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3DCMM: 3D Comprehensive Morphable Models
With UV-UNet for Accurate Head Creation

Jie Zhang ", Kangneng Zhou

and Ping Li

Abstract—In recent studies of 3D shape modelling and
reconstruction, the focus has primarily been on the 3D face region.
However, accurately creating the entire 3D head opens up a
wide range of applications, including headwear design, cranial
diagnosis, and avatar design. Therefore, we present our newly
developed method of constructing 3D comprehensive morphable
models (3DCMM) specifically tailored for human heads, along
with a novel 3DCMM-based stepwise pipeline for creating accurate
full 3D heads. Within our 3DCMM framework, we constructed
a powerful 3D morphable face model with UV-UNet to generate
the 3D face and predict the 3D scalp, resulting in a complete
representation of the head. Additionally, our 3DCMM-based self-
learning approach incorporates novel facial boundary-aware and
structure-aware losses for highly accurate overall reconstructions
of the entire facial region. Experimental evaluations demonstrate
that our 3DCMM exhibits superior face representation power and
achieves higher head prediction accuracy than existing models.
Consequently, our 3DCMM-based 3D head creation method from
a single image demonstrates outstanding performance capability
on both face and head benchmarks.

Index Terms—3D morphable model, 3D face reconstruction, 3D
scalp completion, 3D head creation.

1. INTRODUCTION

objective of recovering accurate 3D facial geometry
from unconstrained 2D images. Previous approaches have pre-
dominantly utilized learning-based methods to estimate shape

3D FACE creation is a significant research area with the
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coefficients of 3D statistical morphable face models [1]. How-
ever, the task of full 3D head creation poses greater challenges
and complexities, yet it offers numerous novel applications and
opportunities to overcome the constraints associated with exist-
ing 3D face creation and reconstruction methods based solely
on face images. In the field of computer graphics, a compre-
hensive understanding of the entire head holds significant value
for designers, enabling them to effectively model hairstyles and
generate high-fidelity avatars [2]. Furthermore, in ergonomics
design, a detailed 3D representation of the full head enables the
evaluation and customization of headwear products like helmets
and headphones, ensuring optimal fit and comfort for individu-
als [3], [4]. Additionally, in cranial diagnosis, a comprehensive
3D representation of the full head can facilitate the detection of
craniofacial deformities and changes [5]. In contrast to previous
studies that predominantly concentrated on closely cropped in-
ner facial regions [1], we addressed the challenge of creating a
full 3D head from 2D face images, encompassing both the facial
and scalp regions.

Although many powerful 3D statistical morphable models
(3DMMs) of human faces [7], [8], [9] or heads (e.g., low-
resolution FLAME [10] and LYHM (mostly Caucasian)) have
been constructed for 3D face/head generation and reconstruc-
tion, limited studies exist on predicting the full 3D head from the
generated 3D facial regions [11]. Furthermore, compared with
3D face reconstruction from a single 2D image [1], [12], [13],
[14], [15], [16], [17], full 3D head reconstruction methods are
much less common. State-of-the-art self-supervised-learning-
based methods for 3D head reconstruction utilize deep convolu-
tional neural networks (CNNGs) to regress the head shape or tex-
ture parameters of 3DMMs in an analysis-by-synthesis scheme,
which offers the advantage of not requiring ground-truth 3D data
for training. Examples of such methods include RingNet [14]
and DECA [18]. However, a single-face image can only provide
facial information and does not capture scalp information due to
the hair-occlusion problem, resulting in inaccurate reconstruc-
tion of the scalp region.

To address the limitations mentioned above, our research de-
veloped 3D comprehensive morphable models (3DCMM) to en-
able the stepwise creation of full 3D heads from a single 2D
face image (see Fig. 1). The process involves initially recon-
structing the face region (see Fig. 1(b)—(c)) and subsequently
predicting the full head (see Fig. 1(d)—(e)). In this study, we de-
veloped an automatic pipeline that facilitates accurate full 3D
head creation from a single image, which consists of three main
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Fig. 1.

