
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

BaGFN: Broad Attentive Graph Fusion Network for
High-Order Feature Interactions

Zhifeng Xie, Wenling Zhang, Bin Sheng, Member, IEEE, Ping Li, Member, IEEE,
and C. L. Philip Chen, Fellow, IEEE

Abstract—Modeling feature interactions is of crucial signif-
icance to high-quality feature engineering on multi-filed sparse
data. At present, a series of state-of-the-art methods extract cross
features in a rather implicit bit-wise fashion and lack enough
comprehensive and flexible competence of learning sophisticated
interactions among different feature fields. In this paper, we
propose a new Broad Attentive Graph Fusion Network (BaGFN)
to better model high-order feature interactions in a flexible and
explicit manner. On the one hand, we design an attentive graph
fusion module to strengthen high-order feature representation
under graph structure. The graph-based module develops a
new bilinear-cross aggregation function to aggregate the graph
node information, employs the self-attention mechanism to learn
the impact of neighborhood nodes, and updates the high-order
representation of features by multi-hop fusion steps. On the other
hand, we further construct broad attentive cross module to refine
high-order feature interactions at a bit-wise level. The optimized
module designs a new broad attention mechanism to dynamically
learn the importance weights of cross features and efficiently
conduct the sophisticated high-order feature interactions at the
granularity of feature dimensions. The final experimental results
demonstrate the effectiveness of our proposed model.

Index Terms—Feature interactions, graph neural networks,
attention mechanism, broad learning system.

I. INTRODUCTION

FEATURE engineering is a procedure of exploiting valid
features from original data, which can significantly boost

the performance of the predictive model. It is normally re-
garded as a central task to a variety of machine learning
applications, such as recommendation system [1], computa-
tional advertising [2], search ranking [3] and so on. However,
multi-field sparse data often fail to achieve ideal feature

Manuscript received February 10, 2021; revised August 11, 2021; accepted
September 26, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 61872241 and Grant 61572316,
in part by the National Key Research and Development Program of China
under Grant 2019YFB1703600, and in part by The Hong Kong Polytechnic
University under Grant P0030419, Grant P0030929, and Grant P0035358.

Z. Xie is with the Department of Film and Television Engineering, Shanghai
University, Shanghai 200072, China; and also with the Shanghai Engineering
Research Center of Motion Picture Special Effects, Shanghai 200072, China.

W. Zhang is with the Department of Film and Television Engineering,
Shanghai University, Shanghai 200072, China.

B. Sheng is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China (Email: sheng-
bin@sjtu.edu.cn).

P. Li is with the Department of Computing, The Hong Kong Polytechnic
University, Kowloon, Hong Kong (Email: p.li@polyu.edu.hk).

C. L. P. Chen is with the School of Computer Science and Engineering,
South China University of Technology, Guangzhou 510006, China; with the
Navigation College, Dalian Maritime University, Dalian 116026, China; and
also with the Faculty of Science and Technology, University of Macau, Macau
999078, China (Email: philip.chen@ieee.org).

engineering because it is quite difficult to model intricate
feature interactions effectively. To that end, previous feature
interaction methods [4], [5] create cross features by manually
exploiting multiple features. Such feature crossing is able to
disclose the implicit relationships among multi-field sparse
data. Nevertheless, the handcrafted feature interactions usually
require extensive domain knowledge and consume a lot of
time, which is hard to generate the appropriate cross features
to a new domain. Therefore, in the process of feature engineer-
ing, it is crucial to automatically achieve high-order feature
interactions from multi-field sparse data, which is a great help
to improve the accuracy of predictive model.

Recently, a series of state-of-the-art methods have been pro-
posed to generate cross features automatically from raw data.
Factorization Machine (FM) [6] is regarded as a benchmark
solution for multi-field sparse data in academia and industry
due to its superior performance. Specifically, it transforms
each feature into an embedding vector and learns second-
order interactions via inner product of pairwise features. As an
improved version of FM, Field-aware Factorization Machine
(FFM) [7] takes into account feature interactions among differ-
ent fields, which can yield more powerful performance. But
the neglect of nonlinear and high-order feature interactions
limits the prediction accuracy of these FM-based models.
Later, numerous methods based on deep learning are proposed
to probe the modeling of high-order and non-linear feature
interactions, such as NFM (Neural FM) [8], Deep&Cross
[2], DeepFM [9], xDeepFM [10], AutoInt (Automatic Feature
Interaction) [11], FiBiNET (Feature Importance and Bilinear
Feature Interaction Network) [12]. For example, NFM [8] and
DeepFM [9] construct Deep Neural Networks (DNN) to model
high-order interactions and meanwhile utilize FM to model
low-order interactions. However, they extract cross features
in a rather implicit bit-wise fashion, which often lacks good
model explanations and will bring negative and uncontrollable
effects due to some useless feature interactions.

Unlike these implicit methods, some optimized models are
capable of learning high-order interactions explicitly or the
importance of features by proposing their dedicated networks.
For example, Deep&Cross [2] proposes a DNN-based cross
network to learn certain bounded-degree feature interactions
directly; xDeepFM [10] designs Compressed Interaction Net-
work (CIN) to learn high-order feature interactions explicitly;
AutoInt [11] constructs a self-attentive neural network to au-
tomatically learn different orders of feature interactions; FiB-
iNET [12] introduces Squeeze-Excitation Network (SENET)
to learn the significance of features. Unfortunately, these op-

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

timized methods are still not sufficiently effective and explicit
since they just unite feature fields to learn interactions or in-
troduce a single module to explore the importance of features.
The amorphous combination or independent attention unit
lacks the competence of learning sophisticated interactions
among different feature fields in a flexible and explicit manner.
To better model the sophisticated high-order interactions, Fi-
GNN (Feature Interaction GNN) [13] first introduces Graph
Neural Network (GNN) [14] to transform the modeling of
feature interactions into the modeling of node interactions on
a graph structure. Specifically, Fi-GNN is designed to model
feature interactions by aggregating the graph node with its
neighbors, and the edge weights reflect the importance of
different node interactions. However, the simple aggregation
manner limits the capability of cross features, and it is also
incapable of learning the impact of aggregation of neighboring
nodes on the node itself. In brief, the informative aggregation
of graph nodes is not still comprehensive enough and flexible
for sophisticated high-order interactions. Thus, we focus on
how to take advantage of the GNN-based method and integrate
some other advanced models to make up for its deficiency.

In this paper, a novel model named Broad Attentive Graph
Fusion Network (BaGFN) is proposed to capture fine-grained
cross features in a flexible and explicit manner. Concretely,
inspired by Graph Convolutional Network (GCN) [15] and
Broad Learning System (BLS) [16], the new model trans-
forms features interactions into node interactions, and its
architecture mainly consists of two key modules: attentive
graph fusion module and broad attentive cross module. The
first module constructs graph structure to generate feature
representation by aggregating the information of first-order
and second-order neighborhood nodes, and then employs the
self-attention mechanism and multi-hop fusion steps to learn
and update the high-order interactions of graph nodes. The
module can not specify the significance of each interaction
at the granularity of feature dimensions. To further refine
the high-order interactions of the first module, the second
module achieves a new broad attention mechanism, which can
dynamically learn the weights of cross nodes which reflect the
significance of different feature interactions on the final model
prediction and quickly conduct high-order feature interactions
at the granularity of feature dimensions. On the basis of
the above two modules, our BaGFN model is able to cap-
ture the explicit influence of sophisticated high-order feature
interactions among multiple fields, which will be beneficial
to further improve the accuracy of the predictive model. To
validate the effectiveness of our BaGFN model, we conduct
extensive experiments on two benchmarks Click-Through Rate
(CTR) prediction datasets (Avazu1 and Criteo2) and a real-
world industry dataset (Tobacco) with more feature fields. In
summary, our main contributions are listed as follows:
• A Broad Attentive Graph Fusion Network (BaGFN)

for modeling high-order feature interactions. The
BaGFN model transforms features interactions into n-
ode interactions and extracts fine-grained cross features

1https://www.kaggle.com/c/avazu-ctr-prediction
2https://www.kaggle.com/c/criteo-display-ad-challenge

among multi-field sparse data in a flexible and explicit
manner.

• An attentive graph fusion module to strengthen high-
order feature representation under graph structure.
The graph-based module designs a bilinear-cross aggre-
gation function to aggregate the graph node information,
employs self-attention mechanism to learn the impact of
neighborhood nodes, and updates the high-order repre-
sentation of features by multi-hop fusion steps.

• A broad attentive cross module to refine high-order
feature interactions at the bit-wise level. The optimized
module further designs a new broad attention mechanism
to dynamically learn the importance weights of cross
features and efficiently conduct the sophisticated high-
order feature interactions at the bit-wise level.

II. RELATED WORK

Modeling Feature Interactions. Modeling feature interac-
tions is an essential problem of multi-field sparse data and is
studied extensively in the literature. A classic algorithm is FM
[6], which pays attention to second-order feature interactions
by capturing the inner-product of pairwise feature representa-
tions. Succeeding the success of FM, numerous variants of FM
have been proposed to exploit more field information. FFM [7]
presumes each feature field possesses a separate embedding
vector for each of the other feature fields. Nevertheless, these
FM-based methods only consider the second-order interactions
of feature fields, which neglects the nonlinear and high-order
feature interactions and limits the performance of their final
predictive models.

In recent years, more and more methods based on deep
learning has been proposed to model high-order feature in-
teractions. Product-based Neural Network (PNN) [17] applies
a product layer between embedding layer and DNN layer to
learn second-order and high-order interactions. Different from
it, Neural Factorization Machine (NFM) [8] proposes a bi-
interaction pooling operation between the embedded layer and
the neural network layer to model high-order and non-linear
feature interactions. Meanwhile, some researchers focus on
learning low-order and high-order feature interactions through
a hybrid network. For instance, Wide&Deep [4] and DeepFM
[9] have a shared feature embedding layer to its “wide” and
“deep” component. Its “wide” part learns low-order interaction
while the “deep” part models high-order interaction. However,
these DNN-based methods use rather implicit bit-wise man-
ners to conduct the high-order feature interactions, which may
cause negative and uncontrollable cross features due to some
useless feature interactions.

