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Abstract—Recent dehazing networks learn more discriminative
high-level features by designing deeper networks or introducing
complicated structures, while ignore inherent feature correlations
in intermediate layers. In this paper, we establish a novel and
effective end-to-end dehazing method, named feedback spatial
attention dehazing network (FSAD-Net). The FSAD-Net is based
on the recurrent structure and consists of four modules: a
shallow feature extraction block (SFEB), a feedback block (FB),
multiple advanced residual blocks (ARBs), and a reconstruction
block (RB). FB is designed to handle the feedback connections,
and it can improve the dehazing performance by exploiting the
dependencies of deep features across stages. The ARB implements
a novel attention-based estimation on a residual block to adapt to
pixels with different distributions. Finally, RB helps to restore the
haze-free images. It can be seen from the experimental results
that the FSAD-Net almost outperforms the state-of-the-arts in
terms of five quantitative metrics. Moreover, the qualitatively
comparisons on real-world images also demonstrate the superi-
ority of the proposed FSAD-Net. Considering the efficiency and
effectiveness of FSAD-Net, it can be expected to serve as a suitable
image dehazing baseline in the future.

Index Terms—Image dehazing, recurrent structure, spatial
attention mechanism, dehazing network.

I. INTRODUCTION

HAZE is a commonly atmospheric phenomenon, caused
by turbid medium suspended in air, like dust, mist,

fumes and water droplets, which often leads to captured
images have poor visibility [1], [2]. The degradation of the
image quality existing in haze images potentially challenges
many vision-based applications [3] (such as segmentation [4],
detection [5] and recognition of object [6], traffic monitoring,
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Fig. 1: A haze image and the results recovered by different
dehazing methods. (a) Haze image, dehazing results by (b)
FD-GAN [10] and (c) our FSAD-Net, respectively. (d) Ground
truth. Our recurrent structure-based method generates cleaner
images with fewer artifacts and color distortion. The basic
idea of recurrent structure is to make predictions in an it-
erative manner. This provides a core advantage of enabling
optimization of the final dehazed result by iterations.

advanced driving assistance system etc.). Therefore, haze
removal is a practical preprocessing method to benefit the
performance of various computer vision systems. Image haze
removal, known as image dehazing, is a technique that aims to
restore a clear haze-free image from a single or multiple haze
images. In atmospheric scattering model [7] widely used to de-
scribe the formation of a haze image, the amount of scattering
depends on two unknown components: the medium transmis-
sion and the atmospheric light. Since there are more unknown
values than known values, the restoration of haze-free image
is an under-constraint problem. Many algorithms have been
proposed, which exploited either handcrafted features (e.g.
reasonable assumptions) [8] or learning-based features [9]
to solve the ill-posed problem in recent years. Handcrafted
features used simple linear-mapping transformations and were
not robust to variations of the input, e.g., images with various
haze densities, depths. Features extracted by deep networks
improved the limitations of handcrafted features, and achieved
promising dehazing performances.

Although early deep learning-based dehazing methods (e.g.
MSCNN [9], DehazeNet [11]) have distinct advantages in
providing a uniform feature extraction framework to free users
from troublesome handcrafted feature extraction, most CNN-
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based haze removal methods lack the considerations of the
information from the original haze images and the inherent
feature correlations in intermediate layers, leading relatively
low dehazing performances. Some methods hoped to learn
more discriminative high-level features by designing deeper or
wider networks while rarely focused on the inherent feature
correlations in intermediate layers. As Zeiler and Fergus [12]
pointed, it does not each layer of CNNs contribute for robust
feature extraction nor more number filters would guarantee
better system performances. These methods occupied huge
storage resources and hindered the representational ability
of CNNs. Some methods introduced complicated structures
in their models, with more and more complicated structures
are introduced in image dehazing networks, it is difficult
to analyze contributions of different modules such as dense
blocks [13], dilated convolution [14], residual blocks [15],
squeeze-and-excitation [16], and generative adversarial net-
works (GAN) [17] in a dehazing network.

In this paper, we aim to propose a network with simple
baseline and higher computational efficiency that can ease the
difficulty of training CNNs and exploit the feature correlations.
To reduce network parameters, the recurrent structure is often
employed, which can share the information through feedback
connections [18], [19]. In the field of cognition, feedback
connections as a core role which link the cortical visual areas,
and transmit response signals of higher-order areas to lower-
order areas [20]. Recently, some studies have applied the
feedback connections in their architectures to carry high-level
features back to previous layers and refine low-level encoded
information. Motivated by these structures, we establish a fully
end-to-end FSAD-Net, which introduces a feedback block for
passing the high-level information back to previous layers to
correct feature representations. Moreover, inspired by the suc-
cess of the attention mechanism in image restoration task, we
incorporate the spatial attention mechanism to residual block
to exploit feature correlations through spatial information.

Comprehensive experiments have been conducted to evalu-
ate different image dehazing networks. In addition to PSNR
(peak-signal-to-noise-ratio) and SSIM (structure similarity in-
dex), the two commonly used to quantify dehazed image
restoration quality, we also use CIEDE2000, UQI (Universal
Quality Index) [21] and LPIPS (Learned Perceptual Image
Patch Similarity) [22] for evaluating dehazing results. On
the widely used dehazing benchmark datasets RESIDE [23]
and HZERD [24], our FSAD-Net surpasses most previous
methods in both quantitative and qualitative dehazing results.
The visually pleasing dehazing results on real haze images
have also proved the generalization ability of the FSAD-Net
model. Fig. 1 shows the visual effect of our method. Although
FD-GAN [10] can remove haze relatively effectively, haloes
and artifacts are not avoided in bright regions. Compared with
FD-GAN [10], the proposed FSAD-Net can remove most haze,
generating promising dehazing quality in terms of color and
details. In sum, our approach has the following contributions:

• We propose a novel network for image dehazing named
FSAD-Net, which based on recurrent structure and does
not rely on the atmosphere scattering model. Our FSAD-
Net can unfold into multiple iterations through recur-

rent structure, and improve the dehazing performances
iteration-by-iteration.

• We introduce the feedback block (FB) to our dehaz-
ing network to learn the dependencies of features. The
feedback connection passes hidden state from previous
iteration into FB at current iteration to correct middle-
level representations.

• We propose advanced residual blocks (ARBs) by intro-
ducing spatial attention mechanism and skip fusion into
residual blocks. The ARB can focus on the inherent spa-
tial correlations of features, and enhance discriminative
learning ability of network in dealing with different types
of information.

It is worthy of note that some methods had already in-
troduced the recursive architecture and iteration algorithm
in their dehazing networks. Liu et al. [1] proposed learning
aggregated transmission propagation networks (DPATN) for
haze removal. Liu et al. [25] proposed an iteration algorithm
with existing CNNs to learn deep priors for image dehazing.
However, our FSAD-Net is inherently different from them in
following aspects. First, both DPATN [1] and LDP [25] are
based on atmospheric scattering model. DPATN proposed an
aggregated residual architecture for propagating transmission,
meanwhile it estimated atmospheric light through improving
DCP. LDP developed existing CNNs to learn the image prior
terms of atmospheric light, transmission and clear image. Such
method of separately estimating the unknown parameters in
the atmospheric scattering model may lead to accumulation
of errors. Our FSAD-Net is designed for directly estimating
a haze-free image from a haze image and can avoid error
accumulation. Second, DPATN [1] and LDP [25] did not
utilize attention mechanism in their architecture, while our
model takes advantage of spatial attention mechanism for
making effective use of the haze-relevant features, the ablation
studies on spatial attention block show the effectiveness of
spatial attention mechanism. The structure of this paper is
organized as follows. We first briefly review some dehazing
methods and make a simple classification and summary in
Section II. In Section III, we present the details of the proposed
FSAD-Net. Section IV describes experimental results as well
as comparisons with the state-of-the-art dehazing methods. At
last, we make the conclusion in Section V.

