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Abstract—Accurate and high-quality tooth mesh generation
from cone-beam computerized tomography (CBCT) is an es-
sential computer-aided technology for digital dentistry. However,
existing segmentation-based methods require complicated post-
processing and significant manual correction to generate regular
tooth meshes. In this paper, we propose a method of continuous
bijection supervised pyramid diffeomorphic deformation (PDD)
for learning tooth meshes, which could be used to directly
generate high-quality tooth meshes from CBCT Images. Overall,
we adopt a classic two-stage framework. In the first stage, we
devise an enhanced detector to accurately locate and crop every
tooth. In the second stage, a PDD network is designed to deform
a sphere mesh from low resolution to high one according to
pyramid flows based on diffeomorphic mesh deformations, so that
the generated mesh approximates the ground truth infinitely and
efficiently. To achieve that, a novel continuous bijection distance
loss on the diffeomorphic sphere is also designed to supervise the
deformation learning, which overcomes the shortcoming of loss
based on nearest-neighbour mapping and improves the fitting
precision. Experiments show that our method outperforms the
state-of-the-art methods in terms of both different evaluation
metrics and the geometry quality of reconstructed tooth surfaces.

Index Terms—Shape generation, tooth segmentation, diffeo-
morphic deformation, CBCT, continuous mapping.
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Fig. 1. Visualization of tooth reconstruction results: (a) the ground truth of
the target teeth, (b) the isosurface extracted from the segmentation result of
SGA-net , (c) the mesh generated by CorticalFlow ™+ [2], and (d) the mesh
generated by our work. The surfaces of (b) are limited by the resolution of
segmentation. (c) shows a large error for the multi-root case with the nearest-
neighbour mapping. And, (d) is closer to the target by using a continuous
bijection mapping.

IVEN cone-beam computerized tomography (CBCT)
G images, and tooth models could be further reconstructed
to assist doctors in making detailed treatments. Actually,
tooth segmentation [1]] is the first step in the clinical task of
digital dentistry, and the subsequent diagnosis and treatment
processes include biomechanical analysis, teeth alignment
(3]l 4], and 3D printing, etc. Before being applied to the
subsequent processes, the segmentation results usually need to
be translated to the form of regular meshes, as shown in Fig.
[[[b). Therefore, if the teeth meshes could be obtained directly
from CBCT images instead of segmentation, the unnecessary
conversion process and errors in the subsequent processes can
be avoided, improving the efficiency and accuracy of dental
clinical diagnosis and treatment. So it’s significant to directly
build mesh models from CBCT images.

Currently, various methods have been proposed to develop
instance segmentation technology on CBCT images for ob-
taining tooth models, which can be classified into traditional-
knowledge-based (e.g., level set [5]-[7], region growing [8],
statistical shape models [9]]) and learning-based methods [I],
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[10]-[16]. Overall, learning-based methods are superior to
traditional conventional methods in automation and robustness,
and existing deep-learning methods represent 3D shapes as
discrete voxels. Cui et al. [10]] propose a deep-learning network
framework for individual tooth segmentation and identification
based on Mask R-CNN. Wu et al. [11]] propose a two-level
hierarchical deep neural network, with one heatmap for locat-
ing tooth centers and DENSEASPP-Unet for ROI-based seg-
mentation. Lee et al. [[12]] implement heatmap regression and
box regression for each tooth and propose a novel Gaussian
disentanglement penalty for all adjacent tooth pairs to more
precisely position. Cui et al. [I5] use tooth morphological
features including tooth centroid, landmarks at root apices,
skeleton, and boundary surface for tooth instance segmen-
tation. Li et al. [1] explicitly model the spatial associations
between different teeth for precise delineation in a coarse-
to-fine fashion. The semantic graph attention mechanism is
designed to model the anatomical topology of the teeth in
each quadrant.

Existing deep learning methods focus on improving seg-
mentation accuracy, but ignore the mesh quality requirements
in subsequent applications including finite element analysis
(FEA), computer aided geometric design (CAGD), simula-
tions, and 3D printing. High-quality tooth meshes can be
used for quantitatively analysing tooth collision and occlusion,
and to help making detailed treatment plans. However, tooth
meshes extracted from segmentation results may contain non-
manifold and disconnected component errors, and thus require
expensive post-processing topology correction [17]. Unlike
previous segmentation methods, we aim to learn the genus-0
surfaces of teeth directly. Intuitively, which can be achieved by
deforming a mesh template according to extracted information
from medical volumetric image, e.g., [2], [18], [19]]. However,
multiple tooth individuals in the same CBCT image make
deformation computing computationally intensive, and the
loss based on the discontinuous nearest-neighbour mapping
between meshes cannot handle the complex shape of the tooth
well, especially for multi-root individuals, as shown in Fig.
[[c). Our motivation is to extract top-to-bottom flows from
CBCT and use them to deform a sphere mesh to the target
tooth shape efficiently. And most importantly, we require the
mapping to be continuously bijective, so that it could approach
the best reconstruction accuracy even for the worst multi-root
case, as Fig. [T[d).

To achieve this purpose, we propose a pyramid diffeomor-
phic deformation (PDD) network and use continuous bijection
distance (CBD) loss to supervise it for learning genus-0 tooth
mesh from CBCT images. Overall, we adopt a widely-used
two-stage schema in tooth reconstruction. Firstly, an improved
anchor-free detector is designed to locate each tooth accu-
rately. Secondly, PDD network is designed to deform a sphere
mesh to a high-resolution tooth mesh progressively according
to the extracted pyramidal flows. To avoid the local minimum
brought by the discontinuous nearest-neighbour mapping, we
propose a continuous bijection distance to measure the differ-
ence between two meshes and apply CBD loss to supervising
the learning of PDD network. Since the continuous bijection
guarantees that the deformation is conducted continuously

along the manifold surface, our method greatly improves the
reconstruction accuracy. Finally, we validate the effectiveness
and efficiency of our method by comparing it with previous
segmentation methods and other explicit surface learning
methods. In a nutshell, our contributions are summarized as:

e We are the first to formulate the 3D tooth reconstruction
task as mesh surface learning, abandoning the commonly-
used segmentation process, to produce tooth surface from
CBCT images directly.

e We devise a PDD network to guide the tooth shape
generation efficiently by deforming from a low-detailed
level to a high-quality one.

o The CBD loss is proposed to force the nearest-neighbour-
based mapping between the prediction mesh and the
ground truth to be continuously bijective, promoting the
precision of tooth shape generation.

e Our solution shows superior performance on both seg-
mentation precision and geometric quality of teeth to the
state-of-art methods by experiments.