Besides, some other DNN-based methods utilize the specif-
ically devised networks to capture high-order interactions
in an explicit manner. Deep&Cross [2] introduces a novel
cross network to capture the feature interactions of bounded
degrees and the nonlinear feature interactions, which is further
improved by [18] for more practical in large-scale industrial
settings. xDeepFM [10] considers both the implicit and explicit
high-order feature interactions, and devises CIN to model the
feature interactions in an explicit manner and at a vector-
wise level. Adaptive Factorization Network (AFN) [19] models

https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/criteo-display-ad-challenge

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Fig. 1: The overall architecture of our BaGFN model. The new model consists of three layers: Embedding Layer, Broad
Attentive Graph Fusion Layer, and Prediction Layer. As the core of the BaGFN model, the second layer consists of two
key parts: attentive graph fusion module and broad attentive cross module. The first module strengthens high-order feature
representation by integrating graph structure and self-attention mechanism. The second module designs a broad attention
mechanism to refine high-order feature interactions at the bit-wise level.

the arbitrary-order cross features and their weights adaptive-
ly via a logarithmic transformation network. On the other
hand, the attention mechanism is also introduced for multi-
filed sparse data to improve the feature interactions by high-
lighting useful features. Attentional Factorization Machines
(AFM) [20] introduces the method of attention mechanism to
learn the importance of each second-order feature interaction
based on FM. High-order Attentive Factorization Machine
(HoAFM) [21] aggregates the representations of other co-
occurred features and learns the different importance of co-
occurred features on the granularity of dimensions. AutoInt
[11] employs a multi-head self-attentive neural network with
residual connections to model the different orders of feature
interactions. FiBiNET [12] dynamically captures the signifi-
cance of features via the Squeeze-Excitation Network. Dual
Input-aware Factorization Machines (DIFM) [22] adaptively
reweight the original feature representations at the bit-wise and
vector-wise levels simultaneously. In these optimized methods,
the amorphous combination or independent attention unit still
lacks the competence of learning sophisticated interactions
among different feature fields. Therefore, this paper will focus
on how to model the sophisticated high-order interactions
effectively in a more flexible and explicit manner.

Graph Neural Networks. Graph structure consists of nodes
and edges, where the edge represents the relationship of
connected nodes. In the past decade, a growing body of
research is interesting in graphs representation, acquisition and
applications [23]. Concretely, Xiao et al. [24] characterize
graphs to measure similarity and clustering by computing
permutation invariants from the heat kernel trace. Han et al.
[25] construct a generative prototype for graphs by adopting a
minimum description length approach. Bai et al. [26] propose
two novel local-global nested graph kernels, which can simul-
taneously reflect the local and global graph characteristics in
terms of the nested complexity traces. Recently, a number of
deep learning algorithms have been applied on irregular inputs
like graph structure data. Owing to the massively parallel

architectures, modern GPUs (Graphics Processing Units) have
been successfully utilized to accelerate the performance of
graph computation [27]. Frasconi et al. [28] utilize recursive
neural networks to represent and process data in graph. Deep-
Walk [29] uses truncated random walks to learn node latent
representations in graph. Following the DeepWalk, LINE
(Large-scale Information Network Embedding) algorithm [30]
preserves both the local and global structural information to
suit arbitrary types of information embedding network. Later,
Cavallari et al. [31] consider embedding communities instead
of individual nodes, which can identify the interaction between
community embedding and detection as a closed loop, through
node embedding. However, most of these shallow models
cannot learn non-linear network structure, resulting in sub-
optimal representations for large graphs.

GNN [32] is designed to address the above deficiencies,
which is a type of neural networks that performs neural
network operations via graph structure to acquire node rep-
resentations. A typical GNN model consists of an iterative
random-walk process in which node states are propagated by
aggregating information from neighborhoods. Recently, nu-
merous GNN variants with various types of novel aggregators
and updaters have been proposed. For instance, GCN [15]
tackles spectral information by employing the convolutional
aggregator to operate the first-order neighborhood around
each node. GraphSAGE (Graph Sample and Aggregate) [33]
proposes three types of aggregators: mean aggregator, LSTM
(Long Short-Term Memory) aggregator, and pooling aggrega-
tor. Graph Attention Networks (GAT) [34] captures different
weights to different nodes in a neighborhood by stacking
layers. Moreover, Cross-GCN [35] introduces a cross-feature
operator to explicitly model the arbitrary-order cross features
with complexity linear to feature dimension and order size.

Recently, GNN has been broadly applied to various tasks
such as recommender system [1], action recognition [36],
semantic segmentation [37], image recognition [38], visual
question answering [39], and so on. Fi-GNN [13] first intro-

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

duces GNN to model feature interactions on a graph structure.
But its simple aggregation manner limits the capability of cross
features and it also can not learn the impact of aggregation
among nodes. Thus our work attempts to deeply integrate
GNN and attention mechanisms to model feature interactions
of graph structure features for multi-field sparse data.

Broad Learning System. Due to the deep structure and
abundant connecting weights, most networks based on deep
learning usually put up with a time-consuming training pro-
cess. In order to resolve this shortcoming of the long train-
ing process problem in the deep network, Pao and Takefuji
[40] design a Random Vector Function-link Neural Network
(RVFLNN). It transforms hidden nodes in the traditional
Single Layer Feed Forward Neural Network (SLFN) into en-
hancement nodes and connects the output node with both input
and enhancement nodes. Besides, the parameters transforming
input nodes to enhancement nodes are randomly generated.
This single change has greatly improved the performance of
this network.

For the sake of resolving the high dimensional data problem
and long training process, BLS [16] is proposed as a substitute
for deep structure, which is inspired by RVFLNN and the
dynamic step-wise updating algorithm [41]. BLS is designed
as a flat network, where the original feature nodes are trans-
ferred as “mapped features”, and the structure is expanded
in a wide sense in the “enhancement nodes”. Moreover,
the connection weights are updated using ridge regression
of the pseudoinverse method. Compared with deep learning
methods, BLS can be easily constructed at a fast speed, even
without a high-performance computer. In addition, due to the
independence and flexibility of the “mapped features” and
“enhancement nodes”, there are many advanced variants of
BLS [42] to improve the performance. In this paper, we
introduce the BLS theory to construct a new broad attention
module, which can achieve the efficient refinement of high-
order feature interactions at a bit-wise level.

III. BROAD ATTENTIVE GRAPH FUSION NETWORK

In this section, we will introduce the overview of our
BaGFN model, which is illustrated in Fig. 1. The new ar-
chitecture is composed of three components: (1) Embedding
Layer, which converts the raw features of multi-field sparse
data into the embedding vectors. (2) Broad Attentive Graph
Fusion Layer, which is the core of our model. It contains
two parts: attentive graph fusion module and broad attentive
cross module. The first module integrates graph structure
and self-attention mechanism to refresh high-order features
representation. The second module further refines high-order
feature interactions by designing a broad attention mechanism
at the bit-wise level. (3) Prediction Layer, which combines the
above cross features and then computes the final prediction
probability. The mathematical notations used in this paper are
summarized in Table I.

A. Embedding Layer

In the multi-field sparse data, each input instance is made up
of several field-aware values, which include plenty of dynamic

TABLE I: Notations of our BaGFN model.

Symbols Definitions and Descriptions

m, M the size of fields, the size of training instances
X
′
m the one-hot encoding representation in the m-th field
Xi the i-th instance with m field representations
Ei the embedding output of Xi

np, nq the p-th and q-th graph nodes of Ei

ξ(np, nq) the edge weight between np and nq

A the adjacency matrix with m×m edge weights
l the multi-hop feature fusion step
κl the input features at the step l

N (1)
p , N (2)

p the first-order and second-order neighborhood nodes of np

ψ
(1)
p , ψ(2)

p the first-order and second-order aggregations of np

Gl
p the bilinear-cross aggregation of np at the step l

ϕl
p the attention weight vector of np at the step l

Hl
p the interaction representation of np at the step l

κL the high-order feature representation after L steps
F r , P s the mapping and enhanced feature nodes
ζ the broad attentive weights of global-aware nodes
Γ the final representation of cross features
ŷ, y the predictive result, the ground truth
L the objective function with Log-likelihood Loss
W all trainable parameters in our BaGFN model

numerical fields and static categorical fields. For example, a
movie instance has some categorical fields: {Language: Italian,
Region: Italy, Director: Roberto Benigni, · · · }, which can not
be directly entered into a DNN-based model. Therefore, we
should convert the instance into multi-field representations,
including numerical representations from numerical fields and
one-hot representations from categorical fields:

Xi = [X
′

1, · · · , X
′

m] = [1, 0, · · · , 0︸ ︷︷ ︸
field1

, · · · , 0, 1, · · · , 0︸ ︷︷ ︸
fieldm

] (1)

where X
′

m is one-hot encoding representation in the m-th
field; m is the size of fields; Xi represents the i-th input
instance with m field representations. Following the former
works [10], [17], [21], we apply the embedding layer to
transform each field representation into the low-dimensional
and dense embedding vector. Finally, the embedding output
Ei = [e1, e2, · · · , ep, · · · , em] represents m embedding vec-
tors of one input instance Xi, where ep ∈ Rd denotes the
embedding vector of the p-th field, and d is the dimension of
embedding layer.