II. RELATED WORK

In this section, we discuss the prior-based and learning-
based single image dehazing methods.

A. Prior-Based Dehazing

Based on observation that a haze-free image must have
higher contrast compared with the input hazy image, Tan [26]
enhanced the visibility of a haze image by maximizing its local
contrast. Fattal [27] estimated the transmission map according
to the prior knowledge that there is no locally statistically
correlation between object surface shading and transmission
map. He et al. [8] proposed a dark channel prior (DCP)
based on the statistical observation that in majority of non-sky
regions in clear images, the minimum of all the color channels
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has extremely low intensities in some pixels. This method
combined with a soft-matting operation, effectively estimates
the transmission map and atmospheric light. However, the
DCP may fail in some particular regions of which the intensity
are similar to atmospheric light, leading the underestimation
of transmission. Thus, a number of methods based on DCP are
proposed to improve this problem. Liu et al. [28] reformulated
the image dehazing as a trade off between luminance and
contrast in order to achieve contrast values superior to that
obtained using other methods for a given brightness level.
Peng et al. [29] removed haze by using the depth-dependent
color change and the difference between the observed intensity
and the ambient light. Tang et al. [30] trained a regression
model based on random forests from a variety of multi-scale
haze-relevant features including dark channel feature, local
max contrast, hue disparity and local max saturation to obtain
an accurate transmission map. However, this feature fusion
method relied largely on the dark channel features. Zhu et
al. [31] proposed a color attenuation prior (CAP) by making
use of HSV color space. This method assumed that saturation
of the image patch is inversely proportional to the density of
haze to obtain an accurate transmission map using likelihood
learning. From statistical analysis, Chio et al. [32] used natural
scene statistics (NSS) and fog aware features of hazy images
to enhance the visibility of haze images and achieved the
assessment of existing defogging algorithms. Chen et al. [33]
introduced a gradient residual and error layer into the image
recovery process with minimizing possible visual artifacts in
it. After observing that colors of a haze-free image can be well
approximated by a few hundred distinct colors, Berman et al.
[34] proposed a non-local image dehazing method based on
this prior. Zhang et al. [35] proposed a novel and effective
maximum reflectance prior for Nighttime image dehazing,
which assumes in majority of daytime haze-free image patch-
es, each color channel has very high intensities in some pixels.
Bui and Kim [36] fitted a haze pixel cluster in RGB space
to a statistical color ellipsoid, and this method is robust to
image signal randomness. Wu et al. [37] also proposed a
joint framework to avoid the weakness of noise sensitivity
when recovering the scene radiance and transmission map by
introducing a transmission-aware nonlocal regularization and
a semantic-guided regularization.

B. Learning-Based Dehazing

Ren et al. [9] estimated the transmission map by proposing
a multi-scale convolutional neural network (MSCNN), which
consisted of a coarse-scale network and a fine-scale network
for coarse-to-fine regression of transmission map. Cai et al.
[11] proposed an trainable architecture called DehazeNet for
transmission estimation. Rather than estimating the interme-
diate transmission and the atmospheric light separately, Li et
al. [38] proposed an end-to-end CNN model called the all-in-
one dehazing network (AOD-Net) based on a reformulated
atmospheric scattering model for learning the clear image
from a haze one. Li et al. [17] designed an encoder-decoder
architecture based on a conditional generative adversarial
network (cGAN), which is an end-to-end model that generates

realistic haze-free images. Zhang and Patel [13] proposed
a densely connected pyramid dehazing network (DCPDN)
to learn the transmission map, atmospheric light, and de-
hazed image jointly. They also exploited an adversarial loss
based on a GAN to supervise their encoder-decoder dehazing
architecture. To address the dehazing problem, Ren et al.
[39] recommended a fusion-wise strategy using an encoder-
decoder architecture called gated fusion network (GFN), this
method applied white balance, contrast enhancing, and Gam-
ma correction to an original image to derive three input
images. Yang and Sun [40] proposed the proximal dehaze-
net, which combined the haze imaging model, the DCP, and
the transmission prior by building the energy function. Chen et
al. [41] designed a multi-scale U-module architecture named
patch map selection network (PMS-Net) to adaptively choose
the patch size corresponding to each pixel when dehazing. Qu
et al. [42] proposed an Enhanced Pix2pix Dehazing Network
(EPDN), which restored haze-free images without relying on
the atmospheric scattering model. Ren et al. [43] proposed
a new multi-scale CNN for single image dehazing based
on their preliminary work, and introduced a novel holistic
edge guided network for refinement of edge of the estimated
transmission map. Dong et al. [10] proposed a GAN with
fusion-discriminator (FD-GAN) for image dehazing, which
made effective use of GAN and prior knowledge. Liu et al.
[1] designed a novel residual architecture to aggregate both
prior and data information to propagate transmissions. Li et
al. [44] proposed a level-aware progressive network (LAP-
Net) for single image dehazing, which can progressively learn
the gradually aggravating haze. Hong et al. [45] proposed
a knowledged-distill dehazing network, which contained a
teacher and student. The teacher network was proposed for
image reconstruction, the student network imitated the task
of image reconstruction and achieved image dehazing. Our
approach also adopts the deep CNN for image dehazing. In
contrast to those above methods, the proposed FSAD-Net
is specifically devised through the feedback connections for
single image dehazing, from which the haze can be gradually
removed iteration-by-iteration.

C. Attention Mechanism

The important idea of the attention mechanism is to guide
the allocation of available computational resources to the most
useful and informative features and ignore the less informa-
tive features [16]. Recent works has introduced the attention
mechanism into deep learning frameworks to carry different
computer vision tasks such as image classification [46] and
image processing [47], [48]. Hu et al. [16] proposed the
squeeze-and-excitation (SE) block to boost the representational
capacity of a deep learning model via assigning different
weights to channel-wise features. Cao et al. [49] solved the
problem of cross-modal recipe retrieval through parallel- and
cross-attention networks learning. Yan et al. [50] proposed
spatial-temporal attention mechanism (STAT) for video cap-
tioning, which made full use of the spatial and temporal
structures in an input video. STAT first used the 2D-CNN,
3D-CNN and region-based CNN as encoder to extract three
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types of features, then fused these features via spatial attention
mechanism and temporal attention mechanism to indicate the
characteristics of key frames, and finally utilized LSTM to
generate sentences. Shu et al. [51] proposed a skeleton-joint
co-attention recurrent neural networks (SC-RNN) for human
motion prediction, SC-RNN proposed a novel spatiotemporal
co-attention (SCA) to learn the joints-relevant spatial-attention
factors and the skeletons-relevant temporal-attention factors.
Hu et al. [52] established a channel-wise and spatial feature
modulation (CSFM) network for image super-resolution. In the
CSFM, the channel-wise and spatial attention residual block
can adaptively capture more informative features. Li et al.
[53] proposed a single image deraining network, which was
based on recurrent neural networks and squeeze-and-excitation
blocks. Liu et al. [47] proposed an attention-based multi-scale
network called GridDehazeNet to remove haze. Qin et al.
[15] proposed a feature fusion attention network (FFA-Net)
to restore a clear image from a haze image. Although STAT
[50] and SC-RNN [51] are methods based on the recurrent
structure and the attention mechanism, our method is different
from them. Specifically, since their methods are based on video
sequences, their attention mechanisms contain spatial attention
mechanism and temporal attention mechanism. Our method is
proposed for single image, and our FSAD-Net only include
the spatial attention mechanism.