Our 3D full head creation from a single-face image. (a) 2D face images from the CelebA dataset [6], (b) face alignment results with projected 150

landmarks from (c) our 3D reconstructed face, (d) 3D created full head, (e) 3D full head without expressions.

stages: (1) construction of a 3D human head dataset, (2) devel-
opment of 3DCMM with a UV map-based UNet (UV-UNet) for
face-to-head prediction, and (3) reconstruction of the 3D face re-
gion and creation of the full head using 3DCMM. Compared to
our previous work, which proposed a linear face-to-scalp model
transformation approach, this study represents significant ad-
vancements in creating full 3D heads. We constructed a more
robust 3D morphable model by combining datasets of Chinese
and Caucasians subjects, developed a nonlinear UV-UNet for
predicting the full head from face regions, and successfully ap-
plied these methods to achieve full 3D head creation from a
single 2D image. The main contributions of our research are as
follows:
®* We constructed powerful 3DCMMs with UV map-based
UNet via large-scale datasets of real 3D human heads to
generate 3D faces and predict 3D scalps for full heads.
® We proposed anovel and accurate stepwise 3DCMM-based
full-head creation pipeline and fully exploited image-level
information by incorporating two new and effective losses
in 3DCMM-based 3D face reconstruction: facial boundary-
aware and structure-aware losses.
® We demonstrated the superiority of our 3D comprehen-
sive morphable models with UV map-based UNet through
several qualitative and quantitative comparisons and intro-
duced some new applications for our model.

II. RELATED WORK
A. 3D Head Datasets

The availability of 3D face/head datasets plays a vital role in
constructing 3D statistical models and training deep networks
with relevant data. While several 3D human face datasets, in-
cluding Facewarehouse [9], MeIn3D [7] and FaceScape [8], ex-
ist, there is a scarcity of large-scale, precise 3D human head
datasets. The only dataset of this kind is HeadSpace [19], which
includes 1,519 subjects, primarily of Caucasian ethnicity. Ex-
isting 3D face datasets are typically created for face-related
tasks, such as face reconstruction and recognition, while 3D
head datasets have broader applications [19], such as headwear

design and craniofacial diagnosis. The dearth of large-scale 3D
head datasets poses challenges in head scan collection due to
hair occlusion. In this paper, we present our effort to construct a
comprehensive 3D head dataset on a large scale for creating 3D
statistical models and training head prediction networks.

B. 3D Morphable Models

3DMMs are statistical models designed to capture the pri-
mary components that represent variations in shape and tex-
ture within a given training dataset, forming a foundation for
tasks related to 3D face and head generation and reconstruction.
Numerous powerful 3DMMs for human faces and heads have
been developed, including BFM [20], LSFM [7], FaceScape [8],
FaceWarehouse [9], LYHM [19], and HiFi3D++ [21]. However,
few 3DMMs are constructed using large-scale datasets with a
balanced representation of both Caucasian and non-Caucasian
populations spanning different age groups, from children to the
elderly. Therefore, in this paper, we describe our more compre-
hensive and powerful 3DMM of human faces, which we cre-
ated by combining our large-scale Chinese head datasets with
an existing large-scale Caucasian head dataset [19]. For a more
extensive exploration of 3DMMs, we recommend referring to a
recent survey by Egger et al. [22].

C. 3D Face Reconstruction

With the assistance of 3DMMs, self-learning-based meth-
ods [12], [13], [15], [16], [23] have gained popularity in predict-
ing 3D face meshes from 2D face images. These methods utilize
the shape or texture coefficients of a 3DMM in an analysis-by-
synthesis scheme. Compared to supervised CNN-based meth-
ods [24], [25], [26], [27], [28], which require large-scale datasets
of 2D face images and reference 3D face shapes, the main advan-
tage of self-learning-based methods is their ability to train solely
on 2D face images, eliminating the need for 3D face shape refer-
ences. Commonly encountered image-level losses in these meth-
ods include photometric loss, perceptual loss, and landmark loss.
However, other largely unexplored image-level losses exist that
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have the potential to affect the accuracy of 3D face reconstruc-
tion, e.g., facial boundary-aware and structure-aware losses.
Hence, we comprehensively considered these image-level losses
in 3D face reconstruction. A more comprehensive review of 3D
face reconstruction can be found in a recent survey [1].