B. Broad Attentive Graph Fusion Layer

1) Attentive Graph Fusion Module: In this module, the
embedding instance Ei is defined as multi-field input features.
Next, we express these features in the form of a graph, that
is G = (N, ξ). Each node np ∈ N in the graph represents
a feature field p with embedding vector ep, and the number
of nodes |N | is m. The edge ξ reflects intricate interactions
between feature fields, and the edge weights denote the impor-
tance of different feature interactions. After the definition of
graph structure, the module will optimize the adjacency matrix
of edge weights, design a new bilinear-cross aggregation
function, learn the aggregation impact of neighborhood nodes,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

(a) first-order aggregation (b) second-order aggregation

Fig. 2: The architectures of different aggregation operations. In order to fully extract the cross features, a new bilinear-cross
aggregation function integrates two different aggregation operations: (a) first-order aggregation; (b) second-order aggregation.
The former is to enhance the affinity between the current node and its neighborhood nodes. The latter emphasizes building a
bridge between two nodes without a direct connection.

and construct multi-hop feature fusion steps. These operations
can effectively strengthen high-order feature representation
and finally yield higher-quality cross features. Concretely, each
node must qualify the impact of its neighbors and aggregate
their cross information to output high-quality feature fusion of
sophisticated node interactions. On the other hand, the steps
of feature fusion can be further connected to generate high-
order feature representation, called multi-hop feature fusion
steps, i.e., the input of the latter step comes from the output of
the former step. Formally, H l = f(κl, A,W l) represents the
node interactions representation results at feature fusion step
l, where f(·) is the aggregation function; A ∈ Rm×m is the
adjacency matrix with edge weights, where m is the number of
nodes; κl is the input features at step l, which needs to execute
the element-wise addition with multi-field input features Ei;
W l denotes the trainable matrix of network weights. Then H l

and κl are entered into GRU (Gate Recurrent Unit), which
can generate the input features κl+1 at the next step l + 1.
At last, this module can yield the final result κL of feature
representation, where L is the number of multi-hop feature
fusion steps. Apparently, the adjacency matrix A and the
aggregation function f(·) are fundamental to the effectiveness
of node interactions in this module.

Attentional Edge Weights. Generally, different graph-
based models deploy a variety of strategies to construct the
adjacency matrix of edge weights. For instance, the conven-
tional GNN model [32] usually adopts 0 and 1 to reflect the
relationship between nodes. This way is too simple and rough
to generate the accurate adjacency matrix for sophisticated
node interactions. Thus Fi-GNN [13] utilizes the attention
mechanism to explicitly learn the edge weights as follows:

ξ (np, nq) =
exp (LeakyReLu (Wξ [ep‖eq]))∑

k∈Np
exp (LeakyReLu (Wξ [ep‖ek]))

(2)

where ξ(np, nq) denotes the edge weight between np and nq;
ep and eq are two embedding vectors of np and nq; Np is the
neighborhood nodes of np; || is the concatenation operation;
Wξ is the trainable matrix of attentive weights; LeakyReLu

(Leaky Rectified Linear Unit) is the non-saturated activation
function. Recently, some state-of-the-art research work [6],
[17] has proved that the product operation is better than
the concatenate operation for multi-field feature interactions.
Therefore, different from Fi-GNN [13], we propose a more
fine-grained method to represent the edge weights as follows:

ξ (np, nq) =
exp (ReLu (%� (ẽp � ẽq)))∑

k∈Np
exp (ReLu (%� (ẽp � ẽk)))

(3)

where � denotes the Hadamard product operation that is
element-wise multiply, for example, [c1, c2, c3]�[d1, d2, d3] =
[c1d1, c2d2, c3d3]; % is the trainable vector of attentive weights;
ẽp and ẽq are the normalized vectors of ep and eq; ReLu
(Rectified Linear Unit) is a new activation function, which
is used to enhance the sparsity of feature selection instead
of LeakyReLu; Accordingly, the adjacency matrix A can be
defined as:

A (np, nq) =

{
ξ (np, nq) , q 6= p
0, otherwise (4)

where A(np, nq) denotes the edge weight from node np to
its neighborhood node nq . In brief, we construct a more fine-
grained representation of attentional edge weights to accurate-
ly reflect the importance of node interactions.

Bilinear-Cross Aggregation. With the adjacency matrix
A and the input features κl, the aggregation function f(·)
will further update the state of each node by aggregating the
cross information between itself and its neighborhood nodes.
Generally, the traditional aggregation operation in GNN [32] is
the simple multiply of adjacency matrix and node information,
which is difficult to fully extract the cross features. Inspired
by some graph-based researches [43], [44], we propose a
new bilinear-cross aggregation function, which integrates two
different aggregation operations: first-order aggregation and
second-order aggregation. The former is to enhance the affinity
between the current node and its neighborhood nodes. The
latter emphasizes building a bridge between two nodes without
a direct connection. As shown in Fig. 2(a), the first-order
aggregation operation ψ(1)

p can update the state of the current

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

node np by connecting with its first-order neighborhood nodes
N (1)
p , which is defined as:

ψ(1)
p =

∑
nq∈N (1)

p

A(np, nq)κ
l
p � κlp (5)

where A(np, nq) denotes the edge weight between np and
nq; κlp denotes the input features of np at step l. � denotes
the Hadamard product operation. Besides the multiply of the
adjacency matrix and input features, the first-order aggregation
adds the product operation with the input features, which is
beneficial to enhance the affinity between nodes. As shown in
Fig. 2(b), unlike the first-order aggregation, the second-order
aggregation operation ψ

(2)
p considers the current node np to

connect its second-order neighborhood nodes N (2)
p , which is

defined as:

ψ(2)
p =

∑
nu∈N (2)

p

(A(nq, nu)+I)((A(np, nq)+I)κlp�κlp) (6)

where nu ∈ N (2)
p denotes the second-order neighborhood

node of np, i.e., nu ∈ N (1)
q , nq ∈ N (1)

p ; A(nq, nu) denote
the edge weight between nq and nu; I denotes the unit
matrix. The second-order aggregation not only adopts two-hop
propagation to enlarge the aggregation range, but also reflects
the interaction effect of the current node itself using the unit
matrix. Finally, we integrate the first-order and second-order
aggregations into a new bilinear-cross aggregation function to
improve the representation of node interactions with different
cross orders as follows:

Glp = W l
ψ[ψ(1)

p ⊕ ψ(2)
p , ψ(1)

p � ψ(2)
p] (7)

where Glp denotes the bilinear-cross aggregation result for np;
W l
ψ denotes the trainable matrix of node aggregation weights;
⊕ and � are the element-wise addition and the Hadamard
product respectively.

Meanwhile, we apply the self-attention mechanism to get
the aggregation impact from the neighborhood nodes to the
current node. Thus we can define the attention weight vector
ϕlp of np to generate the representation result H l

p = Glp � ϕlp
of node interactions at the feature fusion step l, which can be
calculated as follows:

ϕlp =
exp

(
W l

2ReLu(W l
1[Glp‖klp])� klp

)∑
k∈Np

exp
(
W l

2ReLu(W l
1[Glk‖klp])� klp

) (8)

where Glp and Glk denote the bilinear-cross aggregation results
for np and its neighbor nk respectively; W l

1 and W l
2 denote

two trainable matrices of node attention weights; κlp denotes
the input features of np at step l;Np is the neighborhood nodes
of np; || is the concatenation operation; � is the Hadamard
product; ReLu is the activation function.

Finally, we introduce the GRU module to obtain the updated
representation kl+1

p of np at the next step l + 1, which is
calculated as follows:

zl+1
p = sigmoid

(
W l
zH

l
p + U lzκ

l
p + blz

)
,

rl+1
p = sigmoid

(
W l
rH

l
p + U lrκ

l
p + blr

)
,

κ̃l+1
p = tanh

(
W l
hH

l
p + U lh

(
rl+1
p � κlp

)
+ blh

)
,

κl+1
p = κ̃l+1

p � zl+1
p +H l

p �
(
1− zl+1

p

) (9)

Fig. 3: The architecture of Broad Attention. The broad atten-
tion mechanism can construct the cascaded feature mapping
to generate the feature nodes and the enhanced nodes, then
calculate the attentive weights of global-aware nodes to reflect
the importance of each cross feature.

where W l
z , U lz , blz , W l

r, U lr, b
l
r, W

l
h, U lh, blh are the trainable

parameters of the GRU module; sigmoid and tanh are two
activation functions. According to a series of operations for
np, we can update the representations of all nodes to yield the
input features κl+1 at the next step l+ 1. After L propagation
steps, we will output the final result κL of high-order feature
representation in this module.

2) Broad Attentive Cross Module: The attentive graph
fusion module learns the node interactions at the vector-wise
level where all feature representations of cross nodes share
the same weights, which can not specify the significance
of each interaction at the granularity of feature dimensions.
Considering this drawback, we propose a broad attentive cross
module to efficiently refine high-order feature interactions at
the bit-wise level. The new module is designed to dynamically
increase the weights of important nodes and decrease the
weights of uninformative nodes.

Generally, feature nodes are generated independently and
have no relationship with each other by feature mapping
in traditional BLS [16]. Unfortunately, the separated feature
mapping will reduce the intrinsic correlation of input data.
In this paper, we consider modeling feature interactions is to
capture cross features among multi-field data with complex
intrinsic correlation. Therefore, inspired by time-delayed neu-
ral networks [42], [45]–[47], we reconstruct a cascade BLS
in the form of recurrent, which can strengthen the correlation
between nodes. As shown in Fig. 3, we design a new broad
attention mechanism based on the idea of cascading to con-
struct the feature nodes and the enhanced nodes, strengthening
the correlation between nodes to improve the performance of
feature mapping. The cascaded feature mapping can be defined
as follows:

F zi = φzi(φzi−1(Fzi−1Wej−1
+ βej−1

))Wej + βej (10)

where Fzi is the zi-th mapping feature nodes, F0 = κL ⊕Ei,
zi ∈ [1, r], r is the number of feature mapping; Wej and
βej are randomly generated weights and bias; ⊕ denotes
the element-wise addition; φzi(·) denotes the LeakyReLu

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

activation function. All mapping features are concatenated to
generate the final feature nodes F r , [F1, · · · , Fr]. Next we
execute the enhanced feature mapping as follows:

P fi = φfi(φfi−1(Pfi−1Whj−1
+ βhj−1

))Whj
+ βhj (11)

where Pfi is the fi-th enhanced feature node, P0 = F r, fi ∈
[1, s], s is the number of enhanced feature mapping; Whj

and
βhj are randomly generated weights and bias; φfi(·) denotes
the LeakyReLu activation function. All enhanced mapping
features are concatenated to generate the final enhanced nodes
P s , [P1, · · · , Ps].