III. THE PROPOSED METHOD

The development of CNNs based computer vision made the
effects of image dehazing a truly breakthrough. Traditional
CNNs consist of many stacked feedforward layers, imitating
the bottom-up path of the human visual cortex, where the
features flow from the shallower layers to deeper ones. The
shallow layers tend to learn biologically plausible feature,
while deeper ones try to respond to concrete visual objects,
with the layers of CNNs become deeper, the more abstract
representations of the input data are learned. The connections
in feedforward systems learn unidirectional feature flow, the
nolinear mapping is not directly influenced by the generated
output, which hindering the restoration ability to some extent.
Unlike the conventional feed-forward networks, feedback sys-
tems are adopted to influence the input based on rerouting
the output of the system. The feedback mechanism in deep
networks aims to refine the low level features by propagating
deep features to the shallow layers. With the help of high-level
information, low-level features become more representative
and informative. It has been widely applied for various high-
level vision tasks but has rarely exploited in image dehazing.

Iterativeness and propagating the high-level information
extracted from deep layers to shallow ones are two core
requirements in a feedback architecture [54]. As shown in
Fig. 2, the output of the feedback block travels back to guide
its input helps to apply the principle of the feedback scheme
to image dehazing: the deep representation propagated by
recurrent states can guide a haze image to restore a better
dehazing image. In this section, we mainly introduce our
feedback spatial attention dehazing network, the end-to-end
network is proposed by considering network architecture, input

Fig. 2: Overview of the proposed FSAD-Net. The FSAD-
Net consists of a shallow feature extraction block (SFEB),
multiple advanced residual blocks (ARBs), a feedback block
(FB), and a reconstruction block (RB), and can run for many
iterations for a single training example. In our network, A
feedback block is implemented using convolutional LSTM,
whose output is fed back to guide its input. The feedback
block receives the output of ARB-1 and hidden state F t−1

from last iteration, and then passes its hidden state F t to
the next iteration and ARB-2. Such recurrent structure with
feedback connections provides strong dehazing ability.

and output, and loss functions, aims to combine only a few
simple modules for single image dehazing.

A. Feedback Spatial Attention Dehazing Net

To meet the demand of feedback network, our proposed
FSAD-Net is naturally designed as a convolutional recurrent
network, and can be unrolled to T time steps, in which each
iteration t is temporally ordered from 1 to T. Besides, at each
time step, the sub-network can be regarded as an independent
network which aims at restoring haze-free image using an
input haze image. As can be seen in Fig. 2, the sub-network
in each iteration t mainly consists of four parts: a shallow
feature extraction block (SFEB), multiple advanced residual
blocks (ARBs), a feedback block (FB), and a reconstruction
block (RB). The weight set of each block are shared across
time. The communication between two iterations from t-1 to
t is a forward pass in time achieved by feedback connections.
We adopt global residual learning in the sub-network at each
iteration t to restore a residual image while input a haze image.

The SFEB is responsible for extracting the shallow feature
information F t

sf from the original haze image I at the iteration
t:

F t
sf = fSFEB(O

t−1, I) (1)

where fSFEB denotes the operations of the SFEB, it contains a
3×3 convolutional layer and an ReLu activation. We note that
fSFEB takes the concatenation of the stage-wise estimation
Ot−1 and haze image I as input. The combination of input
haze image can further improve the dehazing performance.
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Fig. 3: The structure of the basic unit of FSAD-Net. (a) RFFB. (b) RSAB. (c) FB. RFFB combines the skip fusion and SAB
module. SAB is a spatial attention mechanism and the goal is to increase representation power by focusing on important
informative features (e.g. dense-hazed patches and high-frequency image regions) and suppressing unnecessary ones. The FB
consists of skip fusion and ConvLSTM.

Then the ARB-1 takes the shallow feature F t
sf as input to

extract middle representation:

F t
in = fARB−1(F

t
sf ) (2)

where fARB−1 represents the operations of the ARB-1, F t
in

represents the middle-level features and is fed to the FB, com-
bined with the output of the FB from the previous iteration t-1
through a feedback connection. The mathematical operations
of the FB is ffb, and the process of feedback can be presented
as:

F t
fb = ffb(F

t
in, F

t−1
fb ) (3)

where F t
fb denotes the output of the FB at iteration t. At t = 1,

when there is no feedback, the hidden state is initialised with
zero.

The ARB-2 receives the feature maps F t
fb learned from FB

to learn the discriminative global features. The generation of
high-level features at every iteration is as below:

F t
gf = fARB−2(F

t
fb) (4)

where F t
gf denotes the global features.

In reconstruction block, the extracted high-level features
recover a residual image through the operations of RB. Then,
the estimated residual image is added to the original haze
image I using a global residual skip connection to reconstruct
the clear image Ot at the t-th time stage. The mathematical
formulation of the reconstruction block can be expressed as
below:

Ot = frb(F
t
gf ) + I (5)

where frb denotes the function of the RB.

B. Advanced Residual Block

In this section we give more details about ARB, which
composed of residual feature fusion block (RFFB) and residual
spatial attention block (RSAB). As Fig. 3 shows, an important
unit of RFFB and RSAB is the spatial attention block (SAB).
To pay more attention to informative features of various haze
image patches (e.g. dense-hazed patches and high-frequency
image regions), we integrate a spatial attention block (SAB)
into a basic ResNet to produce RSAB. Attention not only tells

Fig. 4: Comparison of FSAD-Net models with and without
spatial attention block (SAB).

the deep learning model where to focus, but also improves
the representation of interests [55], [56]. The significance of
attention has been studied extensively in the previous litera-
tures [57]. Our SAB is designed for increasing representation
power by using attention mechanism, it focuses on important
haze-relevant features and suppresses unnecessary ones. The
input features of SAB are first passed through two convolution
layers with ReLu and sigmoid activation function to produce
a spatial descriptor. Then, the output of SAB obtained by
utilizing element-wise multiplication for input features and the
spatial descriptor. Since the haze distribution is nonuniform
on the different image regions, the introduction of SAB can
assist the module adapt to different image patches. Considering
the SAB is the major part of RFFB and RSAB for feature
extracting, we compared FSAD-Nets with and without spatial
attention block in Fig. 4 to prove the effective of the SAB.
Experimental results show that the SAB can help the model
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Fig. 5: Qualitative comparison of FSAD-Nets with different ARBs on synthetic indoor image. (a) Haze image, haze-free images
restored by (b) FSAD-Net without ARB-1 nor ARB-2, (c) FSAD-Net with ARB-1 only, (d) FSAD-Net with ARB-2 only, and
(e) our full FSAD-Net. (f) Ground truth.

to pay more attentions to more useful components.
Enlightened by the powerful feature representational ability

of residual learning in computer vision tasks [46], we designed
the advanced residual block (ARB) for feature extracting. The
skip connection in residual block can transmit abundant low-
frequency features to next block, while ARB’s spatial attention
can extract the spatial information in pixels to further emphasis
more informative components in an input haze image. In our
network, fARB−1 contains a RFFB and a RSAB, fARB−2

includes two RFFBs. As Fig. 3(b) shows, the first two layers
of our RSAB hold 3×3 sized convolutional kernels followed
by a SAB. To go a further step to residual learning, the
RSAB’s input is added to the output of SAB, then is fed
into ReLu activation. As Fig. 3(a) shows, RFFB concatenates
input features with the output of RSAB and applies a 1×1
compression convolution layer for feature fusion.

