncertainty approaches.

Index Terms—Active learning, feature fusion, feature match-
ing, neural network, uncertainty, data bias, deep learning.
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Fig. 1: t-SNE embedding of images on PASCAL VOC 2007
training set under the task of object detection. The black
points are the distribution of the original data, and the orange
and cyan points are the sampled data by the uncertainty-
based active learning method. (a) is obtained from the baseline
approach (Entropy Sampling [1]), and (b) is the sampling
results of our method.

I. INTRODUCTION

N this era of data flooding, labeling all of them for

supervised learning is very time-consuming and laborious
and thus is not realistic [2]-[5]. Albeit exhilarating prosperity
in the line of semi-supervised [6] and unsupervised learning
[7], however, supervised learning is still better than those two
technologies in most scenarios [8]. Therefore, it is a key way
to improve the model performance to take some of the most
valuable data from the unlabeled pool for supervised learning,
which is what Active Learning (AL) does [9], [10]. Existing
active learning methods are mainly divided into three groups:
1) Uncertainty-based approaches [3], [9], [11]-[14]. This kind
of algorithm calculated the uncertainty of unlabeled data based
on the current learned model. 2) Diversity-based approaches
[13], [15]. Diversity approaches preferentially selected the
batch of data with the most dispersed feature distance. 3)
Expected model change approaches [10], [16]. They took the
processed unlabeled data (e.g., adding noise) as the inputs to
observe the changes of the model outputs. In addition to these
methods, some recent works also considered the relationship
between these sampling strategies. Multi-Criteria Active Deep
Learning [17] selected informative samples by considering
multiple criteria simultaneously (i.e., density, similarity, etc.),
and it has achieved excellent performance on the classification
tasks. In this paper, our focus is to develop an uncertainty
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active learning framework. Compared to the other two types
of approaches, the uncertainty-based method has a lower cost
when facing large-scale unlabeled data.

The uncertainty active learning approach is to select the data
with the worst confidence, which is similar to the leak filling in
the human learning process. However, because the proportion
and difficulty of categories in the training data are different,
the learned model will inevitably tend to go overboard on
partial categories. For example, if the current learned model
has a poor learning effect on the bird category, it will give a
high uncertainty to all data containing birds in the unlabeled
pool, which is the data bias problem [18]. Fig. 1 illustrates
an example of the data bias problem. We use t-distributed
Stochastic Neighbor Embedding (t-SNE) [19] to show the
distribution of data to be sampled (black dots), and we use
orange and cyan dots to represent the sampled data. The
baseline approach (i.e., Entropy Sampling (ES) [1]) sampled
a large amount of data in the sparse area (the bottom black
circle area) of the unlabeled pool but selected a few samples
in the dense area (the middle black circle area). However, Our
proposed active learning framework resamples the uncertainty
data obtained by original uncertainty approaches, and our
sampling results are obviously more able to cover the entire
unlabeled data pool.

Confidence estimation is a common manner to calculate
the uncertainty, and traditional uncertainty sampling methods,
including Least Confidence [8], [9], Margin Sampling [20],
Entropy Sampling [1], [2], etc. also belong to this. However,
when the model to be learned is deep neural networks (DNN5s),
the probability distributions obtained by the traditional un-
certainty approaches are too confident, which will lead to
the serious data bias problem and thus be even worse than
random sampling [18]. To alleviate the data bias problem,
recent literature has sought improvement from multiple per-
spectives. Wasserstein Adversarial Active Learning (WAAL)
[21] adopted a Wasserstein distance to refactor the uncertainty
calculation method to alleviate the data bias. Ensembles-
based active learning (ENS) [3] used an ensemble network to
calculate data uncertainty. Loss Prediction Module (LPM) [8]
took the unlabeled data as a part of model training to predict
target losses of unlabeled inputs. However, these methods will
introduce additional calculation and training costs. Also, they
are all highly task-related, which means that they need to be
redesigned when facing other tasks.

Unsupervised feature matching does not require any training
resources or unbearable computational costs. And it can be
used to calculate the similarity between unlabeled data [22]-
[24]. This fact motivates us to utilize feature-matching to
compute the similarity in selected uncertainty data for alle-
viating the data bias problem in uncertainty AL approaches.
To achieve this goal, we first propose Unsupervised Fusion
Feature Matching (UFFM), which can calculate the data
similarity from the perspective of multi-layer network features.
Then, we design a novel uncertainty calculation method, which
resamples uncertainty data obtained by other basic uncertainty
active learning methods and then removes the redundant
ones, thereby significantly alleviating the data bias problem.
Our method can be combined with any current uncertainty

approaches to improve their performance.

Last but not least, considering that Least Confidence, Mar-
gin Sampling, Entropy Sampling, etc., are only applicable to
classification task, we have also redesigned those methods to
make them suitable for the object detection task. In summary,
the contributions of our work are three-fold:

« We propose an efficient active learning framework, which
is to resample the selected uncertainty data based on
feature matching to alleviate the problem of data bias.
Compared with other methods that focus on this problem,
our proposed method has a lower cost and can be com-
bined with all existing uncertainty methods to improve
their performance.

e We design Unsupervised Fusion Feature Matching
(UFFM), which fuses multiple layers of features to gen-
erate descriptors for feature matching. Our approach can
perceive the details of the feature more comprehensively,
while other similar methods can only perceive very
limited information.

« We improve several uncertainty methods originally de-
signed for classification tasks such that these uncertainty
estimation manners can be adapted for handing complex
images in the object detection task. The reason behind
is that our uncertainty computation method considers
all objects in the image to calculate their uncertainty,
thereby providing a more reliable uncertainty estimation
than original uncertainty methods.

II. RELATED WORK

Here, we first review the most related works about deep
learning-based feature matching, which can be roughly classi-
fied as supervised-based and unsupervised-based approaches.
Then, we present existing active learning methods.

A. Deep learning-based feature matching

Early descriptors are often hand-designed [25], [26]. Re-
cently, many researchers focused on developing deep learning-
based methods for learning features due to their impressive
performance in diverse vision tasks. Here we mainly re-
view deep learning-based approaches, including supervised
approaches and unsupervised approaches.

Supervised approaches. To solve the overfitting issue
caused by a lack of training data, HashGAN [27] synthesized
nearly real images to augment the training set and thus could
obtain high-quality descriptors for image matching. Deep
Spherical Quantization (DSQ) [28] used a CNN to gener-
ate supervised and compact descriptors for image matching.
Meanwhile, DSQ forced the network to leverage a Lo normal-
ization to alleviate the negative effect of norm variance. Deep
Product Quantization (DPQ) [29] introduced a dictionary-
based representation to ensure a more accurate image matching
and classification under maintaining an affordable computa-
tional complexity and memory. Shen et al. [30] added two
additional fully-connected layers onto the top of the backbone
network to obtain binary descriptors, and it showed that a
simple network can also extract effective semantic information
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Fig. 2: The active learning framework consisting of Unsupervised Fusion Feature Matching (UFFM) and feature matching
based uncertainty. Our framework first selects a certain amount of uncertainty data (more than the expected of active learning)
from the unlabeled pool through a basic uncertainty approach. Then, we use UFFM to resample the above-selected data to
remove the similar data. The quit condition is the label budget is exhausted or the expected performance of the model is

reached.

through a proper design. Although supervised-based approach-
es have achieved remarkable performance, collecting large-
scale labeled datasets to train the feature matching network is a
challenging task, especially for specific fields [25]. Meanwhile,
supervised-based approaches require prohibitive training costs
but still have an overfitting risk.