II. RELATED WORK
A. Tooth Detection and Identification

To improve the performance of tooth instance segmentation,
many researchers adopt a two-stage schema and locate the
tooth instances in the first stage ( [LO]-[13]], [[15]]). This
approach, which involves initially locating teeth, has found
application not only in CBCT imaging but also extends its
usage widely to other modalities encompassing mesh models
( [20], [21]]) and panoramic radiographs ( [22], [23]]). Most
two-stage frameworks extend anchor-based object detectors
for tooth localization ( [10]], [[13[]). ToothNet [10] proposes
a learned similarity matrix to remove redundant proposals.
Chung et al. [13]] design a 2D convolutional neural network
to regress CBCT image pose, then use Faster R-CNN [24]]
to propose ROIs. Anchor-based methods predict a large num-
ber of ROIs which need further post-processing (e.g., non-
maximum suppression algorithm), and it is tricky to get the
best settings for anchors. In contrast, anchor-free methods
have fewer hyperparameters. Wu et al. [11] use a global stage
heatmap to accurately locate tooth centers, then crop individual
tooth volumes of fixed size 64 x 48 x 48. Recently, [12]]
proposes a point-based tooth localization network based on
anchor-free detector CenterNet [25] and produces impressive
average precision of detection, and proposes a new Gaussian
disentanglement loss to penalize the overlap of Gaussian
distribution regression for each tooth. However, the recall of
[12] is relatively low, because of the similar topology and
proximate nature of teeth. Considering the characteristics of
the tooth, we revise the branches of CenterNet to obtain higher
average precision and recall.

B. 3D Tooth Representation

For traditional methods, a tooth is represented as a set
of contours [5]-[7], statistical shape models [9], or vox-
els [8]. Existing tooth segmentation networks [10]-[15] use
voxel-based representations, which can be naturally processed
with varied convolution operations. Indirect mesh prediction



IEEE TRANSACTIONS ON MULTIMEDIA

Fig. 2. The predictions (blue) to the tooth ground truths (red) with two
close roots: the cases of (a) mesh, (b) point cloud, and (c) voxels. Metrics
including surface distance in (b) and overlap ratio in (c) can’t measure the
discontinuous nearest neighbour mappings between predictions and ground
truths. Note that without considering the mesh topology, the loss may bring
the wrong predictions.

methods require expensive post-processing, such as Marching
Cubes or Marching Tetrahedral to extract explicit surfaces.
Moreover, post-processing is not differentiable and usually
leads to non-manifold errors [2f], [[18]. Although Deep March-
ing Cubes [26] and Deep Marching Tetrahedra [27] make
the surface extraction process differentiable, they still lack
constraints on the topological structure. Direct mesh recon-
struction aims to fit the target shape with a pre-defined
topology (e.g., template [2f], [18]], [28]-[31], or a union of
primitives [32], part-level geometries [[19]], [33], [34]]). To
obtain high-quality tooth meshes, we adopt the scheme based
on a deforming template, which will only change vertices’
positions and conserve partial topology properties, e.g., non-
manifold edges and vertices.

Recently, the deforming template framework [2], [18]], [30],
[35]l, [36] has been highly successful in generating 3D mod-
els from medical volumetric images. Voxel2Mesh [[18]] uses
a graph-based convolutional network (GCN) to predict the
deformation of each vertex on a template sphere and has
been tested on MRI brain, hippocampus, and liver datasets.
Meanwhile, [30] represents the entire heart as alternative
template meshes which represent a subset of the geometries,
and uses GCN to predict the transformation of control points
enclosing the template heart to cater to different modelling
requirements. In contrast, CorticalFlow ™ [_2]] learns a diffeo-
morphic deformation from a genus zero smooth template to the
target cortical surface, the template tightly wraps all training
cortical surfaces. Teeth with different numbers of roots are
structurally dissimilar, especially molars, whose root count
is variable. Considering that tooth shapes and orientations
vary considerably while sharing the same 0-genus, we use a
template of spherical mesh instead of template generation [35]]
or template selection [36].

C. Diffeomorphic Deformation

Diffeomorphic deformation is an invertible function that
could map a differentiable manifold to another smoothly.
Ordinary Differential Equation (ODE) is a widely used tool to
define invertible deformations. Furthermore, when the velocity
field of ODE is globally Lipschitz continuous, any two ODE
trajectories will not intersect [37]]. This guarantees diffeomor-
phic flow with strong implicit regularizations to prevent self-
intersection and non-manifold faces [31]. The Flow ODE is
utilized in shape generation networks [2]], [31]], [38], [39],
while the stationary velocity field (SVF) framework, where

the velocity field is time-independent, has been successful in
medical registration problems [40]], [41]]. The work closest to
ours is CorticalFlow ™™ [2]], which expands the SVF approach
to points in real coordinates and introduces a diffeomorphic
mesh deformation module (DMD). The method uses a multi-
scale approach with three sequential deformations. Since the
deformations need to be trained separately, the training process
is time-consuming. Differently, we develop a novel coarse-to-
fine deformation strategy based on pyramid flows extraction,
with fewer parameters, less training time and inferencing time.