We also analyze the effect of each ARB, Fig. 5 and Table
I show the qualitative and quantitative comparison results,
respectively. The FSAD-Net without ARB-1 nor ARB-2 has
the lowest PSNR and SSIM, as Fig. 5(b) shows, the color
of restored image obtained by FSAD-Net without using any
ARB tends to yellow. It is obvious that ARBs can extract more
informative features such as color and structure information.
Similarly, when the FSAD-Net only contains a single ARB-
1 or ARB-2, the dehazed images will lose details as red
rectangles in Fig. 5(c) and Fig. 5(d) denoted. The quantitative
results and visual example prove the introduction of ARB-1
and ARB-2 will improve the representational power of our
model and produce much better texture details.

C. Feedback Block

Fig. 3(c) shows the feedback block, ffb is implemented
using convolutional LSTM, all the convolutions in which have
32 input channels and 32 output channels. ffb at t iteration
receives the concatenation of the feedback information F t−1

fb

and middle-level features F t
in as input, and then passes more

powerful representations F t
fb as its output to the RB and

next iteration. The feedback connection can use hidden state
from previous iteration to correct middle-level representations
at current stage. frb uses a RSAB and a 1-layer convolu-
tion to reconstruct the residual image. Although recurrent
frameworks with unit ConvLSTM [57], ConvGRU [58] have
been employed in many tasks due to their good performance,
our FSAD-Net based on residual learning, spatial attention
mechanism and recurrent structure have its own merits. Our

TABLE I: Average PSNR and SSIM of FSAD-Nets with
different ARBs.

Model PSNR SSIM

w/o ARB-1 nor ARB-2 22.3162 0.8747

ARB-1 only 23.1464 0.9118

ARB-2 only 23.1550 0.8982

Our full FSAD-Net 23.3437 0.9248

Fig. 6: Comparison of FSAD-Net models with different recur-
rent structures.

ARB with attention mechanism and residual learning can
improve the feature extraction ability of the model. The FB
helps the information flow across iteration. To reveal the
difference between ConvLSTM, ConvGRU and our FSAD-
Net, we perform investigations on different recurrent struc-
tures. Fig. 6 show the comparison results, “only GRU” and
“only LSTM” are two shallow residual networks using the
ConvLSTM and ConvGRU as feedback block, respectively.
From the quantitative results shown in the upper of Fig. 6,
we can conclude that our full FSAD-Net with FB and SAB
performs better than “only GRU” and “only LSTM”.

D. Loss Function

Some loss functions have been widely used for training
dehazing networks, such as perceptual loss, GAN loss, L2 loss,
L1 loss. Some methods also exploited hybrid loss functions,
however, the composition of different loss will increase the
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burden of hyper-parameter tuning. Different with the complex
loss, our FSAD-Net benefited from Feedback block will be
optimized with a concise loss. It is commonly acknowledged
that the Euclidean loss (L2 loss) tends to blur the final result
[13], [47]. Hence, inaccurate estimation of the restored image
using the L2 loss may result in the loss of details, leading to
the artifacts in the restored color image, the L1 can efficiently
improve this issue. For a model with T iterations, we have T
dehazed images. We impose supervision on the output Ot, and
the L1 loss can be written as:

L1 =

w∑
i=1

h∑
j=1

||Ot(i, j)− Igt(i, j)||1 (6)

where (i,j) denotes pixel location, Igt is the corresponding
ground truth, w and h denote width and height of the image,
respectively.

We also adopt the negative SSIM to optimize our architec-
ture:

Lssim = − (2µOtµIgt + a1)(2σOtIgt + a2)

(µ2
Ot + µ2

Igt + a1)(σ2
Ot + σ2

Igt + a2)
(7)

where µOt and µIgt are the average value of Ot and Igt,
respectively. σOtIgt is the covariance of Ot and Igt. σ2

Ot and
σ2
Igt are the variance of Ot and Igt, respectively. a1 and a2

are two constants to maintain stability.
We adopt the following loss function to train FSAD-Net:

L =

T∑
t=1

δt(L1(O
t, Igt) + λLssim(Ot, Igt)) (8)

where λ is a hyper-parameter to balance L1 and Lssim, the
value of it depends on experience. δt is tradeoff parameter
for indicating the contribution of the output at iteration t. The
experiment results section show the experiments concerning
the loss function in recursive supervision or only supervised in
final output. It is worth mentioning that when δt=1...(T−1) = 0,
δt=T = 1, the loss function shown in Eq. (8) can be rewritten
as L = L1(O

T , Igt) + λLssim(OT , Igt), which means the
dehazing network can only be supervised by final output. In
Section IV-F, we will discuss the differences between applying
supervision on the final output and outputs of all iterations.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce datasets used for training
and testing, implementation details and evaluation baselines.
Next, we conduct extensive quantitative and qualitative visu-
al experiments to demonstrate that the proposed FSAD-Net
performs favorably against the state-of-the-arts (DCP [8],FD-
GAN [10], cGAN [17], LDP [25], HL [34], GFN [39], PMS-
Net [41], SemiDN [59], RefineDNet [60], LPQC [61], DDIP
[62], PMHLD [63]) on synthetic datasets. In addition, we
conduct assessments on real haze images by comparing the
eight methods. Furthermore, we perform ablation studies to
verify the main effectiveness of our methods. Finally, we show
the user study results and discuss limitations of our method.
The source code will be made publicly available.