Unsupervised approaches. Unsupervised feature matching
has drawn widespread attention in recent years due to its
low costs on training data. Similarity-Adaptive Deep Hash-
ing (SADH) [31] alternatively proceeded with three training
modules (i.e., deep hash model training, similarity graph up-
dating, and binary code optimization), which helped to update
the similarity graph matrix more effectively than traditional
methods. DistillHash [32] obtained the descriptor through the
relationship between the initial signals learned from local
structures and the semantic similarity labels assigned by the
optimal Bayesian classifier. Deep variational binaries (D-
VB) [33] introduced the conditional auto-encoding variational
Bayesian networks to exploit the feature space structure of
the training data using the latent variables better to unveil the
intrinsic structure of the whole sample space. However, these
unsupervised methods often require a tedious redesign when
facing different models, and it is difficult to guarantee that the
intrinsic structure of the whole sample space can be obtained
when facing different data sets. Instead, Part-based Weighting
Aggregation (PWA) [34] proposed a pure unsupervised feature
matching method, which directly aggregated the features of
the pre-trained model. However, from their experiments, we
find that this type of method cannot fully perceive the features
when the difference between the pre-training dataset and the
images to be matched was large. For addressing this problem,
in this work, we propose to fuse the middle layer and the lower

layer features to get a more complete descriptor for images.

B. Active learning approaches

Uncertainty-based active learning approaches. As one
of the most commonly-used methods in active learning,
uncertainty-based methods are prone to data bias problems
when facing large-scale data or DNNs. Apart from the above
classical approaches, some recent advanced methods have
achieved different performance improvements from multiple
perspectives. Modeling Active Learning (SMAL) [11] com-
bined uncertainty, diversity, and density via sparse modeling
to alleviate the data bias problem. However, the sparse rep-
resentation is challenging to guarantee stability when facing
large-scale data. Batch Mode Active Learning (BMAL) [12]
started with a feature descriptor extraction coupled with a
divergence matrix to alleviate the problem of redundancy
between unlabeled points. However, the traditional feature
extraction method used in BMAL can hardly contribute to
DNNs. Loss Prediction Module (LPM) [8] was jointly trained
with the target model to predict the target loss of unla-
beled inputs, but it increases the costs of network training.
Localization-Aware Active Learning (L-Aware) [4] proposed
a localization tightness and localization stability to calculate
the uncertainty. However, this work requires the network to
provide intermediate prediction results (e.g., predictions by
Region Proposal Network (RPN) in Faster R-CNN [35]),
which means that this method cannot be used in a model
without intermediate prediction (e.g., one-stage object detector
[36]-[38]). Ensemble-based method [3] used five committee
networks to calculate uncertainty, which tends to be impracti-
cal in the existence of large-scale unlabeled data and deep
neural networks. In this paper, we use a feature matching
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algorithm to resample uncertain data obtained by uncertainty
AL methods. Our work is based on a pre-trained model and
thus does not introduce any training costs. Meanwhile, our
method can be combined with any existing uncertainty AL
methods and thus has an excellent generalization ability.

Diversity-based active learning approaches. Diversity-
based approaches preferred to select the batch of data with
the most dispersed feature distance. Patra and Bruzzone [13]
used a kernel k-means clustering algorithm to minimize the
redundancy and keep the diversity among these samples after
selecting a batch of uncertain samples. Yang et al. [39] re-
garded active learning as a discrete optimization problem, and
they imposed a diversity constraint on the objective function
to make the selected data as diverse as possible. The Core-set
approach [40] improved the competitiveness of selected data
by constructing a core subset. Although these methods have
shown to be effective for simple and low-scale features, our
empirical analysis suggests that they do not scale to learn more
complex and large-scale features. We will compare this type
of method and prove our point in the experiment.

Expected model change active learning approaches.
Expected model change approaches take processed unlabeled
data (e.g., adding noise) as inputs to observe the changes of
the model outputs. Settles et al. [41] estimated the value of
unlabeled data by measuring the changes of model parameters,
but it ignored the underlying data distribution. To address
this issue, Freytag et al. [42] directly calculated the expected
change of model predictions and marginalized the unknown
label. Furthermore, Kéding et al. [43] proposed a new gener-
alization of the Expected Model Output Change principle and
thus this expected model change active learning approaches
can be used in DNNs. However, compared with uncertainty-
based methods, this kind of method has a higher cost, espe-
cially when faced with DNNs and large-scale unlabeled data.

III. OUR METHOD

This section presents the implementation details of our pro-
posed framework. First, we will introduce our Unsupervised
Fusion Feature Matching (UFFM), which can remove similar
data in the sampling results obtained by uncertainty active
learning approaches. Then, we will propose a novel uncertainty
calculation technology coupled with UFFM to calculate the
uncertainty of unlabeled data. The former can obtain the data
with higher uncertainty, while the latter can further eliminate
the data bias in the above-selected data. We finally introduce
the implementation details of the proposed active learning
framework based on special tasks, including the classification
task and the object detection task. Fig. 2 shows the schematic
illustration of our proposed deep active learning method.

A. Unsupervised Fusion Feature Matching (UFFM)

Selection of layers. For DNN models, the lower layers often
detect the surface features of objects (e.g., edges, textures,
shapes, etc.), while the higher layers reflect more abstract
information (e.g., classification, etc.), and this has also been
concluded in many works [4], [34]. Unlike existing methods
that only use the high layer features of the pre-trained model

(c) 24-th  (d) 32-th  (e) 40-th () 48-th

(a) 8-th  (b) 16-th

Fig. 3: The feature visualization of different channels in
different layers. From top to bottom are blockl_conv2,
block2_conv2, block3_conv3, block4_conv3, and
block5_conv3. The wused model is VGG16 pre-trained
on ImageNet, and the test image is selected from OxfordSk.

for unsupervised feature matching, we choose features at the
lower and middle layers in this paper. Specifically, for the
I-layers model £!_,, we select the i’-th layer £; and the
t"-th layer L;» for unsupervised feature matching, where
1 <4 <i” <1, 4 and 7" are determined according to the
used model.

Such selection of layers is mainly based on two reasons.
The first reason is that the high layer of the pre-trained model
tends to provide very limited useful features, because the
pre-training dataset and the images to be matched may be
very different, and the pre-trained model cannot recognize the
abstract features of the images to be matched. To prove our
point, we show the inference results of images in Oxford5k
through the model pre-trained by ImageNet [44], where the
similarity between OxfordSk and ImageNet is very limited.
Fig. 3 shows that the high layer of the pre-trained model can
hardly detect the abstract features of the image to be matched.
Another reason is that the neural network has information loss
during the downsampling, and thus the selection of both the
lower and middle layers at the same time helps to obtain the
complete features of the image to be matched. We will further
discuss the benefits of fusing different layers in more detail in
the ablation study.