After obtaining the feature nodes F r and the enhanced
nodes P s, we can calculate the broad attentive weights ζ of
global-aware nodes, reflecting the importance of each cross
feature:

ζ = [F r‖P s]W ζ ,

W ζ = [F r‖P s]+ζ = A+ζ,

A+ = lim
λ→0

(
λI +ATA

)−1
AT

(12)

where || is the concatenation operation; W ζ is the trainable
matrix of connecting weights; A+ is the pseudoinverse of A =
[F r|P s]; λ is an adjustment parameter with an initial value of
0.1; I is the unit matrix.

Finally, the representation Γ of cross features can be calcu-
lated as follows:

Γ = (W b
2 (κL⊗Ei))� (W b

1 (κL⊕Ei))�σ(pooling(ζ)) (13)

where W b
1 and W b

2 are two trainable matrices of network
weights; ζ denotes the broad attentive weights of global-
aware nodes; σ(·) denotes the sigmoid activation function; �
denotes the Hadamard product; ⊗ denotes the Inner product;
⊕ denotes the element-wise addition. In this module, the broad
attentive weights reflect the significance of node interactions.
The high-order feature interactions are conducted at the bit-
wise level, which can achieve the more fine-grained represen-
tation at each dimension of cross features.

C. Prediction Layer

After obtaining the high-quality cross features by the above
layer, we can compute the final predictive result of our BaGFN
model for multi-filed sparse data, which is defined as follows:

ŷ = sigmoid(w +

|Γ|∑
i=1

Γi) (14)

where ŷ ∈ [0, 1] is the final prediction probability; sigmoid is
an activation function; Γ is the final representation of feature
interactions; w is a bias parameter; |Γ| is the dimension of
cross features Γ.

In the process of training, our BaGFN model takes Log-
likelihood Loss as the loss function and then minimizes the
objective function L, which is defined as:

L = − 1

M

M∑
i=1

(yi log (ŷi) + (1− yi) log (1− ŷi)) (15)

where M is the size of the training samples; yi is the
predictive ground truth of the i-th training instance; ŷi is the

Algorithm 1 Training of our BaGFN model.

Input: All training samples (Xi, yi), i ∈ [1,M], Xi and yi
are the encoding input and the predictive ground truth of
the i-th training instance respectively, M is the size of the
training samples

Output: The trained network weights W
1: Set the batch size bsize and the iteration number IN ;
2: Initialize all network weights W0;
3: for t = 1; t ≤ IN do
4: Execute a batch of training instances in parallel.
5: Obtain the embedding output Ei from Xi;
6: Construct the adjacency matrix A from Ei;
7: for l← 1 to L do
8: for each node p do
9: Compute the bilinear-cross aggregation Glp;

10: Compute the self-attention weight vector ϕlp;
11: Get the representation H l

p from (Glp, ϕ
l
p);

12: Use the GRU module to obtain κl+1
p ;

13: end for
14: Generate κl+1 after updating all nodes;
15: end for
16: Generate κL after L propagation steps;
17: for zi ← 1 to r do
18: Calculate each feature node Fzi from (κL, Ei);
19: end for
20: Obtain all feature nodes F r;
21: for fi ← 1 to s do
22: Calculate each enhanced node Pfi from F r;
23: end for
24: Obtain all enhanced nodes P s;
25: Construct the broad attentive weights ζ from (F r, P s);
26: Calculate the cross features Γ from (κL, Ei, ζ);
27: Obtain the final predictive result ŷ from Γ;
28: Minimize the objective function L from (ŷ, y);
29: Update Wt using Back Propagation for L ↓;
30: end for
31: return W ←WIN ;

predictive result of our new network. Meanwhile, we apply
Back Propagation to continually update the trainable weight
matrices of the above layers until the minimum value of loss
is yielded. The overall training process of our BaGFN model
is illustrated in Algorithm 1.

D. Complexity Analysis

Referring to the computation mode of [11], the time con-
sumption of computing an instance in Algorithm 1 mainly
comes from four operations: calculating embedding output,
constructing adjacency matrix, iteratively updating graph n-
odes, and computing broad attention. Firstly, since the one-
hot encoding representation of each field is transformed into a
fixed low-dimensional embedding vector, the time complexity
of calculating embedding output is represented as O(Cd),
where C is the total length of all one-hot encoding representa-
tions and d is the dimension of embedding space Rd. Secondly,
the time complexity of constructing an m×m adjacency matrix

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

is O(m2d), where m is the number of fields and also the num-
ber of graph nodes. Thirdly, when updating a graph node, the
time complexity of bilinear-cross aggregation, including first-
order aggregation and second-order aggregation, is defined as
O(md + m2d). Since the self-attention and GRU operations
will transform each other between Rd and a new space Rd′ ,
their time complexity is represented as O(mdd′). Thus when
iteratively updating all graph nodes, the time complexity can
be computed as O(Lm(md + m2d + mdd′)), where L is
the number of propagation steps. Fourthly, since the broad
attention module needs to carry out the cross calculation
between nodes, its time complexity is expressed as O(mn2d2),
where n is the number of nodes in cascade BLS. Finally,
the time complexity of computing an instance is defined as
O(Cd+m2d+Lm2d+Lm3d+Lm2dd′+mn2d2), which can
be simplified to O(C+m2(dd′+md)+mn2d2) because d and
L are usually small, and C is usually large and C � d. When
training all instances in parallel, the final time complexity of
our proposed method is O(M ′(C+m2(dd′+md)+mn2d2)),
M ′ = M × IN/bsize, where M is the size of training
instances, IN is the number of training iteration, and bsize is
the size of a batch.

According to the definition of [13], the space complexity
of our proposed method is a measure of the total amount
of parameters, which consist of trainable matrices of sev-
eral key parts, including the embedding layer, the attentive
graph fusion module, and the broad attentive cross module.
Firstly, the average size of embedding matrices is defined as
c1×d, where c1 is the average length of all one-hot encoding
representations. Thus the space complexity of the embedding
layer is O(mc1d). Secondly, since the attentive graph fusion
module will transform each other between Rd and a new
space Rd′ , the size of each trainable matrix can be defined
as d×d′. In an iteration step, the size of all trainable matrices
is c2 × d× d′, where c2 is the number of matrices. Thus the
space complexity of the attentive graph fusion module can
be defined as O(Lc2dd

′). Thirdly, the size of the trainable
broad attention matrix is c3d×c3d, where c3 is the number of
nodes in cascade BLS. Thus the space complexity of the broad
attentive cross module is expressed as O(c3

2d2). Finally, since
the parameters of these trainable matrices are shared, the final
space complexity is defined as O(c1md + c2Ldd

′ + c3
2d2),

which is fixed during the training of our BaGFN model.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to answer
the following questions:

RQ 1 How does our model perform in learning cross
features compared with the state-of-the-art models
on multi-field sparse data? Is it efficient for model
training?

RQ 2 How do the different combinations of aggregation
function types (first-order, second-order, bilinear-
cross and bilinear-concatenate) and edge weights
(concatenate and product operations) in attentive
graph fusion module impact its performance?

TABLE II: Statistics of three evaluation datasets.

Dataset Instances Fields Features (Sparse)

Avazu 40,428,967 23 1,544,488
Criteo 45,840,617 39 998,960

Tobacco 166,626 249 146,103

RQ 3 How do the different settings of the network influ-
ence the performance of our model? Can our model
reflect the significance of different feature fields?

RQ 4 Similar to the state-of-the-art models, does our model
also further enhance the performance by integrating
implicit feature interactions?

We will deal with these questions after presenting several
fundamental experimental configurations.

A. Experimental Configuration
1) Datasets: In order to evaluate the validity of our BaGFN

model, we conduct a series of experiments on two well-known
public benchmark datasets and a new industrial dataset. The
statistics of the datasets are summarized in Table II.

Avazu: The Avazu dataset consists of users’ click records
of several days on mobile advertisements with 40 million of
data instances. This dataset is initially used for Kaggle CTR
prediction competition and later widely used in the evaluation
benchmark for many CTR prediction models. For each click
instance, it has 23 fields spanning from user/device features
to ad attributes.

Criteo: Criteo is a famous real-world display ad dataset
with each ad display information and corresponding user click
logs. This dataset is widely used in the evaluation of various
CTR prediction models. It contains users’ click logs with 45
million samples, and each sample has 39 fields, including 13
continuous numerical fields and 26 categorical fields.

Tobacco: The new dataset consists of more than 160,000
inspection records for 40,000 tobacco stores from 2014 to
2018. Similar to CTR prediction, this dataset is to predict
illegal sales in the real-world tobacco industry. Each sample
contains 249 fields (195 dynamic numerical fields and 54
static categorical fields) from individual information, dynamic
orders, and sales log, and has numerous null values and a few
anomaly data.

Data Preparation: For Avazu and Criteo datasets, we
remove the infrequent values appearing less than 10, 5 times,
respectively, and treat them as a single value < unknown >.
Since the numerical fields may have large variance and then
hurt the model performance, we normalize numerical values
by transforming a value z to log2(z) if z > 2 which is
first proposed by the winner of Criteo Competition3. For the
Tobacco dataset, we replace null value with −1 and normalize
numerical values to eliminate the quantum influence between
different ranges of numerical fields. For three datasets, we
randomly select 80% of all samples for training and randomly
divide the rest into equal validation sets and test sets. In this
paper, all methods follow this unified way of data preparation
for a fair comparison.

3https://www.csie.ntu.edu.tw/∼r01922136/kaggle-2014-criteo.pdf

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

2) Evaluation Metrics: So as to evaluate the prediction
performance of our BaGFN model on Avazu, Criteo, and
Tobacco datasets, we adopt two popular metrics:

AUC (Area Under the ROC Curve) measures the prob-
ability that a predictive model will allocate a higher score to
a positive instance than a randomly chosen negative instance.
AUC’s upper bound is 1, and the larger value indicates a better
performance.