Algorithm 1 Training Details at Each Iteration

Input: Synthetic training dataset R, hyper-parameter λ
Output: Updated FSAD-Net

1: for i < training iterations do
2: Randomly choose haze/clear image pairs I/Igt from

R;
3: for t < recurrent iterations T do
4: obtain shallow feature information F t

sf by SFEB;
5: obtain middle-level features F t

in by ARB-1;
6: obtain F t

fb by Eq. (3) from F t
sf and F t

in;
7: obtain global feature F t

gf by ARB-2;
8: obtain clear image Ot at the t-th time iteration by

Eq. (5) from F t
gf and I;

9: t← t+ 1;
10: end for
11: obtain L1 by Eq. (6) from {OT , Igt};
12: obtain Lssim by Eq. (7) from {OT , Igt};
13: back propagate FSAD-Net by L = L1 + λLssim;
14: i← i+ 1;
15: end for

A. Datasets

Li et al. [23] proposed an image dehazing benchmark
consisting of both synthetic and real-world hazy images, called
REalistic Single Image DEhazing (RESIDE). In this paper,
we use RESIDE [23] to train our FSAD-Net due to its large
scale and diverse data sources and image contents. The Indoor
Training Set (ITS) and The Outdoor Training Set (OTS) of
RESIDE [23] corresponding indoor and outdoor scenarios,
respectively. ITS contains a total of 13990 hazy indoor images,
the depth maps d(x) are obtained from the NYU Depth V2 [64]
and Middlebury Stereo datasets [65], the global atmosphere
light are ranged from 0.8 to 1.0, and the scatter parameters
randomly selected from 0.04 to 0.2. OTS used 8477 clean
images and the corresponding labeled depth maps to generate a
total of 296695 hazy outdoor images. The atmospheric light is
randomly sampled in [0.8, 1.0], and the scattering coefficient is
randomly set within [0.04, 0.2]. For testing, we use Synthetic
Objective Testing Set (SOTS) of RESIDE [23] and HAZERD
[24] for quantitative evaluations, the SOTS contains 500 indoor
and 500 outdoor synthetic hazy images (non-overlapping with
RESIDE [23] Training sets). HazeRD [24] simulates different
conditions from light to thick haze. We use the Real-world
Task-driven Testing Set (RTTS) of RESIDE-β [23] for visual
comparisons, the RTTS consisted of 4322 real-world hazy
images crawled from the web, covering mostly traffic and
driving scenarios.

B. Implementation Details

Our FSAD-Net is end-to-end trainable without the need
of pre-training for sub-modules, and is implemented using
Pytorch, trained on a PC equipped with only one NVIDIA
GTX 1080Ti GPU. In our experiments, the patch size is
100×100. The ADAM optimizer is adopted to train the models
with a batch size of 18, where β1 and β2 take the default
values of 0.9 and 0.999, respectively. The initial learning rate
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Fig. 7: Qualitative comparison of different methods on synthet-
ic indoor image. (a) Haze images with different haze density,
haze-free images restored by (b) DCP [8], (c) HL [34], (d)
SemiDN [59], (e) LDP [25], (f) GFN [39], (g) RefineDNet
[60], (h) FD-GAN [10], and (i) our FSAD-Net. (j) Ground
truths. Our FSAD-Net is robust to different haze density.

is set to 0.001 and decayed by multiplying 0.2 when reaching
30, 50 and 80 epochs. For ITS, we train the network for 100
epochs in total, for OTS, the network is only trained for 20
epochs. We present the training details when updating the
FSAD-Net in Algorithm 1.

C. Evaluation Baselines

We will compare FSAD-Net with twelve competing meth-
ods, including two prior-based methods and ten deep CNN-
based methods. Among the prior-based methods, the first one
is the DCP [8], this is a commonly used baseline approach in
most dehazing papers. DCP affirmed that values of pixels in a
clear image patch close to zero in at least one color channel.
The second is haze lines (HL) [34], which is a non-local
approach approximating colors of a haze-free image by several
hundreds of distinct colors. The CNN-based methods include
learning a patch quality comparator (LPQC) [61], GFN [39],
double deep image priors (DDIP) [62], cGAN [17], FD-GAN
[10], LDP [25], SemiDN [59], RefineDNet [60], PMS-Net
[41] and PMHLD [63]. These CNN-based methods achieved
haze removal from different points. LPQC [61] designed a
patch quality comparator for image dehazing, the comparator
compared different output patches with the input hazy version.
GFN [39] proposed a dehazing network based on fusion
strategy. DDIP [62] is an unsupervised learning framework
based on deep image prior [66]. cGAN [17] and FD-GAN [10]
aimed to restore a haze-free image from a input haze image by
GAN architectures. LDP [25] proposed an iteration algorithm
to learn haze-relevant priors for haze removal. SemiDN [59]
and RefineDNet [60] want to utilize merits of image prior
and learning-based approaches and performed dehazing in a
semi-supervised and weakly supervised manner. PMS-Net [41]
proposed a patch size selection network for image dehazing,
PMHLD [63] improved the PMS-Net [41] and presented a
patch map-based hybrid dehazing network. For the fairness

Fig. 8: Qualitative comparison of different methods on synthet-
ic outdoor image. (a) Haze image, haze-free images restored
by (b) DCP [8], (c) HL [34], (d) SemiDN [59], (e) PMS-Net
[41], (f) DDIP [62], (g) PMHLD [63], (h) FD-GAN [10], and
(i) our FSAD-Net. (j) Ground truths.

TABLE II: Average PSNR and SSIM comparison on the
SOTS. Bold font is used for indicating our results.

Methods
PSNR SSIM

Indoor Outdoor Indoor Outdoor

DCP [8] 18.71 18.34 0.7918 0.7918

HL [34] 18.46 18.25 0.7237 0.8086

LPQC [61] 21.50 23.14 0.8714 0.8647

GFN [39] 23.00 23.50 0.9033 0.8251

DDIP [62] 16.47 16.27 0.5891 0.5085

cGAN [17] 26.63 25.02 0.9422 0.8671

FD-GAN [10] 21.99 23.54 0.8402 0.8549

LDP [25] 21.65 24.50 0.8472 0.8584

SemiDN [59] 23.52 26.10 0.9189 0.9039

RefineDNet [60] 21.95 23.71 0.8655 0.8775

PMS-Net [41] 21.93 22.40 0.8836 0.8699

PMHLD [63] 24.81 22.78 0.8573 0.7201

Our FSAD-Net 23.4105 26.3876 0.9336 0.9292
Our FSAD-Net* 24.5424 26.0134 0.9459 0.9325

of comparisons, all results for comparisons were obtained by
using the original codes from the home pages of the authors.

D. Evaluation on Synthetic Datasets

In this section, we will compare FSAD-Net with twelve
state-of-the-arts image dehazing algorithms. Since PSNR and
SSIM are widely used in image objective evaluation, we first
adopt PSNR and SSIM for quantitative assessment of the
dehazed outputs. We also use three additional image quality
metrics, the first one is CIEDE2000, which evaluates color of
dehazed image, value of which is in the range [0,100] with
smaller values indicating better color preservation. The second
metric is UQI [21], which is designed to measure structual
distortion of restored image, including loss of correlation,
luminance distortion and contrast distortion. The value of this
metric ranged from -1 to 1, and higher UQI [21] means better
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TABLE III: Average CIEDE2000, UQI [21] and LPIPS [22] comparison on the SOTS. Bold font is for indicating our results.