Selection of channels. For the above-selected layers, we
only choose partial channels for feature matching. It has three
main considerations: 1) Feature maps of DNN models usually
have many channels, and the direct use of all these chan-
nels for feature matching undoubtedly requires a very large
computational cost. 2) As high-dimensional features, more
channels are more like to contain noise, which is obviously
not expected for the feature matching task. 3) Much previous
literature [34] argues that channels with larger variances are
more discriminative. To verify this view, we visualize the
channels with different variances, as shown in Fig. 4. From
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these visualization results, we can find that channels with
larger variances can often detect fixed information (see from
two to four columns), while channels with small variances
can hardly reflect any features (see the last three columns).
Therefore, this paper only uses channels with larger variances
for feature extraction. For the selected layer £;, we suppose
that its shape is h; x w; X ¢;, where ¢; is the number of channels,
and h; and w; are the height and width of channels. We first
calculate the variances of all channels V; = vy, va,,v. in L,
where the i-th channel variance v; can be calculated as:

1 Jn _
mxn Z Z(zém,n) —at)?, (1)

m=1n=1

Uy =

where xE ) is the value of position (m,n) at the ¢-th channel.

m,
2¢ is the average variance of the i-th channel, and it can be
calculated by:

_ 1 hy L
1 — 2
= ;;(az(mm) : 2)

Then we sort the variances of all channels in descending
order and select the top k channels for unsupervised feature
matching. k is determined by the used model, and we will
discuss it in more detail in the ablation study.

Feature fusion. Since a single layer cannot extract features
completely, our UFFM uses the lower and middle layer chan-
nels to describe the features. In recent years, many works have
used the features of convolutional layers for feature matching.
Compared with fully-connected layers, the convolutional lay-
ers is more interpretable. However, instead of using channels
of a single convolutional layer, we also choose that of the
lower layer to ensure the completion of the image description.
Pooling layers are pooled from the convolutional layer, so it
can keep the features of the convolutional layer. Meanwhile,
the relationship between the lower pooling layer and the higher
convolutional layer of the current deep neural network is often
multiple, so the fusion of these two types of layers will be
reasonable and simple.

For the selected lower pooling layer £;; and the middle
convolutional layer £;, we suppose that their shapes are
hy X wp X ¢y and hypr X wpr X ¢y respectively, where
hi/[hyr = wy Jwy = N, N € (1,2,3,...). For these two
selected layers, we first pool Ly to the same size as L.
Then we select the corresponding meaningful channels from
the above layers and aggregate them. SPoC [23] argued that the
aggregation of the convolution layer channels could be directly
based on a sum pooling aggregation, without the need to use
a fusion method like Fisher Vector and triangular embedding,
since the convolutional layer features of deep neural networks
were sufficiently discriminative. This paper also does not use
the traditional aggregation method. We adopt the approach of
a bitwise addition to aggregate £/ and L;~ into the shape of
hyr X wps X (¢ + ¢y ). We show the details of feature fusion
in Fig. 5. We will further prove the effectiveness of this design
in ablation study, especially the selection of fused features.

Post-processing of fused features. For the image I, we
can get its fused features f; € RMxwwrx(cr+er) through
above steps. We first perform a Ily-normalization on f; to

296-th 396-th 510-th 164-th 359-th 448-th

input 118-th 296-th 488-th 80-th 270-th 497-th

input  27-th  319-th 466-th 10-th 270-th 309-th

118-th 296-th 488-th 1-th  18-th 419-th

input

input

Fig. 4: The channels with different variances. Two to four
columns are the three channels with the largest variance,
and the last three columns are the ones with the smallest
variance. The pre-trained model used here is VGG16 trained
by ImageNet, and input images are selected from OxfordSk.

VGG16
block3 block4
[inputs | [ block1 ][ block2 ] blocks
top k Post- descri-
channels processing ptor
Conv  Maxpool fusion

Fig. 5: The details of feature fusion. The network we used in
this paper is VGG16, and the fused features are block3_pool
and block4_conv3.

obtain a new feature map, f;r = ijﬁ Then, we use PCA
(Principal Component Analysis) to reduce the dimension of
the normalized features, and denote the result f7, fr €
Rhvr xwinx(etenn)’ where hy', wye’ and (cp + ¢pr) can be

adjusted according to the expected complexity.

B. Statement for data bias in active learning

Let Q (s, and P, ,) denote the distribution of unlabeled
data pool and the selected data obtained by an AL method,
and suppose their densities are ¢(z,y) = q(y | z)q(z) and
p(z,y) = p(y | x)p(x), respectively. We use H(h ~ H) to
represent the optimal sampling for the original distribution H
under the condition of a given sampling rate, where h obey the
distribution H. Based on this definition, H((x,y) ~ P(z,))
can be calculated as:

Cfaly | Da@ ey | Da@)ded, . O
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Algorithm 1 Feature Matching Based Uncertainty

Input: D/ - T, 7", (T <T"
Output: S,
1: Compute the uncertainty of DL ;, and select 7" data,
DL =UUpy ), T");

2:q=0

3 form=1toT" do

4: Add d,, to the set of ST ;
5: Compute the similarity,

Mdm = UFFM(dm7d(m+1)~T”);
Mark the data in d(,, 1)~7~ as similar or dissimilar
according to My, ;

6 forn=m+1toT"” do
7: if d,, and d,, are dissimilar then
8 Add d,, to the set of Sth'l;
9: q=q+l;
10: if ¢ > T’ then
11: break;
12: end for
13: end for
’H((x,y) ~ P(m,y)) = 4)
— [[aly | z)q(z) n(p(y | 2)p(x))d.d,
We then use KL divergence Dgr(Q || Play)) to
describe the extent to which P, .y covers Q; ,):
Drr(Qy || Play)) =
H((w,y) ~ Pu ) — H((z,y) ~ Q(;c,y)) = (5)
IFaty ) 5 .,

Therefore, we can obtain the optimal active learning query
function Q oz by minimizing D1 (Q 2,y || Pla,y)):

Qar = arg minDg 1(Qz,y) || Pay)) - (6)
(z,y)

However, from an example shown in Fig. 1, we can see
that P, is biased towards partial categories in practice.
Assuming that the optimal sampling of training data under
given conditions ()7 . Obviously, in P, ), some high uncer-
tainty data Q47 \H((2,y) ~ P(z,y)) are not queried by Qar,
but some low uncertainty data H((z,y) ~ Qa.))\Q47 are
selected instead.

C. Feature matching based uncertainty

The existing uncertainty based active learning approaches
are prone to suffer from the data bias problem since the
learned models often have a preference for partial data. To
alleviate this problem, we propose a novel uncertainty method,
which improves the original uncertainty approach via feature
matching to get the uncertainty of unlabeled data. Specifically,
we first use the original uncertainty approach to get the
uncertainty of the unlabeled data. Then, we use the UFFM
proposed in this paper to resample the selected data by the
original approach to alleviate the data bias problem.