D. 3D Head Reconstruction

While previous studies primarily focused on reconstructing
the 3D face [12], [13], [16], or even a tightly cropped facial re-
gion [15], there are limited studies that directly reconstruct the
full 3D head from 2D images [14], [18]. A facial image alone
provides only facial region information, and lacks scalp infor-
mation due to hair occlusion. In these 3D weekly supervised
full-head reconstruction approaches [14], [18], the 3DMM of
human heads is used instead of the 3DMM of human faces,
where the scalp shape is often influenced by regularization loss.
Hence, in our paper, we adopted a different pipeline for creating
the full 3D head in a stepwise manner: 3D face reconstruction
using the 3DMM of human faces followed by 3D head comple-
tion using a supervised learning network.

E. 3D Head Prediction

In previous studies, 3D head prediction has been defined as
an estimation of the scalp region from the face region to gener-
ate a full head, which is the same as 3D scalp completion [2],
partial data reconstruction [19], and 3D cranium prediction [29].
Since 3D scalp regions, different from 3D face regions, cannot
be captured directly using scanners, it is significant and useful to
be able to predict the full 3D head. Some previous studies [11],
[29] computed a model-coefficients mapping matrix between
3DMMs of human faces and scalps/heads to achieve 3D scalp
prediction. It is assumed that this model mapping relationship is
linear in their studies. Some previous studies [2], [19] also used
3DMMs of human heads to fit the 3D face regions to estimate
the model coefficients, then produced the full 3D head. How-
ever, the accuracy of scalp shape prediction is susceptible to the
regularization term in this 3DMM-based fitting approach. To
address this limitation, we adopted an alternative approach. By
utilizing a large-scale dataset of paired real face and head meshes
as a training dataset of UV maps, we devised a UV-map-based
UNet (UV-UNet) architecture to achieve accurate 3D full-head
prediction.

III. FuLL 3D HEAD CREATION
A. Overview

Our pipeline for creating a full 3D head consists of two pri-
mary steps, depicted in Fig. 1: (1) 3D face reconstruction from a
single 2D image and (2) 3D head prediction based on the recon-
structed 3D face. The foundation of this pipeline is our 3DCMM,
which comprises the 3DMM for human faces used in 3D face
reconstruction and the UV-UNet utilized for 3D head prediction.
Consequently, the construction of the 3DCMM is the initial step.
Our 3DCMM is built upon a large-scale dataset of real human
heads, offering significant advantages in terms of its ability to
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Fig. 2. Ethnics and age information of the subjects in the 3D head database
for our 3DCMM construction.

facilitate accurate 3D face reconstruction and 3D scalp predic-
tion for 3D head creation. Furthermore, compared with other
model-based 3D face reconstructions [12], [13], [16], [18], a
significant difference is that our method uses two critical novel
facial boundary-aware and structure-aware losses, thereby pro-
ducing more accurate facial contours and structure consistency.

B. 3D Comprehensive Morphable Model Construction

1) Full-Head Dataset: To establish a comprehensive
3DCMM, we combined our Chinese head database (i.e.,
Adult-Heads [31] and Children-Heads [32]) with a Caucasian
head dataset (HeadSpace [19]) for a total of 3,846 subjects
(including 49.90% females and 50.10% males). Their ethnicity
and age information are shown in Fig. 2. Compared to previous
datasets [8], [9], our dataset has balanced representation of
both Chinese and Caucasian populations spanning different
age groups, from children to the elderly. Once we had created
the full combined database, we identified 51 landmarks as the
registration constraints on the head scan surface using the Face
Alignment Network (FAN) [33] (see Step @ of Fig. 3) and
registered these 3D scans into parameterized heads by apply-
ing the widely-used non-rigid iterative closest points (NICP)
algorithm [34] with 3D face [35] and head [21] templates (see
Step @ of Fig. 3), respectively. Each registered 3D facial/head
mesh has 53,215/20,052 vertices and 105,840/39,984 triangles.
The position relationship between the face and head is shown
in Fig. 4, where Region-F and Region-S indicate the facial and
scalp regions in the full head.