Methods
CIEDE2000 UQI [21] LPIPS [22]

Indoor Outdoor Average Indoor Outdoor Average Indoor Outdoor Average

DCP [8] 12.1918 15.9610 14.0764 0.7062 0.5922 0.6492 0.1377 0.1960 0.1669

HL [34] 12.3533 10.1487 11.251 0.6952 0.6901 0.69265 0.1108 0.1534 0.1321

LPQC [61] 6.9905 8.6935 7.842 0.8176 0.8190 0.8183 0.0772 0.0748 0.076

GFN [39] 6.8496 6.8044 6.827 0.7825 0.6817 0.7321 0.0678 0.1393 0.1035

DDIP [62] 10.8871 8.5829 9.735 0.6758 0.6739 0.6749 0.3762 0.2300 0.3031

cGAN [17] 4.2191 7.7086 5.9639 0.7792 0.5272 0.6532 0.0765 0.1686 0.1226

FD-GAN [10] 9.3007 7.7413 8.5210 0.7056 0.7307 0.71815 0.1303 0.1370 0.1337

LDP [25] 11.8186 10.400 11.1093 0.2113 0.1646 0.18795 0.0997 0.1251 0.1124

SemiDN [59] 5.8816 4.4511 5.16635 0.8100 0.7513 0.78065 0.0605 0.1090 0.08475

RefineDNet [60] 7.7726 7.4029 7.58775 0.7437 0.7176 0.73065 0.1239 0.1191 0.1215

PMS-Net [41] 5.8884 6.7702 6.3293 0.7728 0.7838 0.7783 0.1003 0.1540 0.12715

PMHLD [63] 5.0979 10.9725 8.0352 0.7471 0.5958 0.67145 0.0713 0.2268 0.14905

Our FSAD-Net 5.7991 5.1609 5.48 0.8162 0.8637 0.83995 0.0660 0.0556 0.0608

Our FSAD-Net* 5.1325 4.7190 4.92575 0.8385 0.8489 0.8437 0.0540 0.0724 0.0632

quality. The last one is LPIPS [22], evaluating the distance
between image patches, lower LPIPS [22] means more similar
to ground truths. Fig. 7 and Fig. 8 show the synthetic indoor
and outdoor dehazing results obtained by different methods,
respectively. Fig. 7(a) and Fig. 8(a) are synthetic hazy images
to be dehazed, Fig. 7(j) and Fig. 8(j) are corresponding ground
truths. It is worth point that, to prove the proposed the
suitability of our method for each distinct haze density, we
choose the thin haze image and thick haze image synthesized
by the same haze-free indoor image for comparison. As shown
in Fig. 7, the first row of Fig. 7(a) is dense haze image, the
second row of Fig. 7(a) is thin haze image. It can be seen
from Fig. 7(b) and Fig. 7(c) that DCP [8] and HL [34] tend
to produce over-dehazed results, and the phenomenon become
more severe when haze is thin. Fig. 7(d) and Fig. 7(g) show
the results of SemiDN [59] and RefineDNet [60], for these
methods, the dehazed performances of images with different
haze densities are very different. When the haze is dense,
the dehazed results still remained some haze, while when the
haze is thin, the dehazed results suffered over-enhancement
and possessed dimmer colors. This also illustrated that these
methods are not robust to haze density. For GFN [39], with the
change of haze density, the difference between the dehazing
results is small. GFN [39] is a CNN-based method, which
was based on three derived images and reconstructed a haze-
free image by fusing them using a confidence map, while the
derived images introduced estimation errors and leading over-
enhancement of dehazed images, such as the blue box denotes
in Fig. 7(f). Dehazing results of LDP [25] preserve structural
details of objects in image with thin haze, however, as shown
in two images of Fig. 7 (e), haze still exists at regions denoted
by the red boxes. It can be observed that color shift existed in
the results by FD-GAN [10].

We also choose the synthetic outdoor images with dense
haze for comparison. Fig. 8(b) depicts the results of DCP [8],

most details of the scenes and objects are well restored. How-
ever, the results significantly suffer from over-enhancement
(for instance, the sky region of the outdoor image exist
color distortion and halo). This is because DCP [8] has an
inherent problem of overestimating the transmission. The same
phenomenon also appeared in results of HL [34] as shown
in Fig. 8(c). Although PMS-Net can generate a appropriate
patch map for DCP and relieved the color deviation, the results
shown in Fig. 8(e) also exist color distortions in sky regions.
The results of DDIP [62] and FD-GAN [10] suffered from
different degrees of visual artifact, such as the halo in sky
region as shown in fist images of Fig. 8(f) and Fig. 8(g).
Methods from SemiDN [59], PMHLD [63] and our method
have the most competitive visual results. However, by looking
closer, it can be observed that SemiDN [59] and PMHLD
[63] produced unrealistic color shifts such as the color of sky
compared with the ground truth in Fig. 8(d) and Fig. 8(g). On
the contrary, on the synthetic indoor and outdoor datasets, our
method is able to generate more natural and realistic colors
while better removing haze. Our dehazed results of indoor
images illustrated the proposed FSAD-Net can restore more
similar to the ground truth compared with the results obtained
by other methods. Our results do not show any negative effects
and can maintain the original tones when haze density change.
This can be seen from Fig. 7(i) and Fig. 8(i). The reason
why our FSAD-Net can achieve more natural results and rich
details is that our feedback mechanism can refine low level
representations with high-level information.

We performed quantitative evaluations on the SOTS in terms
of average PSNR and SSIM values as illustrated in Table II.
It can be seen that CNN-based methods [10], [17], [25], [39],
[41], [59], [60], [61], [62] and [63] generally outperformed
the prior-based methods [8] and [34]. CNN-based dehazing
methods provided powerful capability to represent and estab-
lish a more complex dehazing mapping function, while having
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Fig. 9: Performance of different dehazing methods on HazeRD
[24]. (a) Qualitative comparison on ‘Light’ condition of HAZ-
ERD [24]. (b) Qualitative comparison on ‘Moderate’ condition
of HAZERD [24]. (c) Qualitative comparison on ‘Thick’
condition of HAZERD [24]. (d) Qualitative comparison on
HAZERD [24].

stronger restoration performance than prior-based methods.
As shown in Table II, our proposed FSAD-Net outperforms
nine different state-of-the-art methods in terms of PSNR and
SSIM. In addition, we use average CIEDE2000, UQI [21]
and LPIPS [22] as full-reference image quality assessment
for quantitative performance evaluation to further prove the
robustness of the proposed FSAD-Net. As indicated in Table
III, compared to other state-of-the-art methods, FSAD-Net
almost achieved best performance on the CIEDE2000, UQI
[21], and LPIPS [22] metric for all datasets. The quantitative
results also illustrated complicated network architectures are
difficult to train and suffered from the overfitting problem.
For example, the CIEDE2000s of FD-GAN [10] in indoor
images and outdoor images existed a big gap. Apparently, the
proposed method realizes the best color-balanced and recovers
more effective details when dehazing. We then evaluate our
method on the HazeRD [24]. To illustrate our method is robust
to different haze density, we choose ‘Light’, ‘Moderate’ and
‘Thick’ weather conditions in HAZERD [24]. From Fig. 9(a)
to Fig. 9(c) show the comparisons on ‘Light’, ‘Moderate’
and ‘Thick’ in term of PSNR. Fig. 9(d) show the evaluation
on HAZERD [24]. The results show our algorithm performs
favorably against the state-of-the-art dehazing methods.

After carefully dissecting the proposed architecture of
FSAD-Net and comparing it with state-of-the-art architectures,
we can make the following conclusions. 1) recurrent structure
plays a key role in our method, it can achieve haze removal
step-by-step, meanwhile, the spatial attention mechanism is
very effective for compensating the information loss during
convolutional operations. 2) modeling the dehazing task in an
end-to-end manner is beneficial, and the outstanding dehaz-
ing results does not necessarily depend on the atmospheric
scattering model.