Let D] denote the unlabeled dataset, and 7" is the amount
of data. Then, the original active learning method selects fixed
number of data to support the model training:

DL, =U(Upr ), T') (7)

where U is the original uncertainty approach, which can
calculate the uncertainty of unlabeled data based on current
learned network. U means to select 7’ data from DI ;
according to the uncertainty. D, = {d, ds, ,dp} is selected
data, and 7" is the expected number of data to be selected at
the current stage. Unlike original approaches, our proposed
method first select 7" data from the unlabeled pool:

DY\ =UUpr ) T") ®)

where 7" > T'. DI, = {dy,ds,...,dr~} denotes the
selected 7" unlabeled data All data in DT are sorted
according to their uncertainty scores. Taking the j-th data d;
in DtT:”1 as an example, we calculate the similarity through
UFFM:

My, =UFFM(d;,dgj11y~1r) 9

where d(j+1)~T” = [dj+1, dj+2, . Y dTH].
UFFM(dj,d1)~7) can calculate the similarity between
dj e R™Ps and d(j+1)~T” S R(T”_j)XDS, where D, is
the dimension of the descriptor. Specifically, we obtain the
distance through a matrix multiplication d; x [d(jH)NTu]T
and the shape of result is R*(T”~9)_ We binarize the
similarity by marking 10% data in d(j4q)~7» with the
smallest distance as similar and the others as dissimilar.
Lastly, we add the data that 1s not similar to d; to the AL
results S, . For all data in DY}, we perform the above steps
in turn until the amount of data reaches the expected number
T’. We use pseudo code to show our proposed sampling
strategy, see Algorithm 1 for more details.

In addition, for an actual application (e.g., image classifi-
cation or object detection) of active learning, 7" is often a
fixed value. However, 7" is a hyperparameter in our proposed
framework. Here we define the Sampling Rate (SR), SR =
TT—,,,. Obviously, SR=1 means that our framework degenerates
to the original uncertainty methods. However, if SR is large,
the uncertainty of the data selected by our method may be
lower. We set SR = 1.2 in this paper (i.e., T = 1.2 x T"),
and the influence of SR has been further discussed in ablation
study.

i

D. Further design

We will verify our proposed method on image classification
and object detection. Because these two tasks cover classifica-
tion and regression, the generalization of our proposed method
can be fully illustrated.

Further design for image classification. Least Confidence
(LC), Margin Sampling (MS), and Entropy Sampling (ES)
are classic uncertainty methods for the image classification
task. Least Confidence calculates the uncertainty of unlabeled
data through the maximum predicted probability, while Margin
Sampling and Entropy Sampling consider the first two and all
probabilities, respectively. For the image [ in the dataset with ¢
classes, Least Confidence uncertainty I, Margin Sampling
uncertainty Isg, Entropy Sampling uncertainty Ipg can be
calculated as follows:

Inc = (1—0),s.t. C = argmax(p;) , (10)

i€[1,...,c]
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Ins = (C—=C), s.t. C = argmax(p;), €' =
i€[l,...,c]

argmax (p;) ,
i€l,...,d\C
(11

Igs = Zpi log(p:) » (12)
i=1

where p; represents the confidence of the i-th class. Further,

we can use Algorithm 1 to obtain feature matching based

uncertainty.

Further design for object detection. The above three
classic uncertainty methods do not consider the situation that
an image may contain multiple objects to be recognized in
object detection. Hence, we redesign these three methods to
make them more suitable for object detection. Our redesigned
methods include Redesigned Least Confidence (RLC), Re-
designed Margin Sampling (RMS), and Redesigned Entropy
Sampling (RES), and their uncertainties Irrc, Irys and
IrEs can be calculated as follows:

nr

Iric = Z (1 — @) ,s.t. Cj = argmax(pl) ,  (13)
= i€[1,...,c]
nr _ Py
lrms = Z(Cj - Cj),
= ™ (14)
sit. C; = argmax(p!),C; = argmax (p])
i€[l,...,q] i€l,...,d\C;
ny c ] )
Irps =YY pllog(p)) (15)
j=1i=1

where n; is the number of objects in image I. pg represents
the confidence that the j-th prediction box in the image is ¢-
th class. Similarly, we use these redesigned methods coupled
with Algorithm 1 to obtain feature matching based uncertainty.
Apart from the above three classic uncertainty methods, we
also compare the state-of-the-art uncertainty approaches, see
experiments for more.

IV. EXPERIMENTAL RESULTS

In this paper, we propose a method that can alleviate the
data bias problem in active learning. To verify the effectiveness
of our work, we have conducted many experiments. First,
we introduce the datasets for feature matching, classification,
and object detection. Next, we verify our proposed UFFM
on the task of feature matching. Then, we prove that our
proposed active learning framework can achieve competitive
performance on the task of classification and detection. Finally,
we discuss the design details of the proposed framework and
its advantages in mitigating data bias through the ablation
study.

A. Datasets

1) Datasets for feature matching: OxfordSk [52]. The
Oxford buildings dataset consists of 5,026 images collected
from Flickr by searching particular Oxford landmarks. This
dataset includes 11 different landmarks, and each landmark

|

inputs matching results

Fig. 6: Matching results by UFFM. The query images and re-
sults in the first two lines are from Oxford, and the other lines
are from Paris. The pre-trained model here is VGG16, and the
selected fusion features are block3_pool and block4_conv3.

TABLE I: Performance comparison between pure unsuper-
vised feature matching approaches (P) and fine-tuning based
image matching approaches (F) under different feature de-
scriptors (d). The pre-trained model here is VGG16, and the
selected fusion features are block3_pool and block4_conv3.

Oxford5k Paris6k
method

P F P F
NetVLAD [24] 128 555 635 643 735
MAC [45] 128 557 768 706 78.8
ours 128  56.2 - 709 -
SPoC [23] 256  53.1 - - -
R-MAC [45] 256 56.1 782 729 835
RVD-W [46] 256 60 - - -
Razavian et al. [22] 256 - 67 - 533
ours 256 625 - 733 -
CroW [47] 512 70.8 - 797 -
InterActive [48] 512  65.6 - 792 -
PWA [34] 512 72 878 823 949
CNNBoW [45] 512 - 797 - 838
ours 512 732 - 845 -

contains 5 query images with ground truth. For landmarks in
each image, it contains one of the following possible labels:
i) Good. It means that the landmark is very clear. ii) OK. It
represents that at least 25% of the landmark is clear. iii) Bad.
This means the landmark is not present. iv) Junk. It represents
that less than 25% of the landmark is visible. Paris6k [53].
The Paris dataset consists of 6,412 images collected from Flick
by searching Paris landmarks. The label format of this dataset
is the same as the OxfordSk. Both Oxford5k and Paris6k are
standard datasets for evaluating feature matching methods.