D. Losses in Mesh Generation

In the area of mesh learning and generation, the losses are
very important for generating high-quality results. Generally,
surface distance [42]-[44] and overlap ratio [32] are used
as metrics to measure the difference between two shapes.
The distance between two surfaces is naively defined as the
distance between each point in the surface and its closest
neighbour in the other surface, CD loss [42] calculates the
average of the distances between meshes. Hausdorff distance
(HD) [43] finds the point on one mesh that is farthest from
the closest point on the other mesh, and is sensitive to large
geometric differences. Neither CD nor HD is sensitive to the
mismatched point density. In contrast, Earth mover’s distance
(EMD) [44] finds the bijective between two point clouds
by solving an optimal transmission problem, which results
in the computation cost of EMD being much higher than
CD and HD. Paschalidou et al. [32] propose occupancy loss
which converts the implicit surface to an indicator function
by inverse homeomorphic mapping. However, the occupancy
loss has poor adaptability to other frameworks. Losses forced
on only point clouds bring unnecessary sharp corners and
faces, thus Laplacian loss and edge length loss are proposed
by Pixel2Mesh [28] to smooth the surface. Laplacian loss
avoids mesh self-intersection, and edge length loss is further
applied to balance the edge length between faces. However,
for complex shapes like multi-root teeth, surface distance and
overlap ratio losses may fall into a local minimum, resulting
in convergence to an incorrect shape, as demonstrated in
Fig. ] In human body reconstruction [45]], the definition of
correspondences between scanned models has a crucial impact
on the accuracy of their alignment. The mesh generation loss
should encourage a correct mapping between the predicted
and target shapes. Essentially, these metrics neglect mesh
topology, and cannot penalize discontinuous nearest neighbour
mappings between predicted and target meshes. To address
this, we propose a loss based on continuous bijection distance
to enforce a continuous bijective mapping between prediction
and target.

III. PROBLEM FORMULATION
A. Diffeomorphic Deformation of Tooth

By assuming that the tooth surface can be reconstructed by
deforming from an initial sphere to ground truth continuously,
the deformation trajectory and velocity could be described
according to the following ODE [46]:

Os(t)
ot

=v(s(t),t), with t€[0,7], (1)
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Stage 1: Tooth Detection

Stage 2: Mesh Generation by Pyramid Diffeomorphic Deformation
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Fig. 3. Two-stage framework for pyramid diffeomorphic deformation. In the first stage, an improved tooth detector is used to locate teeth and crop them.
In the second stage, tooth meshes are generated by a pyramid diffeomorphic deformation (PDD) network based on a 3D U-net backbone. In particular, the
features {F;} are extracted from different scales of the decoder layers in 3D U-Net and fed into pyramid flows based on DMDs. And the learning of mesh

generation is supervised by continuous bijection distance loss.

where s : [0, 7] — R is the continuous 3D trajectory of a point
on the surface during the deformation, and v : R® x [0, T] —
R3 is the continuous velocity field in space and time.

Since the point s(0) is given on the initial sphere surface,
the following spatial positions could be propagated step-by-
step using the Euler method according to velocity flow by the
equation:

s(t + At) = s(t) + v(s(t)) At. )

B. Motivation

It is time-consuming to compute the velocity flow of every
point in each step, especially for high-quality mesh generation.
Therefore, we consider obtaining the low-resolution flows
from top-level CBCT features incipiently, then elevate the
resolution gradually from the bottom ones in the subsequent
steps, so that computation time can be reduced significantly.
Note that the top-level information also can be propagated to
the bottom efficiently in the pyramid processing. In addition,
the loss function is also key for high-quality results. Classic
losses, e.g., CD, HD, and EMD, perform unsatisfactorily in
guaranteeing the predicted shape closely matches the target
tooth shape. Therefore, we propose the CBD loss that pro-
motes the nearest neighbour mapping between the predicted
mesh and the target tooth to be a continuous bijection, which
is crucial for achieving the reconstruction with high precision.
Based on the above two aspects, the tooth shapes are hoped
to be generated effectively and efficiently.

IV. METHODS

In section, we will describe how our method is designed to
generate the tooth surfaces from CBCT images. The adopted
framework is a two-stage network, as shown in Fig. [3] In

the first stage, an enhanced detector is designed to identify
the center point, size, and classification of each tooth, and
then crop the CBCT image patches according to the detection
result. In the second stage, the CBCT patch is fed into a
pyramid diffeomorphic deformation network for mesh recon-
struction to generate the tooth mesh efficiently. To implement a
high-quality reconstruction, we further designed the CBD loss
based on continuous bijection between prediction and target
to supervise the learning of the deformation network.

A. Enhanced Detector for Cropping Tooth

Following the ISO standard tooth numbering system, each
tooth needs to be identified with one of 32 labels. CenterNet
uses a 32-channel heatmap to regress bounding box centers.
However, a tooth is prone to be repeatedly classified with
different labels, while its adjacent teeth may be ignored.
Moreover, it is difficult to regress the Gaussian distributions
of two adjacent teeth that are similar, causing Gaussian dis-
entanglement issue . Therefore, we redesign the detection
head of CenterNet. We perform downsampling 4 times in the
encoder and upsampling 2 times in the decoder with stride 2.
At last, a 1-channel heatmap is used to predict all bounding
box centers, while the 32-channel heatmap is utilized for
classification. In particular, each channel of the 32-channel
heatmap is related to the target bounding box center with
a certain label following [47]. And the I-channel heatmap
predicts the pixel-wise maximum of the 32-channel heatmap.
Finally, the loss function of the 1st-stage network is

Llst = AkLk + /\CLc + /\offLoff + AsizeLsizea (3)

where focal losses L. and Ly, are used to train predicted
1-heatmap and predicted 32-channel heatmap, and smooth L1
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Fig. 4. The DMD takes feature map F; as input and generates diffeomorphic
mapping from input mesh 7 to refined mesh 754 .

loss L,yy and Lg;,. are used to supervise the local offset and
boxes size at the center of every bounding box as in the work
[24]. Based on this design, our detector focuses on detecting all
teeth and achieves a higher recall than the original CenterNet.

B. Surface Generating with Pyramid Diffeomorphic Deforma-
tion

We design a PDD network for tooth surface generation in
the 2nd-stage. It is composed of a 3D Unet and a progressive
deformation module, as shown in Fig. B] The deformation
head consists of multiple DMD modules. Drawing inspiration
from the feature pyramid network [49], [50] to detect objects
with various scales, we learn the pyramid feature maps from
the Unet decoder, and put them into the DMD modules so
that a template deforms progressively. During the process, the
resolution and precision of the mesh are boosted step by step
until it matches the target tooth mesh.