E. Evaluation on Real-World Datasets
We further compare the proposed FSAD-Net against twelve

state-of-the-arts on the real-world images. Here we shall only

Fig. 10: Qualitative comparison of different methods on real-
world images. (a) Haze image, haze-free images restored by
(b) DCP [8], (c) HL [34], (d) LPQC [61], (e) SemiDN [59],
(f) GFN [39], (g) RefineDNet [60], (h) PMS-Net [41], (i) FD-
GAN [10], and (j) our FSAD-Net. Our FSAD-Net effectively
removes haze from a single hazy image while preserving fine
details and realistic colors.

make qualitative comparisons since the haze-free counterparts
of the real-world hazy images are not available. It is discovered
that all the methods have made a great progress on dehazing
task as shown in Fig. 10, while some methods are susceptible
to bright regions, whose color are mistakenly considered as
haze. Such as the sky regions of the images restored by DCP
[8], HL [34] and FD-GAN [10] are over-enhanced, and prone
to produce color distortions and blurred vision as shown in
fourth row of Fig. 10. The same phenomenon appeared in
women’s faces. For SemiDN [59] and RefineDNet [60], there
are still some remaining haze in dehazed images. LPQC [61]
outperformed these methods but has limited ability to deal
with distance region and exhibits color artifacts as illustrated
in Fig. 10(d). Is is obvious that PMS-Net [41] produced halo
in first image of Fig. 10(h). The dehazed results by GFN [39]
are closer to the proposed method, however it still retained
residual haze in dense haze regions, e.g., the last row of Fig.
10(f). In comparison to eight state-of-the-art methods, though
the proposed FSAD-Net is trained on synthesis haze images,
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Fig. 11: Qualitative comparison of different methods on real-
world haze image with dense haze. (a) Haze image, haze-free
images restored by (b) DCP [8], (c) HL [34],(d) cGAN [17],
(e) FD-GAN [10], and (f) our FSAD-Net. The images in the
second row are the close-up of the red boxes in the first row.
Our FSAD-Net generate a sharper and more pleasing result.

Fig. 12: Qualitative comparison of different methods on night-
time haze image. (a) Haze image, haze-free images restored by
(b) DCP [8], (c) HL [34],(d) FD-GAN [10], and (e) our FSAD-
Net. The images in the second row are the close-up of the red
and yellow boxes in the first row. Our FSAD-Net remove the
haze for texture regions, and produce pleasing result.

it more effective in haze removal on the real-world dataset and
has the remarkable performance on generalization ability.

To compare different methods generalization ability, we
random selected 50 daytime haze images and 50 nighttime
images from RTTS for comparisons. Fig. 11 and Fig. 12
show the results of day image and night image respectively.
Results of DCP [8] and cGAN [17] show that the sky are
become dimmer than input haze image. HL [34] and FD-
GAN [10] have limited ability to deal with distance region
and exhibits color artifacts as illustrated in Fig. 11(c) and Fig.
11(e). Our FSAD-Net, in contrast, produces restored images
with minimal observable artifacts and color shifts. In addition,
we get more contrast-enhanced images than the other state-of-
the-art methods. From the close-up views of nighttime dehazed
images shown in second row of Fig. 12, DCP [8] restored
darker subjects than other methods. The light sources in the
outputs restored by HL [34] and FD-GAN [10] are magnified
as can be seen from the light of street lamp of Fig. 12(c)
and Fig. 12(d). The proposed method completely removed the
haze without color distortion. The comparisons in nighttime
images show that our FSAD-Net’s potential for haze removal
in non-uniform atmosphere light, e.g., artificial ambient light
in nighttime haze environment.

F. Ablation Analysis

To further demonstrate the effectiveness of the proposed
FSAD-Net, we conduct an ablation study by considering
the combination of five keys: 1) residual block with spatial
attention and skip fusion, 2) feedback block, 3) multi-stage
iteration, 4) loss function, 5) input and output. To make fair
comparison, we keep the same training settings for all ablation
studies. We first take the study of the influence of the recurrent

Fig. 13: Comparison of FSAD-Net models with different T
iterations. The test performance increases when the number of
iterations increases, but the performance of dehazing seems to
diminish after T = 6.

iteration number T. Fig. 13 provides the information about the
PSNR and SSIM values of six FSAD-Net models with stages
T = 2, 3, 4, 5, 6, 7 on SOTS. It can be observed from the
comparison results that the FSAD-Net with more iterations
(from 2 iterations to 6 iterations) usually have higher average
PSNR and SSIM values. This further prove that with the help
of feedback connections, the dehazing quality can be improved
stage-by-stage. But the phenomenon will be changed when
the iteration is too large, this is because networks with large
iteration have difficulties to train. As the Fig. 13 shows, the
PSNR and SSIM values become smaller when the proposed
network with 7 iterations. Based on this study, we set the
iteration number to 6 in the experiments in this paper.

The iteration T can change the maximum effective depth of
the proposed network. To dig deeper into the influence of T,
we train the model with different iterations and visualize the
output of every iteration, the results are shown in illustrated
in Fig. 14. From Fig. 14, we have two observations. The
first observation is that the test performance increases when
the number of unfolding steps increases, but the performance
of dehazing seems to diminish after T = 6. Compared with
the feedforward network (T = 1), outputs acquired from the
feedback network contain more details, showing a stronger
effect of suppressing the smooth area of the input image. This
reflects the feedback network has more powerful dehazing
ability than the feedforward one. Secondly, feedback network
can obtain well-dehazed outputs at the initial iteration, and it
is allowed to devote most of its efforts to take a self-correcting
process. As shown in Fig. 14, the high-frequency components
(i.e. edges and contours) are gradually restored by iteration.

To demonstrate the effectiveness and superiority of attention
mechanism and skip fusion, we train the FSAD-Net without
attention mechanism and skip fusion, and calculate the PSNR
and SSIM of dehazing results of it as shown in the forth
column of Table IV. Compared with our results in the last
column of Table IV, It is obviously that the introduction of
attention mechanism and skip fusion does benefit the dehazing
performance in terms of PSNR and SSIM. We also examine
the baseline that FSAD-Net without multi-stage iterations (t
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Fig. 15: Comparison of different Loss. (a) PSNR on training data using loss function L1 , (b) PSNR on training data using
loss function Lssim, (c) PSNR on training data using loss function Lssim + L1. The Lssim + L1 leads to better results.

Fig. 14: (a) Haze images. (b)-(h) Dehazing results by FSAD-
Net at iteration T = 1, 2, 3, 4, 5, 6, 7, respectively. (i)
Ground truth. We also display the the PSNR and SSIM of each
restored image, these values are shown below every dehazed
image. The values of evaluation metrics generally gets better
as the number of iterations increases. A FSAD-Net can remove
most haze at the first iteration, and then remaining haze can
be progressively removed by iterations, leading to promising
dehazing quality at the sixth iteration. However, larger iteration
T also makes the proposed network to face the problem of
overfitting. It can be seen from the output of FSAD-Net at
iteration T = 7, the model suffers from the remaining haze.

= 1). Although the quantitative metrics values are lower than
FSAD-Net (t = 6), the results of FSAD-Net from the first
iteration shown in fifth column of Table IV are still superiority,
compared with the results of state-of-the-art methods displayed
in Table II. We present the comparison of FSAD-Net with and
without feedback block to show the effectiveness of FB, the
results show that FB plays an important role in the network
performance. Table IV also lists the PSNR and SSIM values of

TABLE IV: Ablation study results on SOTS indoor testset for
different configurations.