2) Human Faces’ 3DMM: Based on these registered facial
meshes, we use the General Procrustes Analysis (GPA) [36] to
unify their size, poses and positions, and then Principal Com-
ponent Analysis (PCA) to extract their principal components
(PCs) (see Step @ of Fig. 3). Each registered mesh geometry
is represented as a shape-vector, S=(x1, Y1, 215 ---» Tm> Ymos
zm)T € R3™, that contains the z, 1, z coordinates of its m ver-
tices. Consequently, a novel morphable face shape Sy (see Step
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O of Fig. 3) can be described and constructed with the average
shape S, the extracted PCs Py, and the facial shape represen-
tation coefficient vector avs:

n
Sy =57+ ariPs;=S;+ Pray,

i=1

ey

where n is the number of the facial shape PCs. The
probability p(ay) of coefficients ay is given by p(ay) ~
exp[-3 >0} (5£2)%), where of ; is the eigenvalues of the
shape covariance matrix.

The FaceScape dataset [8] comprises Chinese face scans
that exhibit highly precise texture details captured using a
multi-view system under controlled illumination. Furthermore,
the HeadSpace dataset [19] consists of head scans with tex-
ture information primarily from Caucasian subjects. Leverag-
ing these datasets, we utilized 399/497 available face scans
from FaceScape/HeadSpace to establish a 3DMM of facial tex-
tures, which involved employing a similar model construction
pipeline. To describe and construct a novel face texture T,
we combined the average texture 7, the PCs @ with facial
shape representation coefficient vector ¢, using the following

formulation:

Ty =T;+ Y 67iQri =Ty + Q. 2)

1=1

3) Face-to-Head UV-UNet: For any given 3D facial mesh,
we proposed a UV-UNet to predict the full head mesh through
a 2D UV map. To apply the 2D convolutional neural networks
(CNNs) to the 3D facial/head meshes, it is necessary to transform
the 3D meshes into 2D UV maps using predefined UV coordi-
nates. Several subsequent steps were performed to achieve the
full head prediction.

a) Mesh Alignment. To achieve face pose normalization, we
employed Procrustes analysis (PA) to align the face scan
to the face template. The objective of PA is to compute
a linear transformation matrix R that minimizes the total
distance between the vertices of the facial template (5 €
R™*3) and the registered facial meshes (S 1 € R™*3), as
given by:

3

2
)
F

m
i RSs; — Sy,
3[R~ .

where, RTR. = I is a constraint on the transformation ma-
trix, and || - || p denotes the Frobenius norm, which corre-
sponds to the element-wise Euclidean distance. The result-
ing aligned facial mesh is computed as S + = RS;. Simi-
larly, each corresponding head mesh S}, can be aligned to
the facial template using the same linear transformation
matrix R, yielding S, = R.Sj,.

UV Map Generation. The differences D; between the
aligned facial meshes and the facial template were com-
puted and scaled to O~1: Dy = (S — St)/Dmax +
1)/2, and then rendered into 2D UV maps (256 X 256 pix-
els) using predefined UV coordinates (see Step @ of
Fig. 3). Here, Dy,.x=25, which was confirmed as the
maximal difference between all aligned facial meshes
and the template. We also used a similar approach to

b)
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Overview of our 3DCMM-based face reconstruction procedure with self-supervised learning and head prediction using UV-UNet. Besides the above

image-level losses (including pixel-wise Lp;ze; (), perceptual identity Lpercep, boundary-aware Loy nd, facial landmark Ljqy, s, and structure-aware Ly rqct
losses), there are still two other commonly used losses: mesh skin variance 10ss Lyeq¢ and regularization term Ly.cgual-

compute the 2D head UV maps (256 x 256 pixels):
Dy, = ((Sh — Sh)/Dmax +1)/2.

¢) Network Development and Training. ResNet34 [37], [38]
was used as the backbone for constructing the UV-UNet to
predict the head UV maps from the facial UV maps (see
Step @ of Fig. 3). The training loss L(x) in supervised
learning is computed as the mean absolute difference be-
tween the predicted head UV map D"P and the ground
truth D"t

1 H W
L) = o Z Z IDP =D (@)

Here, W = H = 256. For our study, we divided the UV
map dataset into three subsets: 90% was used for training,
5% for validation, and 5% for testing purposes. To im-
plement and train our model, we employed PyTorch [39]
along with the Adam optimizer [40] and conducted ap-
proximately 500K iterations with a batch size of 16 and
an initial learning rate of le-4.

d) 3D Head Prediction and Retrieval. A bilinear interpolation
method with predefined UV coordinates was adopted to
retrieve the vertices’ positions of the 3D head mesh from
the generated 2D UV map: S, ; = S”h,i + (D}L_”“ X 2 —
1) X Dypnax, where D}'ﬁk is the interpolated value in the
predicted UV map corresponding to the ith vertex in the
head mesh (see Steps @, ® and @ of Fig. 3).