Pyramid Flows based DMDs. In the architecture, the early-
stage DMD accepts the low-resolution feature map from the
top-level feature, while the later-stage ones accept the high-
resolution feature map from the bottom. Thus, the formulation
of progressive deformation could be defined as follow:

CriJrl:DMDi(Fi7E)7i:07132a37 (4)

where F; is the feature map after the i-th upsampling in the
decoder, and Tj is a low-resolution initial template. The DMD
module takes F; and 7; from the previous stage as input,
and outputs the deformed shape T;;1, as shown in Fig. ] In
particular, all {7;} have the same genus as the initial template.
In the DMD module, the feature map Fj is translated to flow
vector field U;, and the input mesh is converted into a point
cloud. Therefore, the diffeomorphic mapping ® : [0, 1] xR? —
R3, from T; to T;, 1, could be generated based on flow ODE
in Eq. (2). Specifically, it is given by:
®(h,x) = x + hU;(x), (5)
where h is step size, U; is the 3D flow field, and U;(x) means
linear interpolation of U; at vertex position X. $ is a numerical
approximation of ® in consideration of discretization.
To make the progressive deformation adapt to the pyramid
deformation, the loop subdivision algorithm [51]] is followed
after the DMD to increase the resolution of predicted meshes.

Thus, the ground truth with high resolution could be approx-
imated immensely as needed.

C. Continuous Bijection Distance Loss

During the surface learning, the 2nd-stage network needs
to be supervised by loss between the predictions {7;} and
ground truth Ty. Therefore, a unified loss, referred to as CBD
loss, is designed for each prediction. Specifically, we measure
the surface distance between two genus-0 shapes based on
continuous bijective mapping instead of the nearest-neighbour
mapping, ensuring the predicted shape deforms towards the
target shape during the training process. We assume that all
teeth are genus-0, and note the meshes of prediction and
ground truth as the T}, and T}, respectively. They are conformal
to parametric spheres S, and S; under the given restrictions
of topology connections via the following mappings:

Sp=wpoT, and S; = pg0T,, (6)

where ¢, and ¢, are their corresponding spherical conformal
mapping operations.

Nearest Neighbour Metric. A general surface distance
metric between two shapes 7), and T, is based nearest-
neighbour mapping algorithm like:

1
> min [If(w) = f)lB. @

|Tp| vp €Ty Vo

Dnn(TZ”Tg)

where f(v) indicates the geometric feature (or just coordinate)
extracted at vertex v. Briefly, we re-formulate Eq. (7) as below:

_ L
7]

where 7, is the operation that find the closest point in T}, for
each point in 7T}, in Euclidean space,

Te = NN(TP7T9)~ &)

Dnn(Tvag) ||Tp - Te ng||§, (3

The nearest-neighbour metric (NNM) has been widely used
in the losses, e.g., CD and HD losses, for the task of geometric
reconstruction. Since the metric is only applied to local
vertices, it ignores the inner topology of shapes and doesn’t
satisfy the continuous mapping between two meshes. So NNM
works badly for accurate mesh fitting.

Continuous Bijection Metric. To overcome the drawback
of NNM, we adjust the nearest-neighbour mapping 7, to be
continuous bijective. In particular, we define a novel continu-
ous bijection metric (CBM):

_ L
75|

Here 7,, aims to find the closest point on the manifold surface,
instead of that in Euclidean space. To make it continuous
bijective, we obtain 7,, by adjusting 7, on parametric sphere

S,

g»

Dep(Ty, Ty) | Ty — 7p 0 Tg”%- (10)

Tm :NN(AP(TE OSg),Sg), (11)

where A, is a local adjustment operation to remove the
overlapping area on 7, 0S,. Firstly, nearest-neighbour mapping
T, 1s used to locate the corresponding parametric points in
sphere S, for prediction. But it may occur self-intersection of
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Algorithm 1: Continuous Bijection Distance Loss

Input: Genus-0 meshes T}, and T,
Output: CBD loss L.pq

1 begin

2 Calculate spherical conformal mapping ¢, for Tj;
3 Parametric sphere S, < ¢4 0 Ty;

4 Compute neighbour mapping 7, from 7T}, to T§;

5 | Sy =copy(Ty);

6 for v; € S; do

7 Find u; € Sy corresponding to v; based on ¢g4;
8 Vi <= Uj;

9 for 1 to ¢ do

10 for v; € S; do

1 n,[v;| < the nomral of v; in surface T,;

12 n,[v;] < the nomral of v; in surface T};

13 if n,[v;] - nglv;] < 0 then

14 | vie—wvit+h- Ay

15 Compute neighbour mapping 7,, from S to Sg;
16 Lepg < 0;

17 for v; € T, do

18 Find u; € Ty corresponding to v; based on 7,;
19 L Lepa < Leva + [|vi — u;l[3

20 | Lepa ﬁ X Lebd;

21 return L ;q;

the manifold in the cases of non-convex tooth shapes. Thus,
we use laplacian A, to adjust 7, o S, locally so that the self-
intersection could be eliminated,

v — Vi + h- Apuy, for v € Sgp. (12)
Here S,, indicates the operation area defined as below:
Sop = {vmp[v] -my[v] < O forver, 0S,},  (13)

where ny,[v] and ngy[v] are normal pair in surface 7, and T},
located with v in parametric sphere.