2) Dataset for classification: CIFAR-10 [54]. The CIFAR-
10 dataset consists of 60k color images with 10 categories, (6k
images per category). The dataset has 50k training images and
10k test images. Fashion-MNIST [55]. The Fashion-MNIST
is a fashion product dataset, including 60k training images and
10k test images. The dataset has 10 categories, which are more



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

T T T T T T T T T T T
Incept ion\*’f}‘ MobileNetV3 [ResNet-50
0.90 4 b 0.90 -1
0.90 4 h
0.854 N 0. 85 1
> > - i =
g $0.85 % g
] g 5
o a —=— random 1 13} [—m— random 131 i —=— random 1
S 0.80 c g c S 0.80 1C
—h— MS (—he— MS —h— MS
—¥— ES —v— ES —¥— ES
#— Patra and Bruzzone 0.80 1 Patra and Bruzzonel Patra and Bruzzone
- Kading et al. Kading et al. - Kading et al.
0.75 —>— SMAL " —>— SMAL 0.754 3 m
—— Core-set —8— Core-set
I—k— ENS |—k— ENS
—@— FKSS —e— FKSS
[—o— UFFM_ES |-o— UFFM_ES —— UFRM_ES
0.70 T T T T T 0.75 T T T T T 0.70 T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

label budget

label budget

label budget

Fig. 7: Comparisons under Metric 1 (i.e., performance under fixed labeling budget) on CIFAR 10. The pre-trained model we
used here is VGG16 trained by ImageNet. We repeat each experiment five times and report standard deviation by error bar. The
evaluation networks used here are InceptionV3 [49], ResNet-50 [50], and MobileNetV3 [51]. The compared baselines included
classic uncertainty methods (LC [9], MS [20], ES [1]), recent uncertainty-based methods (ENS [3], Patra and Bruzzone [13],
SMAL [11], and FKSS [18]), recent diversity-based methods (Core-set [40]), recent expected model change methods (Kiding
et al. [43]), and random sampling. The basic uncertainty approach combined with UFFM is Entropy Sampling (ES).

difficult than the original MNIST dataset. Both CIFAR-10 and
Fashion-MNIST are classic classification datasets.

3) Dataset for object detection: PASCAL VOC 2007 [56].
VOC 2007 contains 20 object categories, and it includes 2.5k
training images, 2.5k validation images, and S5k test images.
PASCAL VOC 2012. VOC 2012 is an augmented version
of VOC 2007, which contains about 5k training images and
5k validation images. VOC 2007 and VOC 2012 are both
standard datasets commonly used for vision tasks, including
classification, detection, segmentation, etc.

B. Evaluation of our proposed Unsupervised Fusion Feature
Matching

Our Unsupervised Fusion Feature Matching (UFFM) is
a feature matching technology, which can cooperate with
original uncertainty approaches to calculate the uncertainty of
the unlabeled data to alleviate the data bias problem. We follow
the evaluation protocol of Oxford and Paris to crop the image
with the provided bounding box. The matching results by our
UFFM are shown in Fig. 6.

Meanwhile, we report the quantitative matching results
under the metric of mAP in Table I. Here we mainly compare
two lines of methods using pure unsupervised feature matching
[23], [24], [34], [45], [47] and starting with unsupervised
coupled with fine-tuning [22], [34], [45]. From the quantitative
results in Table I, we have the following observations: 1)
Our UFFM outperforms existing pure unsupervised feature
matching in all descriptor dimensions. We argue that this
mainly benefits from reasonable channel selection and fusion,
and we will prove this point in the ablation study. 2) Although
our method is slightly inferior to fine-tuning-based approaches,
our training and matching costs are far less. Meanwhile, con-
sidering that our method is mainly designed for the uncertainty
calculation of active learning, we believe that this small gap
does not significantly affect active learning. 3) Generally, fine-
tuning-based methods outperform pure unsupervised methods.

TABLE II: Results under Metric 2 (i.e., labeling budget
under expected performance) on Fashion-MNIST. Similarly,
we repeat each experiment five times and report the average
budget.

InceptionV3 [49] ResNet-50 [50] MobileNetV3 [51]

method

085 09 095 08 09 095 08 09 095
random 34 44 52 42 52 58 36 46 52
LC [9] 30 40 48 38 50 56 32 40 48
MS [20] 28 38 48 36 48 54 30 38 48
ES [1] 28 36 46 36 46 54 30 36 48
Kiding et al. [43] 28 36 44 36 44 54 28 36 46
SMAL [11] 28 34 44 36 44 54 28 36 44
Core-set [40] 26 34 44 34 44 54 28 36 44
ENS [3] 26 34 42 34 44 52 28 36 42
FKSS [18] 26 34 42 32 42 52 26 34 42
ours 20 30 40 30 40 50 20 30 40

It shows that the pre-trained model cannot fully sense the
features of the image to be matched, especially the abstract
features. This is consistent with the conclusion we observed
in Fig. 3. Therefore, this further illustrates the rationality of
our abandonment of the high layer that can only provide
limited features. 4) We argue that our method is better than
other methods in helping to alleviate the data bias problem,
because our method performs more complete feature matching
through feature fusion, and these are exactly the features that
the model wants to learn. That is, our method will examine the
feature similarity among unlabeled data more comprehensively
when calculating the uncertainty. Instead, other approaches
only match the very limited features provided by the high
layer.

C. Evaluation of our active learning method on the image
classification task

Experimental setting. We explore three classic classifica-
tion networks including InceptionV3 [49], ResNet-50 [50], and
MobileNetV3 [51] as evaluation models of the active learning.
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Fig. 8: Performance on PASCAL VOC 2007 under fixed labeling budget. The pre-trained model we used here is VGG16 trained
by ImageNet. We repeat each experiment five times and report standard deviation by error bar. The evaluation detectors used
here are EfficientDet [36], Faster R-CNN [35], and SSD [37]. The compared baselines included classic uncertainty methods
(RLC [9], RMS [20], and RES [1]), recent state-of-the-art methods (Patra and Bruzzone [13], L-Aware [4], BMAL [12], and
LPM [8]), and random sampling. The basic uncertainty approach combined with UFFM is Redesigned Entropy Sampling

(RES).

TABLE III: Labeling budget under expected performance. The
datasets we used here are PASCAL VOC 2007 and VOC 2012.
Similarly, we repeat each experiment five times and report the
average budget.

EfficientDet [36]  Faster R-CNN [35] SSD [37]
method

07 075 08 07 075 08 055 060 0.65
random 2.8 40 52 30 4.0 5.2 32 42 5.2
RLC [9] 24 36 46 28 3.6 4.6 2.8 3.6 4.8
RMS [20] 24 34 44 26 3.6 4.6 2.6 3.6 4.8
RES [1] 24 34 44 26 3.6 44 24 3.6 4.6
BMAL [12] 24 34 44 24 3.6 44 24 34 4.6
LPM [8] 24 32 42 24 34 44 24 34 44
L-Aware [4] 22 32 42 24 32 42 22 32 44
ours 2.0 30 40 20 3.0 4.0 2.0 3.0 4.0

For all three classification networks, their hyper-parameters
are: optimizer is SGD, weight_decay = 0.00004, decay factor
of learning rata = 0.94, learning_rate = 0.01, momentum = 0.9,
and batch size = 32. The basic settings of active learning are:
the pre-trained model is VGG16, and the descriptor length is
256. We evaluate different active learning methods using the
following two metrics:

Metric 1: performance under fixed labeling budget. A larger
score under Metric 1 indicates a better active learning method.
If the selected data requires a massive amount of labeling cost-
s, this active learning algorithm loses its meaning. Therefore,
we set the labeling budget for all active learning frameworks
to be less than 50% of the original unlabeled data for fair
comparisons.