Logloss (Cross Entropy) is the cross-entropy loss to assess
the performance of a classification model, measuring the
distance between the predicted score and the true label for each
sample. The smaller Logloss value denotes better performance.

3) Comparison Methods: We compare our BaGFN model
with three types of the existing methods: (i) Modeling first-
order interactions that linearly sum up raw features; (ii) FM-
based methods that learn second-order cross features; and (iii)
Deep learning based models that model high-order feature
interactions. We briefly describe these methods as follows:

(i) LR (Logistic Regression) [48] captures first-order cross
features via summing up raw individual features linearly.

(ii) FM [6] is a benchmark factorization model, which
models the second-order interactions between paired features
from the inner product of vectors.

(iii) AFM [20] is an extension of FM, which learns the
significance of different second-order cross features with the
help of the attention mechanism.

(iv) CrossNet (Deep&Cross) [2] attempts to model feature
interactions in an explicit manner by taking the outer product
of feature vectors at the bit-wise level.

(v) DeepCrossing [49] integrates the advantages of deep
fully-connected neural networks and residual connections to
capture non-linear high-order feature interactions via an im-
plicit manner.

(vi) NFM [8] feeds the element-wise product of feature
vectors into a bi-interaction pooling layer to model the second-
order interactions, and then adopts deep fully-connected neural
networks to capture non-linear high-order interactions in an
implicit fashion.

(vii) PNN [17] concatenates pairwise inner or outer products
of input feature vectors to learn high-order feature interactions.

(viii) CIN is the core of xDeepFM [10], which produces
high-order cross features by computing the outer product of
input feature vectors and then compressing the feature maps
originated from the outer product to renew the representation
of each feature vector.

(ix) HOFM (High-Order FM) [50] is a high-order version
of FM, which proposes efficient kernel-based algorithms for
modeling non-linear high-order factorization machines.

(x) AutoInt [11] utilizes a multi-head self-attentive neural
network with residual connections to model the high-order
feature interactions in an explicit manner.

(xi) HoAFM [21] designs a cross interaction layer and bit-
wise attention mechanism to account for the high-order sparse
feature interactions in an explicit manner.

(xii) Fi-GNN [13] generates sophisticated feature interac-
tions by designing a novel graph neural network to model the
graph-structured features in an explicit manner.

(xiii) DCN-M∗ is an updated version of DCN-M [18] with-
out implicit feature interactions, which improves the ability of
CrossNet [2] to make it more practical in large-scale industrial
settings.

(xiv) DIFM∗ is an updated version of DIFM [22] without
implicit feature interactions, which integrates various compo-
nents and reweights the original feature representations at the
bit-wise and vector-wise levels simultaneously.

4) Implementation Details: In this paper, all experiments
are conducted over a sever equipped with 2 NVIDIA Ti-
tan XP GPUs. Here, we refer to the default or optimal
parameter configuration of these state-of-the-art models. For
DeepCrossing, we employ four feed-forward layers, each with
100 hidden units. For NFM, we adopt one hidden layer with
size 200 on top of the Bi-Interaction layer. For HoAFM, we
set its depth to 3. For CrossNet and CIN, we employ three
interaction layers. For our BaGFN model, we mainly consider
the configuration of five parameters, including embedding
dimension, epochs, iteration steps, batch size, and learning
rate. For three different evaluation datasets, we conduct a series
of comparison experiments to find the best parameters settings
and yield the optimal prediction results. Moreover, we apply
the Adam optimizer to optimize all DNN-based models.

B. Performance Comparison (RQ1)

According to the above experimental configurations, we
compare our BaGFN model with all kinds of individual
models, including first-order, second-order, and high-order
feature interactions. As illustrated in Table III and Fig. 4, we
summarize the performance of these models and obtain the
following observations:

(1) The linear model LR fails to yield a good performance
on the three datasets compared to the other nonlinear models,
suggesting that modeling nonlinear relations among features
is essential to improve the accuracy of CTR prediction.

(2) FM and AFM, which capture second-order nonlinear
feature interactions, achieve better predictive results as com-
pared to LR, showing the pairwise interactions via the inner
product of feature vectors have a positive impact on predic-
tion performance. Moreover, AFM generates better predictive
results than FM on all three datasets, which indicates that the
attention on different feature interactions endows the model
with better interaction ability.

(3) Most high-order models substantially outperform those
of learning low-order feature interactions on the three evalua-
tion datasets. This is consistent with the intuition that modeling
high-order interactions among features is more significant for
prediction performance.

(4) Fi-GNN exhibits better prediction performance com-
pared to the other baseline models, indicating that feature
interactions based on graph neural networks have the stronger
capability of feature representation.

(5) Our BaGFN model yields the best performance on all
three datasets and achieves innovative improvements over the
state-of-the-art models. BaGFN has the highest AUC values
(0.7803, 0.8094, and 0.8870) and the lowest Logloss values
(0.3794, 0.4425, and 0.3329) on Avazu, Criteo, and Tobacco.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

TABLE III: The overall performances of various models on Avazu, Criteo, and Tobacco datasets.

Model Category Model Avazu Criteo Tobacco
AUC Logloss p-value AUC Logloss p-value AUC Logloss p-value

First-Order LR [48] 0.7558 0.3963 0.00031 0.7822 0.4696 0.00022 0.7243 0.4493 0.00019

Second-Order FM [6] 0.7710 0.3855 0.00058 0.7833 0.4695 0.00085 0.7883 0.4111 0.00011
AFM [20] 0.7716 0.3852 0.00067 0.7941 0.4581 0.00047 0.7958 0.4092 0.00019

High-Order

NFM [8] 0.7711 0.3863 0.00018 0.7959 0.4563 0.00062 0.7926 0.4083 0.00059
DeepCrossing [49] 0.7648 0.3886 0.00075 0.8010 0.4512 0.00022 0.8698 0.3561 0.00063
CrossNet [2] 0.7671 0.3867 0.00021 0.7908 0.4589 0.00011 0.8618 0.3588 0.00082
PNN [17] 0.7753 0.3835 0.00028 0.7998 0.4521 0.00010 0.8736 0.3461 0.00051
HOFM [50] 0.7703 0.3853 0.00011 0.8008 0.4506 0.00071 0.8755 0.3473 0.00034
CIN [10] 0.7759 0.3829 0.00045 0.8011 0.4515 0.00063 0.8801 0.3398 0.00071
AutoInt [11] 0.7755 0.3822 0.00099 0.8063 0.4453 0.00061 0.8369 0.3951 0.00069
HoAFM [21] 0.7761 0.3820 0.00090 0.8057 0.4468 0.00031 0.8839 0.3395 0.00059
Fi-GNN [13] 0.7762 0.3825 0.00035 0.8062 0.4453 0.00077 0.8843 0.3353 0.00065
DCN-M∗ [18] 0.7649 0.3880 0.00068 0.7992 0.4514 0.00038 0.8820 0.3465 0.00039
DIFM∗ [22] 0.7660 0.3874 0.00019 0.7905 0.4592 0.00059 0.8702 0.3544 0.00089
BaGFN 0.7803 0.3794 — 0.8094 0.4425 — 0.8870 0.3329 —

(a) Avazu (b) Criteo (c) Tobacco

Fig. 4: The training runtimes of all models for each epoch on Avazu, Criteo, and Tobacco datasets. Note: The baseline models
include LR [48], FM [6], AFM [20], DC represents DeepCrossing [49], CN represents CrossNet (Deep&Cross) [2], CIN is the
core of xDeepFM [10], HOFM [50], NFM [8], PNN [17], AutoInt [11], HoAFM [21], Fi-GNN [13], DCN-M∗ [18], DIFM∗

[22]. Compared with the other models, our BaGFN model has a moderate time consumption for training.

The previous works [2], [9], [11], [13] have proved that the
improvement with respect to AUC at 0.001-level is significant
for the CTR prediction task. Our proposed model presents
great superiority over those state-of-the-arts models, owing to
the effectiveness of integrating graph structure and attention
mechanism on modeling feature interactions.

(6) Compared with the other baseline models, the relative
performance improvement of our BaGFN model is progres-
sively higher on Avazu, Criteo, and Tobacco datasets, which
may be because the number of feature fields is different
across the three evaluation datasets, with the Tobacco dataset
owning the most feature fields and Avazu dataset owning the
least. Generally, more feature fields are beneficial to capture
more various cross features and achieve better performance
improvement on multi-field sparse dataset.

(7) For formal statistical analysis, Wilcoxon Test is intro-
duced to calculate and compare the p-value, which indicates
whether the differences in performance are statistically signif-
icant or not. With the prediction results of these models on
Avazu, Criteo, and Tobacco datasets, we can calculate the p-
values between our BaGFN model and the other models, and
further compare these p-values with the significance level to
analyze their statistically significant differences. As illustrated
in Table III, all p-values on three evaluation datasets are
less than 0.01, which demonstrates that there is an extremely
significant difference between our BaGFN model and the other

state-of-the-art model.
(8) Besides, we also analyze the running time in the process

of model training. Clearly, LR becomes the most efficient
model because of its simplicity. AFM, CrossNet, and CIN
are the highest time-consuming models due to their complex
architectures. The time complexity of our proposed method is
O(M ′(C+m2(dd′+md)+mn2d2)), which indicates that the
running time of training is related to the number of training
instances, the total length of all one-hot representations, the
number of graph nodes, and the embedding dimension. Since
the number of fields and the embedding dimension are usually
small, our BaGFN model will not add more training time
than the other high-order models. Fig. 4 illustrates the time
consumption of model training for one epoch on Avazu, Criteo,
and Tobacco datasets. Compared with the other models, our
BaGFN model has a moderate time consumption for training.