Geometric Interpretation. When all the overlapping areas
are removed, NN in Eq. will find a continuous bijection
T from Ay, (7, 08) to S,. In other words, the shapes T, and
T,, between which the nearest-neighbour mapping is not con-
tinuously bijective originally, could be translated to the same
sphere A, (7. o Sy) consistently. The distance minimization
based on CBM aims to deform 7}, to the target T, along
the manifold surface. In contrast to NNM, CBM forces the
prediction to approach the target with higher precision, as
shown in Fig. [3] Finally, the learning of mesh deformation is
to optimize the output T}, of PDD network to match 7, o Tj.
CBD loss is as below:

chd = ch(prTg)- (14)

The CBD loss is presented as pseudocode in Algorithm [I]

Nearest Neighbour Metric

Continuous Bijective Metric

Fig. 5. Nearest neighbour metric vs. continuous bijection metric. The nearest
neighbour mapping 7. ignores the topology of T, and T, so T} cannot
be continuously mapped to T, e.g., point C1 at the saddle of the tooth
root is mapped to C2 close to the root apex. Self-intersection occurs in
the spherical mesh 7, o .Sy when mapping T}, to the spherical parametric
domain same to Ty. In contrast, the continuous bijection mapping 7,, maps
T}, to Ty continuously with the help of the adjustment operation Ay, avoiding
any self-intersection. The 7, preserves the topological relationships between
neighbouring regions, inducing correct match even between the meshes with
large distance, e.g., the root saddle region where point C'1 is mapped to the
root saddle region of another mesh.

D. Loss of Second Stage Network

The PDD network will output several predictions {7;}. We
design the loss function for each T; as follow:

L2nd = )\chcd + )\edgeLedge + )\cdecbd + )\laleap~ (15)

Besides CBD loss, we also minimize CD loss L4 to make the
predicted mesh match ground-truth surfaces. Mesh regulariz-
ers, i.e., Laplacian L, and edge lengths Lcq4. [18]], are used
to penalize non-manifold errors. For the early two meshes, we
set the hyperparameters Acgge = 1, Acqd = 1, Acpd = 0, Ajgp =
0. For the latter two ones, we set Aegge = 1, Aed = 1, Acpa =
1, Miap = 0.1. The losses Loy of each T; are summed as the
training loss.

V. EXPERIMENTAL RESULTS
A. Dataset

We adopt two CBCT datasets [[15], [16] with crowding,
missing, or oblique teeth. The voxel resolution of these scans
is 0.4mm. The first dataset in [16] is a publicly available
dataset consisting of 150 instances. The first 100 instances
in it have annotations of high degree of quality, while the
remaining 50 instances have annotations with slightly coarse
precision. The second dataset in [15] encompasses 100 in-
stances, all of which possess annotations of superior quality.
In the experiments, We utilize the first 100 instances in dataset
[16] and all CBCT scans in dataset [|15]]. The CBCT images are
cropped and resized to 256 x 256 x 256, and intensity values
are normalized to [0,1]. Pixel-level segmentation labels are
manually annotated. The explicit surfaces of teeth are extracted
by the Marching Cubes method. Meshes with non-manifold,
non-watertight, or non-genus-zero problems are automatically
processed using blender [52] and manually fixed. The CBCT
images are randomly cropped into 160 x 160 x 160 to increase
the batch size for the 1st stage network, and teeth are cropped
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TABLE I
PERFORMANCE COMPARISON OF TOOTH DETECTION AND
IDENTIFICATION METHODS

Model AP50 | OIR FA CD (mm)
Faster R-CNN [24] 98.50 | 97.34 | 93.20 —
Deformable DETR [54] | 82.10 | 54.67 | 87.77 2.3293
nnDetection [53] 98.71 | 97.85 | 99.14 1.0293
CenterNet [25] 98.95 | 97.76 | 93.42 0.9220
Ours 99.35 | 98.02 | 99.24 0.6768

and resized to 64 x 64 x 64 for the 2nd stage network. All
experiments were conducted using a single Nvidia GeForce
RTX™ 3090 Ti graphics card, and the network architectures
were constructed using the PyTorch library.

B. Performance of Tooth Detector

Baselines. We compare the proposed tooth detector with
state-of-the-art detection networks, including Faster R-CNN
[24], nnDetection [53[], Deformable DETR [54], [55], and
CenterNet [25]]. Faster R-CNN is used as the backbone and
extended to a two-stage framework for CBCT segmentation
[10], [13]], while CenterNet is also used as a tooth detector
in [12]. nnDetection is designed to automate the configuration
of medical object detection models and supports various 3D
medical image inputs. Deformable DETR is an end-to-end
object detection method that combines deformable attention
modules with Transformers to directly predict object bounding
boxes and categories, achieving excellent results in 2D object
detection.

Evaluation Metrics. For the two-stage tooth segmentation
network, the detection accuracy of the detector directly affects
the performance of instance segmentation. The average preci-
sion (AP) is a critical metric for evaluating the effectiveness
of tooth detection, quantifying the area under the precision-
recall (PR) curve. When the threshold value for intersection
over union is 0.5, the AP is known as AP50. The 2nd-stage
network only segments tooth shape after cropping, which is
suitable for measuring the ratio of the target tooth region inside
the detected bounding box. The Object Include Ratio (OIR)
[13] is also adopted as the metric which is the ratio (%) of the
region of the detected object in a detected bounding box to the
complete ground-truth object. We use identification accuracy
(FA) [10] to measure the accuracy of identification. The
similar topology and proximate nature of adjacent teeth are
considered to be one of the main difficulties for classification.
[12] figures that this difficulty also causes a deviation in
positioning the detected bounding box center. Our detection
network considers teeth as a single class when locating tooth
instances, which improves the localization accuracy and recall
while suppressing the number of detected bounding boxes. The
CD is used to measure the distance from detected bounding
box centers to its corresponding ground truth.

Comparison. Table [I| shows the evaluation results for tooth
detection and identification. The proposed method outperforms
all baseline methods. Among all the baselines, nnDetection
performs the best. However, compared to nnDetection, our

Fig. 6. Visualization of detection results for CenterNet and our network.
Our heatmap has smaller standard deviations and higher peak values. As a
result, our method yields more accurate predicted centers and higher recall
of predicted results. Additionally, as demonstrated in (e), our approach is
effective in avoiding misclassification.

method shows improvements in the performance metrics of
CD, AP50, and OIR, with values approximately 0.3525mm,
0.64%, and 0.17% better, respectively. Compared to Center-
Net, the proposed method demonstrates a significant improve-
ment in FA by 5.82% and outperforms it by approximately
0.245mm in CD, indicating that our tooth center localization
is more accurate. Fig. [f] is a visualization of the detection
results. In the first row, the images include the pixel-wise
maximum of CenterNet’s classification branch and the output
of our network heatmap branch. As shown in Fig. [6(a),
both CenterNet and our network output similar images to
the pixel-wise maximum of multiple Gaussian distributions.
But our output heatmap has smaller standard deviations and
higher values at the peaks, which means more accurately
detected bounding box centers and higher recall of predicted
results. Fig. @b)—(d) are adjacent channels of the 32-channel
heatmap. Our pixel-wise classification is based on heatmap
regression. Fig. [6fe) shows that our method can effectively
avoid misclassification.