Attention+Skip fusion
√ √ √ √

Feedback Block
√ √ √

Multi-Stage Iteration
√ √ √

PSNR 22.1694 21.5958 21.1391 21.4320 23.3437

SSIM 0.8858 0.8236 0.8456 0.8063 0.9248

TABLE V: Ablation study results on SOTS dataset for differ-
ent loss functions and inputs.

Models SSIM PSNR CIDE2000 UQI [21] LPIPS [22]

FSAD-Net-L1 0.8923 22.5145 7.1289 0.6857 0.1359

FSAD-Net-Lssim 0.9201 23.6745 6.4059 0.8084 0.0689

FSAD-Net-In 0.9079 22.3455 7.5595 0.7891 0.0802

Our FSAD-Net 0.9248 23.3437 5.9955 0.8144 0.0705

FSAD-Net without feedback block and multi-stage iterations,
it is reasonable to see that dehazing quality can improved by
iterations. In addition, we can clearly see that even if we use
the structure shown in Table IV, our network can be very
competitive compared with eight state-of-the-art methods.

In addition, we analyze the effect of each supervised loss.
Fig. 15 shows the PSNR on training data using different
losses. Table V presents the average performance of different
loss functions on the SOTS in terms of the SSIM, PSNR,
CIEDE2000, and UQI [21]. As shown in Table V and Fig. 15,
the comparisons show the method using the combination of L1

and Lssim performs well. Finally, we conduct several ablation
studies about input and output to analyse the influence of the
input and output to our FSAD-Net. We send the stage-wise es-
timation Ot−1 without addition with haze image I to each sub-
network in each iteration t, and denote the model as “FSAD-
Net-In”. The quantitative evaluation of FSAD-Net-In on SOTS
are shown in forth row of Table V. The results show that
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TABLE VI: Average PSNR and SSIM comparison on the
SOTS. The results indicate that a single loss on the final stage
is sufficient to train progressive networks.

Models
Indoor Outdoor HazeRD

PSNR SSIM PSNR SSIM PSNR SSIM

FSAD-Net 23.4105 0.9336 26.3876 0.9292 17.8144 0.5889

FSAD-Net* 24.5424 0.9459 26.0134 0.9325 17.3417 0.5773

Fig. 16: Failure cases. (a) Haze images. Dehazing results by
(b) DCP [8], (c) FD-GAN [10] and (d) FSAD-Net.

adding Ot−1 and I as the input to each sub-network is a better
choice for our FSAD-Net. As we mentioned before, when
δt=1...(T−1) = 0, δt=T = 1, the loss function shown in Eq.
(8) can be rewritten as L = L1(O

T , Igt) + λLssim(OT , Igt),
which means the dehazing network can only be supervised by
final output. To investigate the effect of output in each itera-
tion, we show the comparison between our network supervised
by final output (FSAD-Net) and our network supervised by
outputs of each stage (FSAD-Net*) in Table VI. From Table
VI, FSAD-Net performs moderately inferior to FSAD-Net* in
SOTS dataset, while FSAD-Net performs better in HAZERD
dataset compared with FSAD-Net*. We can conclude that the
total loss applied only on the final stage is sufficient to train
our dehazing network. Considering the completeness of our
method, we use FSAD-Net* as an enhanced version of our
method and show the quantitative results on SOTS in Table II
and Table III.

G. User Study

To measure the visual quality of dehazed images obtained
by different methods, we conducted a subjective user study to
quantify the user-preference. We collect 25 synthetic images
from RESIDE dataset and 25 real-world haze images from
related works. Some corresponding images have been shown
in Figs. 7, Fig. 8 and Fig. 10. We randomly order the results
obtained by 13 methods and separately display them to 20
participants. Each participant grade results obtained by each
method from 1 to 10 subjectively according to visibility
and natural color of dehazed images (1 represents the worst
visibility and severe color distortion and 10 represents the best
image quality). Table VII lists the result of our user study,
for synthetic and real-world image, we show the subjective
scores of visibility and color balance, the final subjective
score denoted as “Quality” are obtained by averaging scores
of visibility and color balance. From the subjective scores

TABLE VII: User study results.

Methods
Synthetic images Real-world images

Visibility Color Quality Visibility Color Quality

DCP [8] 7.2 6.15 6.68 8.02 7.07 7.55
HL [34] 7.37 6.97 7.17 7.92 7.46 7.69

LPQC [61] 7.86 7.73 7.8 8.06 7.89 7.98
GFN [39] 8.14 7.95 8.05 8.06 8.08 8.07
DDIP [62] 7.86 7.59 7.73 7.97 7.37 7.67
cGAN [17] 7.91 8.14 8.03 8.15 8.12 8.14

FD-GAN [10] 7.87 7.76 7.82 7.81 7.4 7.61
LDP [25] 8.34 8.29 8.32 7.83 8.22 8.03

SemiDN [59] 8.12 8.04 8.08 7.75 8.09 7.92
RefineDNet [60] 8.43 8.36 8.4 7.97 7.83 7.9
PMS-Net [41] 7.87 7.27 7.57 7.7 8.09 7.90
PMHLD [63] 8.19 8.29 8.24 8.2 8.49 8.35

Our FSAD-Net 8.9 8.93 8.92 8.45 8.56 8.51

illustrated in Table VII, our FSAD-Net yields best score in
two aspects, which indicates that our method can produce more
clear haze-free images and avoid color distortion comparing
with other methods.

H. Limitation

In Fig. 16 we show some failure cases of our FSAD-Net.
Our method can effectively handle most images with thick
haze (as shown in Fig. 11). However, As Fig. 16 illustrated,
our FSAD-Net performs poorly on sky regions with heavy
haze. The result in first row of Fig. 16(d) show that our method
cannot uniformly remove the haze in the sky area. The second
dehazed image of Fig. 16(d) still remained a large amount
of haze. Heavy haze is also an important factor interfered
performances of other CNN-based methods [9] [17] [39]. The
first reason that causes our method to fail in sky region with
heavy haze is the dependence on synthetic data. Our FSAD-
Net is trained on the RESIDE [23] which is created based
on atmospheric scattering model [7], while the model cannot
hold in sky areas with heavy haze. The second reason is the
structure and texture features of the sky regions with heavy
haze are rare, it is difficult for the algorithm to distinguish the
haze and sky. We aim to handle these problems in the future.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel end-to-end network for
image dehazing called feedback spatial attention dehazing
network (FSAD-Net). We introduce the recurrent structure
to deep image dehazing architecture. We take the stage-wise
result to each iteration to improve the dehazing performance.
The feedback block included in FSAD-Net not only extract
the feedback feature, but effectively handle the information
reuse, benefiting the information flow across time. Moreover,
the residual block with spatial attention mechanism and skip
fusion which can help network pay more attentions on low
frequency regions bypassing the unimportant information.
Extensive experiments demonstrate that FSAD-Net achieves
remarkably high efficiency comparing with twelve state-of-
the-art methods. The comparisons on real-world images further
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validate the proposed model has a powerful advantage in the
restoration of image content and faithful color. Although our
FSAD-Net based on recurrent architecture has achieved good
performance compared with twelve state-of-the-art methods,
our method has its shortcoming in dealing with bright region
with heavy haze. Besides, the color deviations still exist in
our results compared with corresponding ground truths. In
our future works, we aim to solve this problem by improving
network structure, loss functions, and input and output.
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