C. Comparison of Different Aggregation Functions and Edge
Weights (RQ2)

In this section, we exploit several variants of our model to
investigate how the different aggregation functions and edge
weights in the attentive graph fusion module affect the predic-
tion results. For different aggregation functions, we utilize the
original aggregation as same as GCN [15], termed modelorg,
and also construct two variants only using the first-order

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

TABLE IV: The performances of different aggregation functions and edge weights in attentive graph fusion module.

Model Avazu Criteo Tobacco
AUC Logloss AUC Logloss AUC Logloss

modelorg 0.7795 0.3798 0.8086 0.4431 0.8795 0.3408
modelfirst 0.7799 0.3798 0.8089 0.4428 0.8798 0.3345
modelsecond 0.7794 0.3797 0.8085 0.4430 0.8799 0.3344
modelconcat 0.7800 0.3796 0.8090 0.4427 0.8834 0.3334
modelec 0.7794 0.3799 0.8090 0.4426 0.8816 0.3341
modelfinal 0.7803 0.3794 0.8094 0.4425 0.8870 0.3329

(a) Avazu (b) Criteo (c) Tobacco

Fig. 5: The AUC performance of high-order models for different epochs on Avazu, Criteo, and Tobacco datasets. Note: The
baseline models include DeepCrossing [49], CrossNet (Deep&Cross) [2], PNN [17], CIN is the core of xDeepFM [10], NFM
[8], AutoInt [11], HoAFM [21], Fi-GNN [13], DCN-M∗ [18], DIFM∗ [22]. Compared with the other models, our BaGFN
model has the highest AUC values under different epochs. The optimal epochs are respectively fixed to 3, 3, 10 on three
evaluation datasets.

(a) Avazu (b) Criteo (c) Tobacco

Fig. 6: The Logloss performance of high-order models for different epochs on Avazu, Criteo, and Tobacco datasets. Note: The
baseline models include DeepCrossing [49], CrossNet (Deep&Cross) [2], PNN [17], CIN is the core of xDeepFM [10], NFM
[8], AutoInt [11], HoAFM [21], Fi-GNN [13], DCN-M∗ [18], DIFM∗ [22]. Compared with the other models, our BaGFN
model has the lowest Logloss values under different epochs. The optimal epochs are respectively fixed to 3, 3, 10 on three
evaluation datasets.

and second-order operations in Eq. (5) and Eq. (6), which
are termed as modelfirst and modelsecond respectively. In
addition, we define modelconcat to represent the concatenation
operation of Eq. (5) and Eq. (6), and denote the bilinear-
cross aggregation in Eq. (7) as modelfinal. Meanwhile, for
computing edge weights, modelec represents the concatenation
operation as same as Fi-GNN [13], and modelfinal indicates
the product operation in Eq. (3). The final experimental results
are shown in Table IV with the following findings:

(1) modelfirst outperforms modelorg on three evaluation
datasets, which indicates that the first-order operation can
execute more effective node interactions than the original sum
operation.

(2) modelsecond is not always better than modelfirst and
modelorg, which indicates that the single second-order oper-

ation is unstable and needs to further combine the first-order
operation for the stronger performance.

(3) Unlike modelfirst and modelsecond, modelconcat ob-
tains the better performance on three evaluation datasets,
which shows that concatenation operation can further improve
the ability of linear aggregation by integrating first-order and
second-order operations.

(4) modelfinal is superior to all types of aggregation
operations, indicating that the bilinear-cross aggregation in
our BaGFN model can significantly boost the prediction
performance.

(5) Compared with modelec, modelfinal achieves a signifi-
cant improvement on three evaluation datasets, which indicates
that the product operation in our BaGFN model can effectively
compute the edge weights and better represent the relationship

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

(a) Avazu (b) Criteo (c) Tobacco

Fig. 7: The AUC performance of high-order models for diverse embedding dimensions on Avazu, Criteo, and Tobacco datasets.
Note: The baseline models include DeepCrossing [49], CrossNet (Deep&Cross) [2], PNN [17], CIN is the core of xDeepFM
[10], NFM [8], AutoInt [11], HoAFM [21], Fi-GNN [13], DCN-M∗ [18], DIFM∗ [22]. Compared with the other models, our
BaGFN model has the highest AUC values under different embedding dimensions. The optimal embedding dimensions are
fixed to 20 on all three evaluation datasets.

between two nodes than the concatenation operation.

D. Hyper-parameter Investigation (RQ3)

In this section, we will conduct several configuration investi-
gations for our BaGFN model with different hyper-parameters.
Specifically, we investigate the following crucial factors: (1)
different epochs; (2) diverse embedding dimensions; (3) iter-
ation steps of multi-hop feature fusion; (4) ablation study of
attentional components; (5) broad attentive weights.

1) Different Epochs: Epoch is a crucial parameter for
model training. Generally, an epoch refers to the process
of sending all data into the network to complete a forward
calculation and back propagation. During the training, it is
not enough to update network weights by a single epoch.
Thus we need multiple epochs to achieve the fitting and
convergence of training. In this paper, Fig. 5 and Fig. 6
show the prediction performance of high-order models under
different epochs during model training. From these figures,
we can obtain some important results about the influence
of different epochs. Firstly, our BaGFN model can obtain
the best prediction performance when its epoch values are
respectively fixed to 3, 3, and 10 on Avazu, Criteo, and
Tobacco datasets. The main reason is that with the increase of
epoch, the network weights of our BaGFN model are updated
iteratively during training, and its performance is continuously
improved until convergence. However, the larger epoch cannot
always get the better performance because of the overfitting
problem, and the optimal epoch values for different datasets
are also different due to the convergence speed. Secondly,
compared with the other models, our BaGFN model always
possesses the highest AUC and lowest Logloss values under
different epochs. The main reason is that our BaGFN model
has the more excellent ability of modeling high-order feature
interactions. The whole training of our BaGFN model is very
stable, and effective because all AUC values are increasing and
all Logloss values are decreasing on three evaluation datasets.
Thirdly, the optimal epoch value on the Tobacco dataset is
larger than those on the other two datasets. The main reason
is that the number of epoch is related to the diversity of dataset.
The Tobacco dataset contains 249 fields, much more than 23

fields on Avazu dataset and 39 fields on the Criteo dataset. The
stronger the diversity is, the larger the epoch value should be.
The high-order feature interactions on this dataset are more
complex and need more epochs to achieve the convergence of
training.

2) Diverse Embedding Dimensions: The Embedding di-
mension is of key significance to provide sufficient repre-
sentation capability. Thus we explore how the performance
of high-order models changes under the different embed-
ding dimensions. As shown in Fig. 7 and Fig. 8, since the
larger embedding dimensions yield more information, the
performance of high-order models can continue to increase
when the embedding dimension is below the optimal setting.
However, when the embedding dimensions surpass the optimal
setting, too much information might cause that the models
are over-fitted, and their prediction performance will decrease.
Compared with the other models, our BaGFN model can reach
the best prediction performance on three evaluation datasets
when all three embedding dimensions are set to 20, which is
the optimal setting.

3) Iteration Steps of Multi-hop Feature Fusion: Generally,
the iteration steps of multi-hop feature fusion are constructed
to generate a high-order representation for feature interactions.
In order to find out the influence of multi-hop feature fusion,
we investigate the performance of our BaGFN model under
the different iteration steps. As shown in Fig. 9, the moderate
iteration steps can effectively improve the prediction perfor-
mance on three evaluation datasets. For Avazu and Criteo
datasets, our proposed model can reach the best performance
when the iteration steps are set to 3. For the Tobacco dataset,
the optimal iteration step is set to 4. Since Avazu and Criteo
datasets possess 23 and 39 fields respectively, three iteration
steps are sufficient to generate high-order feature interactions.
In contrast, since the Tobacco dataset possesses 249 fields,
much more than Avazu and Criteo datasets, more iteration
steps are required to adequately interact with other nodes in
the graph network.

4) Ablation Study of Attentional Components: Although
we have yielded powerful empirical results for several at-
tentional components in our BaGFN model, the results have

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 13

(a) Avazu (b) Criteo (c) Tobacco

Fig. 8: The Logloss performance of high-order models for diverse embedding dimensions on Avazu, Criteo, and Tobacco
datasets. Note: The baseline models include DeepCrossing [49], CrossNet (Deep&Cross) [2], PNN [17], CIN is the core of
xDeepFM [10], NFM [8], AutoInt [11], HoAFM [21], Fi-GNN [13], DCN-M∗ [18], DIFM∗ [22]. Compared with the other
models, our BaGFN model has the lowest Logloss values under different embedding dimensions. The optimal embedding
dimensions are fixed to 20 on all three evaluation datasets.

(a) Avazu (b) Criteo (c) Tobacco

Fig. 9: The performance of our BaGFN model under different iteration steps of multi-hop feature fusion. For Avazu and Criteo
datasets, our proposed model can reach the best prediction performance when the iteration steps are set to 3; for Tobacco
dataset, the optimal iteration step is set to 4.

TABLE V: Ablation study of the partial attentional compo-
nents in our BaGFN model.

Datasets Models AUC Logloss

Avazu
NO-BROAD 0.7796 0.3799
NO-SA 0.7801 0.3795
BASE 0.7803 0.3794

Criteo
NO-BROAD 0.8087 0.4429
NO-SA 0.8088 0.4427
BASE 0.8094 0.4425

Tobacco
NO-BROAD 0.8721 0.3367
NO-SA 0.8715 0.3360
BASE 0.8870 0.3329

not demonstrated their specific contributions. Therefore, we
conduct ablation experiments over our proposed model to
better understand their relative significance. We define our
model with full attentional components as the BASE model
and construct two incomplete models by removing the partial
attentional components in the following manners:

(1) No-BROAD: remove the broad attentive cross module
from the BASE model;

(2) No-SA: remove the self-attentive part in the attentive
graph fusion module from the BASE model.

We compare the prediction results of the No-BROAD, No-
SA, and BASE models on three evaluation datasets, and Table
V illustrates the following observations:

(1) Compared with the BASE model, the performances of

the No-BROAD and No-SA models drop apparently, which
demonstrates that two partial attentional components are es-
sential to improve the prediction performance.