C. Model-Based 3D Face Reconstruction

1) Differentiable Renderer: Given an unconstrained 2D face
image, our goal is to train an encoder (ResNet50 [37]) to take
a 2D facial image input and decompose it into outputs of 3D
facial shape S, facial albedo 1, illumination /, and viewpoint
w, as illustrated in Fig. 5. The input image I can be recon-
structed from these four components in two steps of lighting A
and reprojection II, as: I® = TI(A(Sy,1,Ty), Sy, w).

To deal with the varying facial expressions in 2D images,
we used our 3DMM of facial textures (see (2)) to estimate
the facial albedo, and integrated the 3D face expression bases
P, (built from FaceWarehouse [9]) with our 3DCMM-identity

shape bases Py (see (1)) into a complete 3D face model, as fol-
lows: Sy = S_f + Proy + Pe.fe, where [3. is the shape coeffi-
cients for face expression bases P,. For the lighting model, since
a Lambertian surface was assumed for the face [12], [13], [18],
we approximated the scene illumination using Spherical Har-
monic (SH [41]) basis functions with the first three bands (the
parameters v € R27). For the camera model, similar to previous
studies [12], we employed a global camera model of perspec-
tive projection to project the 3D face model onto the 2D image
plane, where the camera position is determined by an estimated
camera matrix m, which can be computed from a rotation vector
v € R? and a translation vector ¢ € R>.

2) Network Objective Function: To decompose the 2D im-
ages successfully, we calculated image-level losses (see Fig. 5),
facial skin color variances Lyeqt+(2) and regularization term
Ly eguai(x) as the training losses and sought a CNN-based en-
coder to minimize them. Image-level losses consist of pixel-wise
Lpizei(x), facial landmark Ljq,qs(2), facial structure-aware
Lstruct(x), facial boundary-aware Lpoyna(2), and perceptual
identity Lye,cep(x) discrepancies between the input and ren-
dered 2D images. All our training losses L(z) are shown as
follows:

L(l‘) - wleiwel (x) + w2Lpercep(x)+
w3 Liands (.CC) + waLstruct (CC)+
wsLbound(x) + wGLtezt (il?) + w7Lregual (21?)7 (5)

where w; (1=1,2,....,7) are hyperparameters balancing the
weights of different losses. Ljc,; and L;.¢gy,4) are computed us-
ing the same formulates as the previous method [12].
Pixel-Wise Loss We utilized the accurate face parsing mask
(produced using MaskGAN [42]) to gain robustness to facial
occlusions and defined the pixel-wise loss L,,;.¢; between the
input raw image I and its rendered counterpart I as follows:

)= S PilLi-

’LEM

prcel I7,RH27 (6)

where P is the parsing mask with different values in different
regions and /N p is the sum of non-zero pixels in the parsing mask
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P. In our method, only Region-I (see Fig. 4) of the rendered
facial mesh, M, was used to produce a new 2D image.

Perceptual Identity Loss To incorporate this loss, we utilized
a pre-trained face recognition network f (FaceNet [43]) to ex-
tract perceptual features from the input image I and the rendered
image 1. The cosine distance between these features was then
computed as the perceptual identity 108S Lpercep, Which quanti-
fies their perceived similarity as:

FIFUT)
[RACSIIPRNIFACED] Py

Facial Landmark Loss A publicly available facial landmark
detector (Baidu) was used to identify 150 points as sparse
ground-truth facial landmarks for the training images. Similar
to [14], [18], we modelled the facial landmarks as either dy-
namic or static 3D landmarks and defined the facial landmark
loss Ljgnds, as follows:

Lpewez)(x) =1- @)

N
I _ 1 - _Ry2 3
lands(x) = NL Zwknqk Gk H ’ ( )
k=1

where ¢ and ¢% are the landmarks in the input image and the
corresponding vertices in the projected mesh, respectively. wy, is
the landmark weight, which is experimentally set as 20/0.8/1.0
for nose/boundary/other landmarks.