C. Performance of Shape Generation

Baselines. We compare the proposed method with state-
of-the-art voxel-based methods and mesh-based methods. The
voxel-based methods include not only ToothNet [10] and
SGA-net [1f], which are specifically designed for tooth seg-
mentation in dental CBCT, but also one-stage 3D medical
image segmentation networks such as UNETR [56]], Swin
UNETR [57], and 3D UX-Net [58]], which have demonstrated
excellent performance across multiple datasets. The mesh-
based methods involve Voxel2mesh [18] and CorticalFlow™t+
[2] which are designed for a single target.



IEEE TRANSACTIONS ON MULTIMEDIA

TABLE II
QUANTITATIVE RESULTS COMPARISON WITH BOTH VOXEL-BASED (FIRST FIVE ROWS) AND MESH-BASED SEGMENTATION METHODS

Models DSC Precision Recall CD (mm) HD (mm) HD95 (mm)

ToothNet [[10 0.916 — — 0.30 2.82 —

UNETR 0.924 0.933 0.926 0.486 9.360 2.688

Swin UNETR | 0.934 0.938 0.934 0.332 1.398 0.704

3D UX-Net | 0.932 0.939 0.930 0.399 5.493 1.179

SGA-net [@ 0.936 0.942 0.932 0.330 1.400 0.843

Voxel2mes 0.924 0.924 0.931 0.219 1.405 0.682

CortlcalFlow 0.937 0.945 0.930 0.207 1.004 0.492

Ours 0.945 0.942 0.949 0.168 0.862 0.389

TABLE III
\ \ \ Surface Normal QUANTITATIVE RESULTS COMPARISON WITH MESH-BASED
5 ‘ ) S‘“‘""‘“W SEGMENTATION METHODS IN PUBLICLY AVAILABLE DATASET
€ 000204060810
Model DSC CD (mm) | HD (mm) | HD95 (mm)

o ‘ Voxel2mesh 0.936 0.190 1.156 0.498
= \\ \\\ CorticalFlow 0939 | 0.191 1.156 0.549
S . r-\ Ours 0.944 0.178 1.042 0.454

(d) 3D UX-Net  (c) SwinUNET

(e) SGA-net

(g) CorticalFlow++ (f) Voxel2mesh

(h) Ours

Fig. 7.  Visualization of segmentation results, the predicted meshes, and
surface normal similarity. The first column shows the segmentation results
on CBCT, while the second and third columns visualize the predicted tooth
model from the front and side views, with the ground-truth tooth model’s edge
contours highlighted in green. The fourth column illustrates the consistency
of surface normals between the predicted and ground-truth meshes.

Evaluation Metrics. We evaluate our framework using var-
ious metrics, including segmentation performance measured
by dice similarity coefficient (DSC), Precision, and Recall,
geometric accuracy measured by CD and HD, and surface
regularity. The metrics of geometric accuracy are computed

with the surface sampling points for both mesh-based and
voxel-based methods. Furthermore, we compare the surface
regularity of different CBCT networks based on non-manifold
vertices(NM Vert.), non-manifold edges(NM Edg.), and the
ratio of self-intersection faces(SIF) [31]. In addition, we
calculate the percentage of meshes that contain disconnected
components(DC).

Comparison of Segmentation Performance. Table [II]
shows the quantitative comparison of segmentation perfor-
mance with both state-of-the-art voxel-based methods and
mesh-based methods. Among all voxel-based networks, SGA-
net achieves the best segmentation performance, our method
outperforms SGA-net 1.7% in Recall, and 0.9% in DSC.
The voxel-based network with the best surface distance per-
formance is Swin UNETR, and our network surpasses it
by approximately 0.164mm in CD, 0.536mm in HD, and
0.315mm in HD95. In summary, compared to voxel-based
methods, our method achieves significant improvement, es-
pecially in reducing the surface distance to a very small
value. Voxel2mesh has to make a trade-off between geometric
accuracy and mesh regularity. Our method performs better
according to all metrics and outperforms CorticalFlow™*™ in
terms of segmentation accuracy and surface distance. The
CBD loss makes the generated mesh more accurate, especially
at the tooth root. In order to facilitate subsequent compara-
tive analyses, our network and two mesh-based segmentation
methods are individually trained and tested on the publicly
available Dataset [16]. The results, as presented in Table [ITI]
unequivocally demonstrate the superior performance of our
approach in comparison to the other two methods.

Visualization of Segmentation Results. In Fig.|/| the first
column presents CBCT segmentation results, the second and
third columns show front and side views of the predicted tooth
model with ground-truth contours in green. For voxel-based
methods without detecting tooth location, the segmentation
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Fig. 8. The visual comparison of reconstructions between different methods on the teeth with root numbers 1 (left), 2 (middle), and 3 (right).

TABLE IV
COMPARISON OF TOOTH MESH GENERATION METHODS UPON SURFACE
REGULARITY AND TOPOLOGY DEFECT

Metrics | SGA-net [[1]| Voxel2mesh [18] | CorticalFlow-3 [2] | Our network

NM Vert. X v v v

NM Edg. X v v v

DC (%) 3.9 0.0 0.0 0.0

SIF (le-4) 0.0 1.583 0.427 0.132
TABLE V

COMPARISON OF GEOMETRIC ACCURACY AND SEGMENTATION
PERFORMANCE BETWEEN THE METHODS WITHOUT PYRAMID FLOWS
AND OURS (OUR NETWORK-BASE) WITH PYRAMID FLOWS