Metric 2: labeling budget under expected model perfor-
mance. The less the labeling costs are, the better the sam-
pling approaches are. Hence, a smaller score under Metric
2 indicates a better active learning framework. The expected
performance should be adjusted according to the model used,
and please refer to Table II for details.

Compared methods. We compare our proposed method

against the following baseline methods: 1) Random sampling:
sampling the data uniformly at random from the unlabeled
set. 2) Classical uncertainty approaches: Least Confidence
(LC) [9], Margin Sampling (MS) [20], and Entropy Sampling
(ES) [1]. 3) Recent SOTA methods: Patra and Bruzzone
[13] used a kernel k-means clustering algorithm to minimize
the redundancy and kept the diversity among these samples
after selecting a batch of uncertain samples. To highlight the
advantages of our method in alleviating data bias, the baseline
method [13] used the same uncertainty calculation and feature
extraction mechanism as our method. The only difference
is that Patra and Bruzzone [13] obtained the final sampling
results through the clustering algorithm, while our proposed
method uses a feature matching algorithm. Note that unlike
the original paper [13], we use k-means++ as the clustering
algorithm and run it multiple times to get better performance.
Ensembles-based active learning (ENS) [3] used an ensemble
network to calculate data uncertainty. Note that the training
data in the first stage of this original paper is generated on
the basis of labels, and the purpose is that the initial sets are
balanced over all classes. But the real raw unlabeled data will
not have any label information, so our framework is purely
random sampling in the first epoch. For the sake of fairness,
the data of the first epoch of ENS in this paper is also a purely
random sampling. Fisher Kernel Self Supervision (FKSS) [18]
proposed a low-complexity feature density matching method
and utilized it to calculate the uncertainty of unlabeled data.
Similarly, for fairness, we use the complete standard dataset
when comparing this method, rather than using only partial
data of the dataset in the original paper to create artificial
data. The Core-set approach [40] is a diversity-based active
learning technology, and we follow the training tricks and
hyperparameters in the original paper. Kéading et al. [43] is an
expected model change AL technology. Following the paper
[43], we also use a stochastic gradient approximation with
just a single sample to estimate model parameter updates, and
the models we use are all DNNs to ensure that the baseline
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can play its advantages, thereby ensuring a fair comparison.
Sparse Modeling Active Learning (SMAL) [11] combined
uncertainty, diversity, and density via sparse modeling to
alleviate the data bias problem. SMAL [11] divided the dataset
into a seed set (labeled set), an unlabeled set, a validation set,
and a testing set. For a fair comparison, we use the randomly
selected data in the first epoch as the seed set and then follow
the original paper to set other details of this method.

Results and analysis. We conducted experiments on CIFAR
10 and Fashion-MNIST with the above two metrics, including
Metric 1 and Metric 2. Our proposed framework and other
compared baseline methods follow the same training process.
We first randomly sample 5% of the dataset (about 3k images)
as the training data for the first epoch. Then for each subse-
quent epoch, we use the active learning framework to sample
5% of the dataset and use it to continue training the model.
Finally, for Metric 1, we repeat active learning sampling and
training until the sampled data reaches the fixed labeling
budget. For Metric 2, we repeat until the trained model reaches
the expected performance. The basic uncertainty approach
combined with our proposed method UFFM here is Entropy
Sampling (ES). We report the result on CIFAR 10 and Fashion-
MNIST in Fig. 7 and Table II, respectively. And from these
results, we have several observations:

1) Our method outperforms all baselines by a clear margin.
Specifically, our framework has a higher performance under
a fixed labeling budget (see Fig. 7), and our framework
requires less labeled data under the expected performance (see
Table II).

2) Considering that training data at the first stage is random-
ly sampled, we repeat each experiment five times and report
the standard deviation (error bar in Fig. 7) for comparisons.
From the results, we can clearly find that our method is more
stable than compared methods. Note that the stability of active
learning is related to the degree of data bias in each epoch.
Hence, it indicates that our framework is superior to other
methods in alleviating the data bias problem. We will prove
this in detail in the ablation study.

3) As the fixed labeling budget or expected model perfor-
mance grows, the improvement of our method over compared
methods tends to decrease, as shown in Fig. 7. However, the
application scenarios of active learning often have a small
labeling cost. Hence, we believe that our method should have
a superior performance in real cases.

4) Under part expected performance, there will be the epoch
gap between our proposed framework and comparing baseline,
our approach uses fewer epochs to achieve sample perfor-
mance (e.g., our proposed AL framework with MobileNetV3
uses 4.0 epochs while the baseline of random sampling needs
5.2 epochs to meet the expected performance of 0.95). The
epoch gap shows that our method can use less labeling budget,
which means that more training resources can be saved.

D. Evaluation of our active learning method on the object
detection task

Experimental setting. Here, we consider multiple detec-
tors, including EfficientDet [36], Faster R-CNN [35], and

TABLE 1IV: Performance with 256-dimensional descriptors
under different layer selections. The labeling budget used here
is 0.5, and the experiment follows the settings in Fig. 7 and
Fig. 8. The pre-trained model used here is VGGI16 trained
on ImageNet. Lower layer, middle layer, and high layer are
block3_pool, block4_conv3, and block5_pool, respectively,
and our method is the fusion of lower and middle layers.

classification detection

ResNet-50

feature matching
Oxford Sk Paris 6k EfficientDet (D0)
mAP (%) mAP (%) mAP (%) APS APM APL

lower layer only 60.9 715 88.6 71.8 409 81 891
middle layer only 61.6 72.1 89.1 78.1 £33 871 895
high layer only 60.2 70.1 874 76.9 251 816 887
ours 62.5 733 90.0 789 49 836 903

method

accuracy (%)

SSD [37]. The settings of EfficientDet are: the backbone
is EfficientDet-D0, the optimizer is SGD, initial learning
rate=0.08, the warmup learning rate= 0.001, warmup steps
=2500, and batch size = 128. The hyperparameters of Faster
R-CNN are: the backbone is ResNet-101 [50], the optimizer
is SGD, weight_decay = 0.00005, learning_rate = 0.0001, and
batch_size = 32. The settings of SSD include: the backbone
is MobileNetV2 [57], momentum is 0.94, and batchsize = 24.
Moreover, the metrics used in the image classification task are
also adopted in this section.