Structure-Aware Loss The widely used 2D sparse facial land-
mark loss only considers point-to-point distances, making it eas-
ily unrobust to extreme facial poses and highly sensitive to facial
occlusion. In reality, the human face has a fairly consistent struc-
ture with the facial components maintaining fairly stable relative
distances [44]. Hence, we added a face structure-aware loss to
constrain landmark positions in a global context. As a prepro-
cessing step, we defined a graph structure of a template face with
a small, opened mouth using Delaunay triangulation of sparse
landmarks. We computed the distance between the ground-truth
edges e and projected facial edges e’ as the structure-aware loss

Lstruct:
1 o8
Ls,ruc, T)= 7 w;||€q *SR 2; (9)
rae(#) = 3 D wille = f|

where N is the sum of edges in the graph structure, and w; is
the edge weight, which is experimentally set as 0.8 for the edges
with landmarks in the facial contour and 1.0 for the rest of the
edges.

Boundary-Aware Loss Image boundaries provide informa-
tion about 2D shape independently of the texture and illumi-
nation [45]. Facial boundary lines help with 2D face alignment
significantly [46], which inspired us to utilize facial boundaries
to improve 3D face reconstruction. Hence, we proposed a novel
facial boundary-aware 10ss Lyyynq as:

Np 3
1 .
Lbound(x) = N73 Z ”1 - H <Z w%ksfk) HQv (10)
=1 k=1

where Np is the number of boundary points. To compute this
loss, two steps were performed to produce the ground-truth
heatmap H and reconstructed facial boundary V:
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Facial Edge Heatmap

Sparse Landmark Set

Ground Truth Heatmap

Edge Line

Fig.6. Andillustration of the ground-truth facial boundary heatmap generation
process, where the standard deviation o is set as 7. Each row represents the pro-
cess of one specific facial boundary, including outer facial contour, outer/inner
mouth, left/right eyebrow, upper/lower eyelid, and nose bridge/base.

a) For the input image, the facial boundaries were inter-
polated from sparse facial landmarks to obtain a dense
boundary line. Then, a series of heatmaps was generated
by applying a 2D Gaussian function with a standard de-
viation of o pixels centred on the location of each point
successively. Finally, all heatmaps were fused into a single
boundary heatmap H as the input ground truth by selecting
only the maximum of each pixel with the same position in
all heatmaps (see Fig. 6).

b) For the reconstructed mesh, the facial boundaries were
predesigned using dynamic dense points Sp. These dense
points S;, are computed by interpolating at each corre-
sponding vertex S}’k and their barycentric coordinates
with the weights w”: §) = S"3_| w’*S}*  then their heat
values H (Sy,) were retrieved from the boundary heatmap
using a bilinear interpolation method based on their X and
Y values. Theoretically, the boundary heat values should
be very large and nearly 1.0.

3) Implementation Details: To train our CNNs, we collected
2D face images from multiple sources, including FFHQ [48],
AAF[49],CACD [50],300W-LP [24] and SCUT-FBP5500 [51].
We balanced the race and pose distributions and obtained ap-
proximately ~ 150k 2D face images as the training and valida-
tion dataset. The encoder needs to regress 254 parameters, in-
cluding the model identity (ary € R'%?), expression (8. € R®")
and texture (67 € R%%) coefficients, lighting (y € R?7), and view
(m € RY) parameters. The input image size is 224x 224pix-
els. We implemented our model using PyTorch [39] and Py-
Torch3D [52]. For network training, we employed the Adam
optimizer [40] with an initial learning rate of le-4. The train-
ing process consisted of approximately 500K iterations, with a
batch size of 16.

