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Supplementary Material for FSAD-Net: Feedback
Spatial Attention Dehazing Network

Abstract—This supplementary document provides experi-
ments, which could not be fit in the paper due to page limit.

I. EXPERIMENTS ON REAL DATA

In this section, we provide more dehazed results on real-
world images. To evaluate our proposed dehazing method on
natural hazy images, we evaluate 6 representative state-of-the-
art algorithms: DCP [1], LPQC [2], PDN [3], GFN [4], DDIP
[5], and cGAN [6]. For the hazy images of natural scenes, we
mainly compare the dehazing performance, the preservation
of details and the colour distortion of different algorithms
from the visual perspective. Fig. 1 show the comparison on
natural haze images. The DCP [1], PDN [3], DDIP [5] suffer
severe color distortions. For LPQC [2], haze removal is clearly
incomplete. The GFN [4] and cGAN [6] have limited abilities
to deal with distant region and cause color distortions in some
cases (e.g., the red box indicated in Fig. 1 looks darker). In
comparison to the aforementioned methods, our FSAD-Net is
more effective in haze removal and distortion suppression.

II. EXPERIMENTS ON SYNTHETIC DATA

Fig. 2 shows some examples of our synthetic training data.
Table I shows the quantitative analysis of single image haze
removal on NTIRE database [7]. Compared with the state-
of-the-arts, the proposed method has the best performance in
terms of PSNR, and it prove that our FSAD-Net is fairly robust
and continues to show highly competitive performance. Fig. 3
show the visual results on NTIRE [7].

In the main paper, we evaluate our method on the HazeRD
[8] to better represent our method is robust to the diversity
of the haze scenarios. Here we present more visual results on
HAZERD [8] in Fig. 4. Our method generates cleaner results
with less artifacts and color distortion.

We also present the comparisons on outdoor synthetic haze
images. The methods used for comparisons including DCP
[1], HL [9], LPQC [2], PDN [3], GFN [4], DDIP [5], cGAN
[6], and FD-GAN [10]. It can be seen from Fig. 5 that all
methods can remove the haze, but the color fidelity of the
sky region is different. Compared with the results of using
the other eight methods, our method achieves the best color
fidelity and generates more haze-clear results in Fig. 5(j).

III. ABLATION STUDY

We conducted ablations on the components of the FSAD-
Net architecture, and showed the quantitative comparisons in
the main paper. Here we present visual dehazed results in Fig.
6. The visual results show that all these network designs are
crucial to the performance of the proposed model.

TABLE I: Average PSNR comparison on the NTIRE [7]. Bold
font is used for indicating our results.

Methods Indoor Outdoor Average

DCP [1] 16.71 17.46 17.09

HL [9] 17.30 16.43 16.87

AOD-Net [11] 16.90 17.28 17.09

GFN [4] 17.28 17.11 17.19

DDIP [5] 16.78 15.69 16.24

Ours FSAD-Net 17.00 17.77 17.38

Fig. 2: Examples in our synthetic training data. (a) Synthetic
indoor images. (b) Synthetic outdoor images.

Besides, we analyzed the effect of spatial attention block
(SAB) and feedback block (FB) on the SOTS dataset, and
showed the quantitative comparisons and qualitative compar-
isons in the main paper. To further prove performances of
the SAB and FB, we conduct the quantitative and qualitative
comparisons on HAZERD [8] dataset. The quantitative results
are shown in Table II and Table III. The visual comparisons
are shown in Fig. 7 and Fig. 8.
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Fig. 1: Qualitative comparison of different methods on real-world images. Our FSAD-Net is more effective in haze removal
and distortion suppression.

Fig. 3: Qualitative comparison of different methods on the NTIRE [7]. (a) Haze image, haze-free images restored by (b) DCP
[1], (c) HL [9], (d) AOD-Net [11], (e) GFN [4], (f) DDIP [5], and (g) our FSAD-Net. (k) Ground truths.
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Fig. 5: Qualitative comparison of different methods on synthetic outdoor image. (a) Haze image, haze-free images restored by
(b) DCP [1], (c) HL [9], (d) LPQC [2], (e) PDN [3], (f) GFN [4], (g) DDIP [5], (h) cGAN [6], (i) FD-GAN [10], and (j) our
FSAD-Net. (k) Ground truths.
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Fig. 6: Comparisons on SOTS indoor images for different configurations. (a) Haze image, haze-free images restored by (b)
FSAD-Net without feedback block and multistage iterations, (c) FSAD-Net without mechanism and skip fusion, (d)FSAD-Net
without feedback block, (e) FSAD-Net without multistage iterations, (f) our FSAD-Net. (g) Ground truths.
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Fig. 8: Comparison results of FSAD-Net models with different feedback blocks in visual effect on HAZERD [8] dataset. Our
FSAD-Net has less haze remaining and generates images with vivid colors.

TABLE II: Quantitative results on FSAD-Net models with
and without spatial attention block. We evaluate the PSNR
and SSIM on the HAZERD [8] dataset. Bold font is used for
indicating best results.

Methods w/o attention our FSAD-Net

PSNR 17.5997 17.8144

SSIM 0.5431 0.5889

TABLE III: Average PSNR and SSIM comparison of FSAD-
Net models with different feedback blocks on the HAZERD
[8]. Bold font is used for indicating best results.

Methods Only LSTM Only GRU our FSAD-Net

PSNR 17.5452 16.1143 17.8144

SSIM 0.4003 0.5765 0.5889

Fig. 4: Qualitative comparison of different methods on HAZ-
ERD [8] dataset. (a) Haze images. Dehazing results by (b) HL
[9], (c) LPQC [2], (d) PDN [3], (e) GFN [4], (f) DDIP [5],
(g) FD-GAN [10], and (h) our FSAD-Net. (i) Ground truth.

Fig. 7: Comparison of FSAD-Net with and without spatial
attention in visual effects on HAZERD dataset [8]. Our FSAD-
Net has less haze remaining and is close to ground truth.
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