Compared methods. The following methods are employed
for comparisons: 1) Random sampling. 2) Redesigned classical
uncertainty approaches: RLC, RMS, and RES. 3) Recent
SOTA methods: Patra and Bruzzone [13] is a diversity-based
AL approach, and the comparison details are described in the
previous section. Loss Prediction Module (LPM) [8] trained
with the target active model, and it could be used to predict
the target loss of unlabeled inputs. We use the same module
and model connected to three layers of the target model for
all the detectors. The internal structure and module training
follow the settings in the original paper. Localization-Aware
(L-Aware) [4] AL method used the localization tightness and
the localization stability to calculate uncertainty. For Faster
R-CNN, we use the region proposals provided by its RPN
to calculate Localization tightness. While for EfficientDet and
SSD, we directly calculate the localization stability since they
do not have an intermediate proposal. BMAL [12] was a batch
mode AL technique, which started with a feature descriptor
extraction coupled with a divergence matrix to alleviate the
problem of redundancy among unlabeled points. We follow
most of the experimental details of BMAL [12]. For example,
the Gabor filter is applied to the images for feature extraction,
and PCA is used to reduce dimensionality. To reduce the
computational costs, we follow the original paper to utilize
a sub-sampling strategy. Also, we use BMAL [12] combined
with the method we proposed in Section III to make it more
suitable for object detection.

Results and analysis. We conduct solid evaluations on our
active learning framework in terms of the object detection task
and utilize two metrics (i.e., Metric 1 and Metric 2) proposed
in Section 4.3 for comparisons. For Metric 1, we regard the
training set of PASCAL VOC 2007 (about 2.5k images) as the
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Fig. 9: Matching results with 256-dimensional descriptor under
different selected top-k channels with maximum variances.
The labeling budget used here is 0.5, and the experiment
follows the settings in the above sections.
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Fig. 10: The y-axis denotes the number of objects at each
category in all sampled images under a specific epoch number.
Here, in each bar, we also show the corresponding classifi-
cation accuracy (e.g., 55.9% at the epoch 2 with SR = 1.2)
of our method under a specific epoch number and a specific
sampling rate (SR). The labeling budget used here is 0.5,
and the experiment follows the settings in Fig. 7 and Fig. 8.
The dataset and learned model are PASCAL VOC 2007 and
EfficientDet, respectively. The pre-trained model for feature
matching is VGG16, and block3_pool and block4_conv3 are
selected features.

original unlabeled data VOC%5%. We let 5% of VOC%5* as
the training data for the first epoch, and in each subsequent
epoch, we select 5% of the original unlabeled data as the new
training data. The above step is repeated until the labeling
budget is exhausted. While for Metric 2, we unite the train
set of PASCAL VOC 2007 (about 2.5k images) and PASCAL
VOC 2012 (about 5k images) as the original unlabeled data
VOCT5%. We let 5% of VOCT* as the training set for the
first epoch, and in each subsequent epoch, we select 5% of the
original unlabeled data as the added training data. The above
step is repeated until the trained model reaches the expected
performance. The results of Metric 1 and Metric 2 are reported
in Fig. 8 and Table III, respectively. The basic uncertainty
approach combined with our proposed method UFFM here is

Redesigned Entropy Sampling (RES). From the above results,
we can conclude that:

1) Our method outperforms all baselines on the object detec-
tion task. Meanwhile, object detectors we used in experiments
cover two-stage (Faster R-CNN) and one-stage (EfficientDet
and SSD), which shows that our framework is model-agnostic
and thus can assist networks with any structure perform active
learning.

2) From the standard deviation reported in Fig. 8, we find
that our method is more stable than all baselines. We will
demonstrate in the ablation study that this advantage is mainly
due to the fact that our method can alleviate the data bias
problem.

3) As the fixed labeling budget or the expected model
performance increases, some uncertainty methods are even
worse than random sampling. The main reason is that the
problem of data bias has reached a serious degree. When the
sampling epochs increase, the gap between our method and
other methods is also decreased. However, we think this is
normal. As active learning progresses, there is less and less
valuable data, so the scope for model improvement will be
limited.

4) The epoch gap of training in the image classification task
can also be observed here.

E. Ablation study

Better layer combination. UFFM in this paper aims to
fuse the features of different layers to perceive richer infor-
mation. To further demonstrate the effectiveness of this fusion
mechanism, we report the performance under different layer
combinations in Table IV, and we find that our proposed
method outperforms other approaches, especially for small
objects. It demonstrates the advantages of our UFFM method
in detailed feature perception. Meanwhile, we can also find
that our method is the best, in which the middle layer is
better than the lower layer, and the high layer is the worst.
The main reason is that although the lower layers can perceive
more features, it also introduces lots of noise. Since the pre-
training dataset (ImageNet) is different from the target dataset
(Oxford5Sk, Paris6k, CIFAR 10, PASCAL VOC, etc.), the
perceptible features of the high layer are also limited. Note
that the results in Table IV are not to deny the advantages of
high layer features in the supervised task. It only shows that in
the scene where the intersection of the images to be processed
and the pre-training data is small, the high layer features are
weaker than the middle and lower layer features.

Suitable channel selection. Many previous works have
found that the perception ability of a specific channel is
relatively fixed, and channels with larger variances perceive
more information. In Fig. 9, we report the results under the
top-k channels with the largest variances. We find that too
small channel numbers cannot perceive complete information,
while too larger channel numbers introduce additional noise.
Based on the experimental results in Fig. 9, we empirically
set the number of channels as 25.

More optimized sampling distribution. In Fig. 10, we
report the sampling distribution of different object categories
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TABLE V: The performance under redesigned uncertainty
approaches and original uncertainty approaches. The dataset
used here is PASCAL VOC 2007. OUA and RUA are original
uncertainty approaches and redesigned uncertainty approaches,
respectively.

labeling budget

method backbone

02 03 04 05

EfficientDet [36] DO 625 738 762 711

OUA  Faster R-CNN [35] ResNet-101 598 689 727 746
SSD [37] MobileNetV2  51.1 542 569 582
EfficientDet [36] DO 657 755 776 789

RUA  Faster R-CNN [35]  ResNet-101 623 708 736 758
SSD [37] MobileNetV2 524 551 572 589

TABLE VI: The performance and training costs of different
training techniques. Non-pretrain and pre-train stand for train-
ing from scratch and pre-training on ImageNet, respectively.
The labeling budget used here is 0.5, and the experiment
follows the settings in Fig. 7 and Fig. 8. Note that the
pre-trained models here down from the Tensorflow GitHub
repository, so the pre-training costs are not included in the
training costs.