Model DSC | Precision | Recall | CD (mm) | HD (mm) | HD95 (mm)
CorticalFlow-1 [2 0.932 0.924 0.942 0.222 1.237 0.629
CorticalFlow-3 0.937 0.945 0.930 0.207 1.004 0.492
Our network-base 0.943 0.941 0.947 0.178 0.997 0.476

results are often incomplete, especially for the dislocated and
grown oblique tooth, as shown in Fig. [/(b)—(e). In Fig. [/[(f)-
(h), the tooth mesh generated by other mesh-based methods
satisfies the requirement of connectivity but has serious ar-
tifacts between the branches of the tooth root. The fourth
column shows the consistency of the surface normal between
the predicted mesh and the ground-truth mesh. The consistency
is measured by the dot product of the surface normal vectors.
We observe that the predicted meshes generated by voxel-
based methods exhibit a uniform distribution of surface normal
similarity, but they do not achieve the same quality as mesh-
based methods due to the limitations in mesh fineness imposed
by image resolution. In Fig. |8} the teeth are arranged from 1
to 3 roots, of which shapes also become more and more com-
plex. Either disconnected components or rough surface shapes
emerge in all cases for SGA-net. Mesh-based methods perform
poorly on multi-root teeth. Serious adhesion emerges between
roots. Obviously, our method solves all these problems and
outputs high-quality meshes.

Comparison of Surface Quality. We compare our method
to the current state-of-the-art mesh-based and voxel-based
methods using surface regularity and topological defects met-
rics, as shown in Table Compared to the deformation-
based methods Voxel2Mesh and CorticalFlow-3, our method
produces tooth meshes with significantly higher geometric
accuracy and a lower percentage of self-intersecting faces.
Mesh-based methods only alter the positions of vertices,
preserving the topology properties of the original meshes

9
1.0
0.83
0.66
0.49
0.32
0.15
Surface
distance
SGA-net Voxel2mesh CorticalFlow** Ours (mm)
DSC (%) Precision (%) Recall (%) HD (mm) HD95 (mm) CD (mm)
@8 g oome s sn o
94.0 94.0 94.0 1.00 0.50 0.20
93.5 93.5 93.5 0.80 0.40 0.15
93.0 93.0 93.0 060 0.30
92.5 92.5 92.5 : . 0.10
920 920 92.0 0.40 0.20 0.05
91.5 91.5 91.5 0.20 0.10 :
91.0 91.0 91.0 0.00 0.00 0.00
CorticalFlow-1 CorticalFlow-3 Our network-base

Fig. 9. Histograms Comparison on DSC, Precision, Recall, HD, HD95 and
CD respectively between the methods without pyramid flows and ours (Our
network-base) with pyramid flows.

and avoiding to emerge non-manifold edges or vertices. In
contrast, the voxel-based SGA-net methods produce mesh
with non-manifold vertices and edges due to reconstruction
by the Marching Cubes algorithm. The meshes generated
by the SGA-net method may be separated into disconnected
components, and there may be genus errors in the form of
handles and holes. After expensive post-processing topology
correction, the voxel-based SGA-net method can produce
meshes without self-intersecting faces. However, compared
with manual correction, those post-processing topology cor-
rections lack the interpretation of CBCT images and generate
non-plausible corrections, as described in [[17]].

D. Ablation Study

We conduct the ablation study to demonstrate the ef-
fectiveness of our tooth shape generation network which
benefits from multiple novel components. In this study, we
present the results of four configurations: (1) CorticalFlow-1
is the CorticalFlow™ ™ network with only one deformation. (2)
CorticalFlow-3 follows CorticalFlowt* [2] which uses three
successive deformations. (3) Our network-base represents con-
sidering pyramid flows with CD loss. (4) Our network-occ
is trained with both CD loss and occupancy loss [32] to
compare the effectiveness of CBD loss with overlap ratio loss.
(5) Our network-cbd combines the CD and CBD losses. All
configurations were trained for 1200 epochs, except for the 2nd
and 3rd deformations of CorticalFlow-3, which were trained
for 600 epochs. Note that all four configurations use the same
detector as the 1st-stage network.

Effects of Pyramid Flows. To validate the effectiveness of
our PDD module, CorticalFlow-1 is adopted as the baseline
network. Both have only one layer of deformation. Compared
with CorticalFlow-1, PDD module significantly improves the
geometric accuracy and segmentation performance. As shown
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Fig. 10. Comparison of the surface distance between the loss without
continuous mapping and ours (CD+CBD) with continuous mapping. Neither
the CD loss based on surface distance nor CD+occupancy loss takes mesh
topology into account. Therefore, they are unable to penalize instances where
there are discontinuous nearest-neighbour mappings between the predicted
and ground truth meshes.

TABLE VI
COMPARISON ON INFERENCE TIME AND TRAINING TIME
Model Inference runtime (s) | Training time (h)
CorticalFlow-3 [EI] 0.741 56.06
CorticalFlow-1 0.324 22.82
Our network-cbd 0.229 20.20
Our network-base 0.229 18.87

in Table [V] and Fig. 0] the average percentages of surface
distance (HD95, HD, CD) decrease by 24.3%, 19.4%, 19.8%,
and the average increases of segmentation accuracy (DSC,
Precision, Recall) are 1.1%, 1.7%, 0.5%. When the original
deformation and PDD have the same integration steps and
output meshes with the same number of vertices, PDD requires
fewer vertices to be calculated in the initial layers. As a
result, compared with CorticalFlow-1 and CorticalFlow-3, our
network-base significantly decreases the time of reconstruction
and training (see Table M) And, it is easier to train PDD, and
our method gets slightly better results than CorticalFlow-3 in
geometric accuracy and segmentation performance.

Effects of CBD Loss. We use the novel CBD loss to
supervise the training of our network-cbd to validate its effec-
tiveness. The quantitative results are shown in Table With
the CBD loss, the geometric accuracy of the predicted mesh
is significantly improved, and the average decrease of surface
distance (HD95, HD) is 18.3% and 13.5%. Furthermore, we
also employed the CBD loss for training Voxel2mesh on
publicly available datasets [16], denoted as Voxel2mesh-w.
When compared to the training results of Voxel2mesh-w/o,
which did not utilize the CBD loss, the precision of tooth
mesh generation by Voxel2mesh-w exhibited a notably higher
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Fig. 11. Visualization of reconstruction quality under the mappings with
different overlap ratios. Note that the overlap ratio could be modulated
according to the laplacian smoothing in CBM.