IV. EXPERIMENTAL RESULTS

A. Morphable Model Evaluation

We developed a 3DCMM that encompasses facial shapes and
textures, as illustrated in Fig. 7(a) and (b), respectively. To en-
sure consistent sizes of the registered meshes, we applied Gen-
eralized Procrustes Analysis (GPA). This approach allowed the
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Our comprehensive 3D morphable models: (a) Facial shape 3DMM, and (b) facial texture 3DMM. The figures show the mean shape M (centre) and the

first four PCs with weights of 3/-3 o; (white/black circle label), where o; represents the standard deviation of the PCs.
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3DMM generation ability evaluations. (a) Quantitative comparisons. (b) Qualitative comparisons of a Chinese subject. (c) Qualitative comparisons of a

Caucasian subject. (1) Our constructed 3DCMM. (2) BEM 2019 [47], (3) our previous 3DMFM [11], and (4) LYHM [19].

eigenvector loading distributions of the PCs to solely represent
mesh shapes, independent of sizes. In our 3DCMM, the first
100/64 PCs accounted for 98.20%/93.05% of the explained vari-
ances of the 3D facial shapes/textures in the training datasets.
This indicates that the PCs utilized in our 3D face reconstruc-
tion provided a concise representation of the training datasets.
To highlight the advantages of our model, we compared it with
BFM2019 [47], LYHM [19], and our previous 3D Morphable
Face Model (3DMFM) [11] (see Fig. 8, only the vertices within
the facial region were considered). We assessed the generaliza-
tion ability of each model using 30 Chinese [11] and 30 Cau-
casian [53] facial meshes with neutral expressions (aged 18-60
years). Employing the same model-fitting method, we obtained
the closest facial mesh and calculated the mean error. To en-
sure fairness, only the first 100 PCs were used for facial recon-
struction across all models. The mean reconstructed face errors

(ME) for our 3DCMM, 3DMFM, LYHM, and BFM2019 were
0.30 + 0.29, 0.36 &+ 0.36, 0.78 £+ 0.72, and 1.04 £ 0.91mm,
respectively, as shown in Fig. 8(a). Specifically, the qualita-
tive comparisons in Fig. 8(b) and (c) reveal significant errors
in the nose, forehead, and mouth regions for the Chinese sub-
ject in the BFM2019 and LYHM results. In conclusion, our
3DCMM outperforms other 3DMMs in terms of generation
capability.

B. Face Reconstruction Evaluation

We evaluated our 3D face reconstruction qualitatively and
quantitatively using a 2D face image dataset (CelebA [6]), and
two 3D face datasets (FaceWareHouse [9], FaceScape [8]).
We then compared our results with publicly available meth-
ods, (i.e., PRNet [25], 2DASL [54], 3DDFA-V2 [26],
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Qualitative comparisons of 3D face reconstruction and head creation on face images from CelebA [6] and our head image datasets: PRNet [25], 2DASL [54],

MGCNet [16], Deep3DFace [12], 3DDFA-V2 [26], 3DDFA-V3 [55], HRN [56], ours (face), RingNet [14], DECA [18], and ours (head). Note that our method
can regress facial shape with higher facial boundary and structure consistency and complete the accurate 3D scalp region to produce full head geometry, which is

robust to facial occlusion and extreme poses.

Deep3DFace [12], MGCNet [16], MoFa [15], Inverse-
FaceNet [58], Tewari et al. [57], 3DDFA-V3 [55], and
HRN [56]). In the qualitative evaluation, we followed the pre-
vious protocol [14], [30], [59] using PA, with a set of corre-
sponding landmarks to align (rotate, translate, and scale) the
reconstructed face to the ground-truth face initially, then, per-
form a scan-to-mesh distance-based rigid alignment on them,
and finally compute the mean per-vertex distance (ME) as the
evaluation metric.

Qualitative Evaluation In the qualitative evaluation of facial
geometry, we used face images from CelebA [6] to reconstruct
the 3D facial shape and compared our results with two state-of-
the-art supervised-learning-based face reconstruction methods,
(PRNet [25] and 3DDFA-V2 [26]), and five state-of-the-art self-
learning-based face reconstruction methods, (Deep3DFace [12],
MGCNet [16], 2DASL [54], 3DDFA-V3 [55], and HRN [56]),
as shown in Fig. 9. From this, itis clear that, compared with other
methods, our method achieves better facial contour alignment
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TABLE I
QUANTITATIVE COMPARISONS OF 3D FACE RECONSTRUCTION ON 180 MESHES OF NINE SUBJECTS WITH 20 EXPRESSIONS FROM FACEWAREHOUSE [9]:ME +
STANDARD DEVIATION (MM)

Region Tewari et al. [57] MoFa [15] InverseFaceNet [58] MGCNet [16] Deep3DFace [12] Ours