(2) For the No-BROAD and No-SA models, much larger
drops appear on the Tobacco dataset compared to the other
datasets, which indicates that the attentional components play
a greater role on the dataset with more feature fields.

5) Broad Attentive Weights: We design the broad attentive
cross module for learning the weights of feature nodes, which
can reflect the significance of feature fields on the overall
prediction result. Fig. 10 shows the heat map of global-level
and case-level broad attentive weights on the Avazu dataset,
which indicates that the feature fields play different roles
in the clicking behaviors. The global indicates a globally
averaged one of all samples. The case1, case2, case3 and case4
are randomly selected from all samples, whose predictive
scores are [0.92, 0.15, 0.98, 0.99] and labels are [1, 0, 1, 1]
respectively. At the global level, we can find that the feature
field app category plays the strongest role in the clicking
behavior; at the case level, we observe that in three of the
cases, the feature field app category has the largest influence
on predicting the individual clicking behavior. It is reasonable
since the Avazu dataset focuses on the mobile scene, where the
app-related information is a critical factor for CTR prediction.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 14

TABLE VI: The performances of various models after integrating implicit feature interactions.

Model Avazu Criteo Tobacco
AUC Logloss AUC Logloss AUC Logloss

Wide&Deep (LR) [4] 0.7752 0.3823 0.8028 0.4495 0.8562 0.3655
DeepFM (FM) [9] 0.7755 0.3831 0.8067 0.4448 0.8651 0.3614
Deep&Cross (CrossNet) [2] 0.7735 0.3834 0.8071 0.4449 0.8693 0.3591
xDeepFM (CIN) [10] 0.7771 0.3826 0.8074 0.4443 0.8835 0.3401
BaGFN+ 0.7809 0.3792 0.8098 0.4421 0.8873 0.3319

Fig. 10: Heat map of global-level and case-level broad attentive
weights on the Avazu dataset, which demonstrates the signif-
icance of different feature fields on the final CTR prediction.

E. Integrating Implicit Interactions (RQ4)

Feed-forward neural networks are able to capture implicit
feature interactions and have been extensively integrated into
various CTR prediction models [2], [4], [9], [10]. To inves-
tigate whether integrating implicit feature interactions further
enhances the prediction performance, we combine our BaGFN
model with a three-layer feed-forward neural network via joint
training. Our enhanced model is compared with the following
state-of-the-art models:

(1) Wide&Deep [4] combines the outputs of logistic regres-
sion and feed-forward neural networks;

(2) DeepFM [9] feeds the output of an embedding layer to
FM and feed-forward neural network, integrating the outputs
of the two components to produce the final result;

(3) Deep&Cross [2] is the extension of CrossNet by intro-
ducing feed-forward neural networks;

(4) xDeepFM [10] is the extension of CIN by integrating
feed-forward neural networks.

As shown in Table VI, based on the prediction performances
on three evaluation datasets, we have the following observa-
tions:

(1) all models that integrate implicit interactions clearly
boost their prediction ability, which demonstrates the effec-
tiveness of feed-forward neural networks.

(2) our enhanced model with feed-forward neural networks
outperforms all other models and achieves the new state-of-
the-art performances on three evaluation datasets.

F. Discussion
Generally, the final model prediction accuracy depends on

the quality of modeling feature interactions among multi-
field sparse data. Our BaGFN model constructs the attentive
graph fusion module to aggregate graph node information and
strengthen high-order feature representation, further the broad
attentive cross module is designed to learn the significance
of different interactions and refine high-order feature inter-
actions at the bit-wise level. After a series of experimental
comparisons and analyses, our BaGFN model has three main
advantages compared with the state-of-the-art methods: (a) the
fine-grained cross features are extracted in an explicit manner,
which can enhance the model explanations and get rid of
negative and uncontrollable feature interactions derived from
a rather implicit manner; (b) the multi-hop feature fusion with
bilinear-cross aggregation is more comprehensive and more
flexible for sophisticated high-order interactions; (c) the atten-
tional components explore the importance of different cross
features, which can identify the potential concerns of feature
interactions more effectively. On the other hand, since the way
of feature interaction is more complex, our BaGFN model
also has some limitations: (a) more model parameters need
to be trained, which consumes more computing resources; (b)
for different datasets, manual hyper-parameter adjustment is
time-consuming and laborious; (c) multi-hop feature fusion
is easy to suffer from overfitting in model training due to
inappropriate iteration steps. In brief, we have conducted a
series of experiments to answer four key questions (RQ1-
RQ4), and the final responses to these questions have also
demonstrated the advantages and disadvantages of our BaGFN
model.

V. CONCLUSION

In this paper, we establish a novel network named BaGFN
as an abbreviation for Broad Attentive Graph Fusion Net-
work, which aims to integrate graph structure and attention
mechanism to generate powerful feature representation and
model sophisticated high-order feature interactions among
multi-field sparse data. Besides the general embedding layer
and prediction layer, the broad attentive graph fusion layer
is the core of our BaGFN model. On the one hand, we
design a novel attentive graph fusion module in this layer
to aggregate graph node information and generate high-order
feature representation. On the other hand, we construct a new
broad attentive cross module in this layer to highlight the
different importance of cross features and refine high-order
feature interactions at the bit-wise level. Finally, a variety of
experimental results on three evaluation datasets demonstrate
the excellent performance of our proposed model.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 15

In the future, there are three main directions for better mod-
eling feature interactions. Firstly, our graph neural network
currently focuses on homogeneous graphs with a single node
and edge type, i.e., multi-field data is defined as a specific
type, which usually only requires aggregating a single type of
neighbors to update node representation. Next, we will consid-
er heterogeneous graphs with multiple nodes and edge types
for more elaborate modeling of feature interactions. Secondly,
temporal prediction analysis inevitably involves features that
are dynamically changing over time. However, the current
graph neural network is a static graph mode and lacks full
consideration for how efficiently to handle dynamic feature
fields. Therefore, we will introduce dynamic graphs for real-
time feature change to immediately update node representation
of time evolution patterns. Lastly, with the success of the
Transformer model in machine learning applications, we will
also try to integrate the Broad Attention module in our BaGFN
model into the Transformer model like [51] so that the feature
interactions can be captured more efficiently. Besides, the
vector of locally aggregated descriptors (VLAD) has been a
new trend and inspired by [52], we will also attempt to further
optimize VLAD to achieve better information aggregation for
feature interactions.

REFERENCES

[1] Q. Tan, N. Liu, X. Zhao, H. Yang, J. Zhou, and X. Hu, “Learning to hash
with graph neural networks for recommender systems,” in International
World Wide Web Conference, 2020, pp. 1988–1998.

[2] R. Wang, B. Fu, G. Fu, and M. Wang, “Deep & cross network for
ad click predictions,” in ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2017, pp. 1–7.

[3] S. C. Geyik, S. Ambler, and K. Kenthapadi, “Fairness-aware ranking in
search & recommendation systems with application to linkedin talent
search,” in ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2019, pp. 2221–2231.

[4] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & Deep
learning for recommender systems,” in Workshop on Deep Learning for
Recommender Systems, 2016, pp. 7–10.

[5] X. Wang, X. He, F. Feng, L. Nie, and T.-S. Chua, “TEM: Tree-enhanced
embedding model for explainable recommendation,” in International
World Wide Web Conference, 2018, pp. 1543–1552.

[6] S. Rendle, “Factorization machines,” in IEEE International Conference
on Data Mining, 2010, pp. 995–1000.

[7] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin, “Field-aware factorization
machines for CTR prediction,” in ACM Conference on Recommender
Systems, 2016, pp. 43–50.

[8] X. He and T.-S. Chua, “Neural factorization machines for sparse pre-
dictive analytics,” in International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2017, pp. 355–364.

[9] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, “DeepFM: A factorization-
machine based neural network for CTR prediction,” in International
Joint Conference on Artificial Intelligence, 2017, pp. 1725–1731.

[10] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, and G. Sun, “xDeepFM:
Combining explicit and implicit feature interactions for recommender
systems,” in ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2018, pp. 1754–1763.

[11] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang,
“AutoInt: Automatic feature interaction learning via self-attentive neu-
ral networks,” in ACM International Conference on Information and
Knowledge Management, 2019, pp. 1161–1170.

[12] T. Huang, Z. Zhang, and J. Zhang, “FiBiNET: Combining feature impor-
tance and bilinear feature interaction for click-through rate prediction,”
in ACM Conference on Recommender Systems, 2019, pp. 169–177.

[13] Z. Li, Z. Cui, S. Wu, X. Zhang, and L. Wang, “Fi-GNN: Modeling fea-
ture interactions via graph neural networks for CTR prediction,” in ACM
Internetional Conference on Information and Knowledge Management,
2019, pp. 539–548.

[14] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” in International Conference on Learning
Representations, 2016, pp. 1–20.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017, pp. 1–14.

[16] C. L. P. Chen and Z. Liu, “Broad learning system: An effective
and efficient incremental learning system without the need for deep
architecture,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, no. 1, pp. 10–24, 2018.

[17] Y. Qu, B. Fang, W. Zhang, R. Tang, M. Niu, H. Guo, Y. Yu, and
X. He, “Product-based neural networks for user response prediction over
multi-field categorical data,” ACM Transactions on Information Systems,
vol. 37, no. 1, pp. 1–35, 2018.

[18] R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin, L. Hong, and E. Chi,
“DCN V2: Improved deep & cross network and practical lessons for
web-scale learning to rank systems,” in International World Wide Web
Conference, 2021, pp. 1785–1797.

[19] W. Cheng, Y. Shen, and L. Huang, “Adaptive factorization network:
Learning adaptive-order feature interactions,” in AAAI Conference on
Artificial Intelligence, vol. 34, no. 04, 2020, pp. 3609–3616.

[20] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T.-S. Chua, “Attentional
factorization machines: Learning the weight of feature interactions via
attention networks,” in International Joint Conferences on Artificial
Intelligence, 2017, pp. 3119–3125.