TABLE VII
EFFECTS OF CONTINUOUS BIJECTION DISTANCE LOSS ON OUR
NETWORK: ABLATION STUDY

Model DSC | Precision | Recall | CD (mm) | HD (mm) | HD95 (mm)
Our network-base | 0.943 | 0.941 0.947 0.178 0.997 0.476
Our network-occ | 0.943 |  0.948 0.939 0.182 1.010 0.409
Our network-cbd | 0.945 | 0.942 0.949 0.168 0.862 0.389

level of accuracy, as illustrated in Table [VII} Compared with
other losses used to penalize surface distance and overlap
ratio, only the CBD loss can penalize discontinuous errors of
nearest-neighbour mapping between the predicted shape and
target shape, then ensure the predicted shape converges to the
target shape, as shown in Fig. The deformation direction
guided by CD loss falls into a wrong local minimal, while
CBD loss avoids such errors, especially for the molars with
multiple roots. We also visualized the target meshes of CD
loss and CBD loss in Fig. [IT] The CD loss guides predicted
meshes significantly different from the ground truth shape due
to the presence of discontinuous errors in nearest-neighbour
mapping. In contrast, because CBD loss makes the nearest-
neighbour mapping become continuous and bijective, so the
predicted mesh is closer to the ground truth mesh. To further
analyze the effectiveness, we visualized the backpropagation
of CBD loss and CD loss at vertices position in Fig. Using
the CBD loss to train our network resulted in an approximately
7% increase in training time, with GPU memory usage remain-
ing unchanged at 22966MB.

Step Size of Euler Method. To assess the impact of step
size on the accuracy of diffeomorphic deformation solutions,
we conducted ablation experiments with different step sizes.
Following the approach in medical image registration [59]
for evaluating the computational accuracy of diffeomorphic
registration, the displacement error is defined as the distance
between the initial and final positions of any point on the
image after applying the deformation fields and their inverse
sequentially. We use displacement error to evaluate the accu-
racy of our diffeomorphic deformation. The deformation from
the template to the target shape is denoted as ®, and its inverse
deformation as ®~!. Both are solved using the Euler method,
with reverse accumulation based on the flow vector field. For
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TABLE VIII
EFFECTS OF CONTINUOUS BIJECTION DISTANCE LOSS ON MESH
GENERATION METHODS IN PUBLICLY AVAILABLE DATASET: ABLATION

STUDY
Model DSC CD (mm) | HD (mm) | HD95 (mm)
Voxel2mesh w/o [[18] | 0.936 0.190 1.156 0.498
Voxel2mesh w 0.940 0.183 1.100 0.466
TABLE IX

EFFECTS OF STEP SIZE ON THE ACCURACY OF DIFFEOMORPHIC
DEFORMATION SOLUTIONS: ABLATION STUDY

Step Size Au(d,d71) Au(d~1, @) Cost Time SIF
(N, h) Mean, Max (mm) Mean, Max (mm) (ms) (le — 4)
3, 107048 1.088, 12.11 0.522, 7.263 3.07 5.526
10, 10— 10 0.343, 4.843 0.181, 3.146 7.597 0.229
31, 10149 0.112, 1.714 0.061, 1.160 22.47 0.142
100, 10—2:0 0.035, 0.545 0.019, 0.372 60.77 0.136
316, 10—25 0.011, 0.174 0.006, 0.119 168.6 0.132
1000, 10—3-0 0.004, 0.055 0.002, 0.038 515.3 0.144
3162, 1035 0.001, 0.018 0.0006, 0.012 1589 0.145

all 3D pixel coordinates within the field, denoted as I, the
displacement error resulting from the sequential application
of ® and @' is given by Au(®,7!) = [I-Pod7!|.
Similarly, the displacement error generated by the reversed
sequence of deformations, &= and @, is expressed as
Au(®~1, ®). The mean and maximum displacement errors are
used as metrics for evaluating the accuracy of diffeomorphic
deformation. Additionally, we also compute the ratio of self-
intersection faces (SIF) under different step sizes h, and
measure the computation time for solving ® using the Euler
method. The step size is denoted by h, and the number of steps
is given by N = 1/h. The result is shown in Table As
the step size h decreases exponentially from top to bottom,
the number of steps N required for the solution increases
rapidly. The number of steps N is approximately linearly
correlated with the computational time. When N = 316 and
h = 1072, the maximum displacement errors Au(®, d~1)
and Au(®~1, ®) are both smaller than 0.2mm, which is half
the length of a pixel, indicating that the error in the diffeo-
morphic deformation will not affect the CBCT segmentation.
As the step size continues to decrease, the displacement error
keeps reducing, but the SIF does not decrease significantly.
Therefore, we set the step size h = 10725,

VI. CONCLUSION

In this paper, we propose a pyramid diffeomorphic deforma-
tion network under a two-stage framework for reconstructing
the tooth meshes from CBCT images. It is an efficient method
that directly generates genus-0 tooth mesh from volume data
without post-processing and with better accuracy than current
segmentation methods. Its success owns to two keys: one is
the pyramid diffeomorphic deformation that makes progressive
deformation from low resolution and high resolution, and
another is the continuous bijection distance loss that enforces
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Fig. 12. Visualization of deformation via CD loss vs. CBD loss: red

points mark the vertices, and blue lines mark the directions brought by
backpropagation of the loss. Note that the deformation directions guided by
CD loss are rather haphazard at the molars with multiple roots, while our CBD
loss consistently guides deformation directions towards the correct orientation.

the mesh to deform along the continuous manifold surface.
Experiments validate that our approach demonstrates a signif-
icant improvement compared to the state-of-the-art methods
in terms of segmentation accuracy and surface distance. The
only lackness is that our subdivision in PDD is not adaptive to
input, and it may bring unnecessary computation because of
density heterogeneity. In the future, we will develop a mesh
deformation mechanism with a subdivision that is adaptive
to both the input and the flows, to improve accuracy and
efficiency further.
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