\ classification (ResNet-50) detection (EfficientDet (D0))

accuracy (%) train cost (h) mAP (%)  train cost (h)
Unsupervised (UFEM) 90.0 0.8 78.9 15
Supervised Non-pretrained 90.5 13 79.3 14.0
Pre-trained 91.3 1.1 79.8 12.5

and the model performance at different epochs under multiple
Sampling Rates (SR). Sampling distribution can help us
easily compare the changes of category quantity in different
epochs, and the model performance can help us choose a
better Sampling Rate. From Fig. 10, we observe that the
original uncertainty method (SR=1) has an obvious data bias
problem. For example, compared with the first epoch, the
second epoch has a significant increase in the number of
samples for bike, plant, boat, etc. According to the principle
of the uncertainty active learning method, we think that it is
because the current model has a poor learning effect on these
categories. However, such a direct sampling method ignores
the similarity of the internal data of the same classification,
which causes the data bias problem. For the same uncertainty
unlabeled data, the sampling results of our method obviously
do not have the above problems, which means that the increase
in the number of samples for bike, plant, boat, etc., does not
fluctuate as much as the original method. This is because our
proposed method can remove similar images in these image
classifications. According to the results reported in Fig. 10,
we set up SR=1.2 in this paper.

To further quantify the advantages of our work in mitigating
the data bias problem, we define the coverage rate here, which
can be used to measure the coverage degree of the sampled
data to the original data. The coverage rate is S/O, where O is
the original data and S is the residual data after removing the
similar parts from the sampled data. We report the coverage
rate in Fig. 11, which shows that our proposed active learning
framework yields better sampling results than other methods.

coverage rate
S
5
!

ours
—o— L-Aware
—&— LPM
—v— RLC

label budget

Fig. 11: Coverage rate under fixed labeled budget. The data
and detector used here are EfficientDet and PASCAL VOC
2007, respectively, and the settings of the experiment are the
same as that in Section 4.4. Feature matching uses UFFM
proposed in this paper. The compared baselines include classic
uncertainty methods RLC [9], recent state-of-the-art methods
L-Aware [4] and LPM [8].
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Fig. 12: Performance on PASCAL VOC 2007 under fixed
labeling budget. The test set has 20 classes, Top-5 represents 5
classes with the highest mAP, and Least-5 represents 5 classes
with the worst performance. Each experiment is repeated 10
times, and the baseline method is Entropy Sampling (ES).

More stable training process. Data bias causes an in-
stability problem in the training process, which can also be
drawn from Fig. 7 and Fig. 8. Here we will further study the
underlying causes of this phenomenon. We think that this is
mainly because the data bias incurs that partial categories do
not progress steadily. To verify this, we report the learning
process in Fig. 12, and we observe that for the baseline
method, the progress of the Top-5 categories in the next epoch
is very limited. This is mainly because the current learned
model will focus on the Least-5 categories, which means that
the next epoch will be mainly sampled Least-5 categories.
Instead, our method will resample the sampling results of the
Least-5 categories that are currently focused on. Because what
we remove is the data that has a limited help for the model
learning, we can guarantee the learning of the Top-5 categories
without reducing the learning effect of the Least-5 categories,
thereby ensuring a stable learning process.

More effective redesigned uncertainty approaches. We
redesign several uncertainty-based approaches to make them
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fit the object detection task. Those redesigned approaches
consider the uncertainty of all objects in the image rather than
just one object. This improvement is mainly because we have
observed that the complexity of the images used for object
detection is much greater than image classification, that is, the
images used for detection often contain many objects, and the
test confidence of these objects is different greatly because of
the impact of category, size, etc. We report the performance of
our proposed and original uncertainty approaches in Table V,
and we find that our redesigned uncertainty approaches are
more suitable for the task of object detection.

F. Feature Redundancy

Feature Redundancy in existing unsupervised feature
matching. Unsupervised feature matching has attracted lots
of attention in recent years. Using pre-trained models for
feature extraction of images to be matched has almost become
a de facto approach. ImageNet is a very large dataset, and
its commonly-used subset ILSVRC2012 (ImageNet2012) still
has more than one million training images. Currently, many
vision models are pre-trained on ImageNet, and these pre-
trained models used in unsupervised feature matching are
also usually based on it. Oxford5k and Paris6k are standard
datasets used for feature matching. Currently, there are many
unsupervised feature matching works that use pre-trained
models on ImageNet to evaluate the proposed methods on
these two datasets.

However, we find in the experiment that the above-
unsupervised feature matching paradigm has the Feature Re-
dundancy problem. Feature Redundancy is defined here that
non-matching targets in the images to be matched are per-
ceived by the pre-trained model, which will have a negative
impact on feature matching because the features of non-
matching targets will interfere with feature matching. We
argue that Feature Redundancy exists because of the category
difference between the pre-training dataset and that of used for
matching. For example, ILSVRC2012 has 1,000 categories,
while Oxford5k and Paris6k have only a very limited number
of categories. We illustrate an example of this problem in
Fig. 13. People are the non-matching target in Paris6k, but
it is a category of the pre-training dataset ILSVRC2012.
Therefore, the pre-trained model can perceive the features
of the human category, and this type of feature is the so-
called “redundant features”. Redundant features negatively
affect image matching because the dataset to be matched
does not consider itself to include such features. That is,
two similar images may be classified into different categories
due to redundant features. Obviously, the more the category
difference between the pre-training dataset and that of used
for matching, the higher the possibility of feature redundancy.

The influence of feature redundancy. To further quantify
the influence of feature redundancy, we compare our unsu-
pervised method against supervised methods. In addition, to
show the advantages of our proposed unsupervised method in
reducing training costs, we compare two supervised methods,
which are pre-trained on ImageNet and trained from scratch,
respectively. We report the results in Table VI, and we have

pre-training
set

people C cow

ar dog cat
Feature
Redundancy

Eiffel Louvre Moulin  Sacre La
Tower Rouge Coeur Defense

matching

:
set I

Fig. 13: An instance of Feature Redundancy. The test image is
selected from Parisok, the feature shown here is the fusion of
the top-25 channels with the largest variance in block3_conv3
of VGG16.

several observations: 1) Feature redundancy has an impact
on the model performance. The reason is that the supervised
methods match the features of the target dataset more accu-
rately, so it can better alleviate the data bias. 2) Our proposed
unsupervised method saves considerable training costs at the
expense of acceptable model performance (saving up to 38.5%
and 46.4% of the training costs on the classification and
detection). It is conceivable that in the face of large-scale
data, our method will have greater advantages in cost saving.
3) Unlike supervised methods, our primary goal is to pursue
a trade-off between the model performance and the training
costs. Therefore, our method has a greater practical value,
especially in the face of large-scale unlabeled data.

V. CONCLUSION

This paper presents a novel uncertainty calculation method
to alleviate the problem of data bias in uncertainty-based
active learning. By using Unsupervised Fusion Feature Match-
ing (UFFM) to resample the selected uncertainty data, the
feature matching method we design does not introduce too
many additional costs. Our active learning framework based
on feature matching outperforms random sampling, classic
uncertainty approaches, and recent state-of-the-art uncertainty
approaches in the task of image classification and object
detection. Meanwhile, unlike those active learning methods
that can only be used based on specific tasks or models, our
framework is task-agnostic and model-agnostic and thus can
be combined with almost any current uncertainty method to
improve their performance. We have proved the effectiveness
of our framework on image classification and object detection
through experiments. In fact, our method can be applied to
more complex vision tasks such as pedestrian re-identification
and segmentation, and we take them as future work.
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