[21] Z. Tao, X. Wang, X. He, X. Huang, and T.-S. Chua, “HoAFM: A high-
order attentive factorization machine for CTR prediction,” Information
Processing & Management, vol. 57, no. 6, p. 102076, 2020.

[22] W. Lu, Y. Yu, Y. Chang, Z. Wang, C. Li, and B. Yuan, “A dual input-
aware factorization machine for ctr prediction,” in International Joint
Conferences on Artificial Intelligence, 2020, pp. 3139–3145.

[23] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on
knowledge graphs: Representation, acquisition, and applications,” IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–21, 2021.

[24] B. Xiao, E. R. Hancock, and R. C. Wilson, “Graph characteristics from
the heat kernel trace,” Pattern Recognition, vol. 42, no. 11, pp. 2589–
2606, 2009.

[25] L. Han, R. C. Wilson, and E. R. Hancock, “Generative graph prototypes
from information theory,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 37, no. 10, pp. 2013–2027, 2015.

[26] L. Bai, L. Cui, L. Rossi, L. Xu, X. Bai, and E. Hancock, “Local-
global nested graph kernels using nested complexity traces,” Pattern
Recognition Letters, vol. 134, pp. 87–95, 2020.

[27] H.-N. Tran and E. Cambria, “A survey of graph processing on graphics
processing units,” The Journal of Supercomputing, vol. 74, pp. 2086–
2115, 2018.

[28] P. Frasconi, M. Gori, and A. Sperduti, “A general framework for adaptive
processing of data structures,” IEEE Transactions on Neural Networks,
vol. 9, no. 5, pp. 768–786, 1998.

[29] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning
of social representations,” in ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2014, pp. 701–710.

[30] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-
scale information network embedding,” in International World Wide Web
Conference, 2015, pp. 1067–1077.

[31] S. Cavallari, E. Cambria, H. Cai, K. C.-C. Chang, and V. W. Zheng,
“Embedding both finite and infinite communities on graphs [application
notes],” IEEE Computational Intelligence Magazine, vol. 14, no. 3, pp.
39–50, 2019.

[32] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini,
“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009.

[33] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in International Conference on Neural Infor-
mation Processing Systems, 2017, pp. 1025–1035.

[34] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018, pp. 1–12.

[35] F. Feng, X. He, H. Zhang, and T.-S. Chua, “Cross-GCN: Enhancing
graph convolutional network with k-order feature interactions,” IEEE
Transactions on Knowledge and Data Engineering, pp. 1–11, 2021.

[36] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Skeleton-based action recog-
nition with directed graph neural networks,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 7904–7913.

[37] L. Wang, Y. Huang, Y. Hou, S. Zhang, and J. Shan, “Graph attention
convolution for point cloud semantic segmentation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 10 288–10 297.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 16

[38] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, “Multi-label image
recognition with graph convolutional networks,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 5172–5181.

[39] D. Teney, L. Liu, and A. Van Den Hengel, “Graph-structured representa-
tions for visual question answering,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 3233–3241.

[40] Y.-H. Pao and Y. Takefuji, “Functional-link net computing: Theory,
system architecture, and functionalities,” Computer, vol. 25, no. 5, pp.
76–79, 1992.

[41] C. L. P. Chen and J. Wan, “A rapid learning and dynamic stepwise
updating algorithm for flat neural networks and the application to time-
series prediction,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 29, no. 1, pp. 62–72, 1999.

[42] C. L. P. Chen, Z. Liu, and S. Feng, “Universal approximation capability
of broad learning system and its structural variations,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 30, no. 4, pp.
1191–1204, 2019.

[43] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua, “KGAT: Knowledge
graph attention network for recommendation,” in ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, 2019, pp. 950–958.

[44] X. Yang, L. Prasad, and L. J. Latecki, “Affinity learning with diffusion
on tensor product graph,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 1, pp. 28–38, 2013.

[45] Z. C. Lipton, J. Berkowitz, and C. Elkan, “A critical review of recurrent
neural networks for sequence learning,” Computing Research Repository,
vol. abs/1506.00019, pp. 1–38, 2015.

[46] K. Greff, R. K. Srivastava, J. Koutnk, B. R. Steunebrink, and J. Schmid-
huber, “LSTM: A search space odyssey,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2017.

[47] I. Chaturvedi, Y.-S. Ong, I. W. Tsang, R. E. Welsch, and E. Cambria,
“Learning word dependencies in text by means of a deep recurrent belief
network,” Knowledge-Based Systems, vol. 108, pp. 144–154, 2016.

[48] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady,
L. Nie, T. Phillips, E. Davydov, D. Golovin et al., “Ad click prediction:
a view from the trenches,” in ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2013, pp. 1222–1230.

[49] Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao, “Deep
Crossing: Web-scale modeling without manually crafted combinatorial
features,” in ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2016, pp. 255–262.

[50] M. Blondel, A. Fujino, N. Ueda, and M. Ishihata, “Higher-order factor-
ization machines,” in International Conference on Neural Information
Processing Systems, 2016, pp. 3359–3367.

[51] J. Yu, J. Li, Z. Yu, and Q. Huang, “Multimodal transformer with multi-
view visual representation for image captioning,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 30, no. 12, pp. 4467–
4480, 2020.

[52] J. Yu, C. Zhu, J. Zhang, Q. Huang, and D. Tao, “Spatial pyramid-
enhanced netvlad with weighted triplet loss for place recognition,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 2,
pp. 661–674, 2020.

Zhifeng Xie received the Ph.D. degree in computer
application technology from Shanghai Jiao Tong
University, Shanghai, China.

He is currently an Associate Professor with the
Department of Film and Television Engineering,
Shanghai University, Shanghai, China. He was a
Research Assistant with the City University of
Hong Kong, Kowloon, Hong Kong. His current
research interests include image/video processing,
broad learning system, and computer vision.

Wenling Zhang received the B.Eng. degree in
computer science and technology from the Nantong
University, Nantong, China.

He is currently pursuing the M.Eng. degree with
the Department of Film and Television Engineering,
Shanghai University, Shanghai, China. His current
research interests include recommendation system,
broad learning system, and machine learning.

Bin Sheng (Member, IEEE) the Ph.D. degree in
computer science and engineering from The Chinese
University of Hong Kong, Shatin, Hong Kong.

He is currently an Full Professor with the Shang-
hai Jiao Tong University, Shanghai, China. He is
an Associate Editor of the IEEE Transactions on
Circuits and Systems for Video Technology. His
current research interests include virtual reality and
computer graphics.

Ping Li (Member, IEEE) received the Ph.D. degree
in computer science and engineering from The Chi-
nese University of Hong Kong, Shatin, Hong Kong.

He is currently a Research Assistant Profes-
sor with The Hong Kong Polytechnic University,
Kowloon, Hong Kong. His current research interests
include image/video stylization, artistic rendering
and synthesis, and creative media. He has one im-
age/video processing national invention patent, and
has excellent research project reported worldwide by
ACM TechNews.

C. L. Philip Chen (Fellow, IEEE) received the
Ph.D. degree in electrical engineering from Purdue
University, West Lafayette, IN, USA, in 1988.

He is currently a Chair Professor and the Dean of
the School of Computer Science and Engineering,
South China University of Technology, Guangzhou,
China. Being a Program Evaluator of the Accredi-
tation Board of Engineering and Technology Edu-
cation (ABET) in the U.S., for computer engineer-
ing, electrical engineering, and software engineering
programs, he successfully architects the University

of Macau’s Engineering and Computer Science programs receiving accred-
itations from Washington/Seoul Accord through Hong Kong Institute of
Engineers (HKIE), of which is considered as his utmost contribution in
engineering/computer science education for Macau as the former Dean of the
Faculty of Science and Technology. He is a Fellow of IEEE, AAAS, IAPR,
CAA, and HKIE; a member of Academia Europaea (AE), European Academy
of Sciences and Arts (EASA), and International Academy of Systems and
Cybernetics Science (IASCYS). He received IEEE Norbert Wiener Award in
2018 for his contribution in systems and cybernetics, and machine learnings.
He is also a highly cited researcher by Clarivate Analytics in 2018 and 2019.

His current research interests include systems, cybernetics, and compu-
tational intelligence. Dr. Chen was a recipient of the 2016 Outstanding
Electrical and Computer Engineers Award from his alma mater, Purdue
University (in 1988), after he graduated from the University of Michigan at
Ann Arbor, Ann Arbor, MI, USA in 1985. He was the IEEE Systems, Man,
and Cybernetics Society President from 2012 to 2013, the Editor-in-Chief of
the IEEE Transactions on Systems, Man, and Cybernetics: Systems (2014-
2019), and currently, he is the Editor-in-Chief of the IEEE Transactions on
Cybernetics, and an Associate Editor of the IEEE Transactions on Fuzzy
Systems. He was the Chair of TC 9.1 Economic and Business Systems
of International Federation of Automatic Control from 2015 to 2017, and
currently is a Vice President of Chinese Association of Automation (CAA).

	Introduction
	Related Work
	Broad Attentive Graph Fusion Network
	Embedding Layer
	Broad Attentive Graph Fusion Layer
	Attentive Graph Fusion Module
	Broad Attentive Cross Module

	Prediction Layer
	Complexity Analysis

	Experimental Results
	Experimental Configuration
	Datasets
	Evaluation Metrics
	Comparison Methods
	Implementation Details

	Performance Comparison (RQ1)
	Comparison of Different Aggregation Functions and Edge Weights (RQ2)
	Hyper-parameter Investigation (RQ3)
	Different Epochs
	Diverse Embedding Dimensions
	Iteration Steps of Multi-hop Feature Fusion
	Ablation Study of Attentional Components
	Broad Attentive Weights

	Integrating Implicit Interactions (RQ4)
	Discussion

	Conclusion
	References
	Biographies
	Zhifeng Xie
	Wenling Zhang
	Bin Sheng
	Ping Li
	C. L. Philip Chen