Region-T 1.84+0.38 2.1940.54 2.11+0.46 2.18+0.35 1.7440.29 1.60+0.29

Region-I - - - 2.23+0.39 1.784+0.32 1.63+0.29

Region-F - - - 2.474+0.36 2.184+0.47 2.124+0.31
TABLE II

QUANTITATIVE COMPARISONS OF 3D FACE RECONSTRUCTION ON 900 MESHES OF NINE SUBJECTS WITH 20 EXPRESSIONS AND FIVE FACIAL POSES FROM
FACESCAPE [8]: ME + STANDARD DEVIATION (MM)

Region 2DASL [54] PRNet [25] 3DDFA-V2 [26] Deep3DFace [12] Ours
Region-T 2.78+0.61 2.68+0.52 2.95+0.56 2.11£0.50 2.12+0.45
Region-I 2.95+0.62 2.91+0.55 2.98+0.58 2.21+0.50 2.13+0.46
Region-F 3.39+0.62 3.32+0.54 3.52+0.65 2.71+0.53 2.67+0.50
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Fig. 10.  Ablation experiment. (a) Quantitative results. (b) Qualitative effect of L4, (guaranteed to construct more consistent facial contours for face images).

(c) Qualitative effect of L sty (improved generation of stable global facial structures, such as landmarks in the mouth, lower/upper inner lips, and facial contours).

and constructs a more accurate overall face shape, even for face
images with extreme poses or facial occlusions.

Quantitative Evaluation For the quantitative evaluation of fa-
cial geometry, we used 180 facial meshes (nine identities, 20
expressions each) selected from the FaceWareHouse dataset [9]
created in a previous study [57]. Three face regions were evalu-
ated as shown in Fig. 4: the tightly cropped face region (Region-
T, same as in [57]), inner facial region (Region-I) with more
cheek area (same as in [12]) and full face (Region-F) with neck
and ears. We compared our results with five model-based meth-
ods: Deep3DFace [12], MoFa [15], MGCNet [16], Tewari et
al. [57], and InverseFaceNet [58]. The MEs of face reconstruc-
tion methods are shown in Table I; our method is a significant
improvement upon the previous ones.

To evaluate the face pose influences, we compared our re-
sults with two supervised-learning-based methods: PRNet [25]
and 3DDFA-V2 [26], and two self-learning-based methods:
Deep3DFace [12] and 2DASL [54], as shown in Table II. We

used 900 facial meshes (nine identities, 20 expressions each,
five different facial poses each) from the FaceScape dataset [8].
Table II shows that the mean face reconstruction error of our
method is slightly greater than that of Deep3DFace [12] for
Region-T, but less than that of other methods for Region-I and
Region-F, indicating that our method made notable improvement
on the overall reconstruction of facial shape.

Ablation Study To showcase the effectiveness of our pro-
posed novel losses, we performed an ablation study, which in-
volved training our network with and without the boundary-
aware/structure-aware loss components. In this evaluation, we
utilized 180 facial meshes (nine identities, 20 expressions) se-
lected from the FaceWareHouse dataset [9]. The quantitative
evaluation results are shown in Fig. 10(a). The reconstruction
errors for Region-I for the training networks with Lpgynad &
Lgiruct, without Lpgyng, and without Ly are 1.63 £ 0.29,
1.98 + 0.37, and 1.71 £ 0.28, respectively. These results indi-
cate that the inclusion of boundary-aware and structure-aware
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Head prediction method comparisons. (a) Quantitative comparisons. (b) Qualitative comparisons of a Chinese subject. (¢) Qualitative comparisons of a

Caucasian subject. (1) 3DMM-based conversion method [11], (2) 3DMM-based fitting method [2] and (3) Our UV-UNet-based method.

losses improves reconstruction accuracy. Furthermore, in the
qualitative comparisons in Fig. 10(b), the boundary-aware loss
Lyouna generates more consistent ground-truth facial boundaries
for overall facial geometry. Additionally, in Fig. 10(c), the quali-
tative comparisons reveal that structure-aware loss enhances the
relative positions of facial landmarks, such as the closed eyes
and mouth.

C. Head Prediction Evaluation

We first compared our 3D head creation from 3D facial regions
with our previous 3DMM-based transformation method [11] and
3DMM-based fitting method [2] qualitatively and quantitatively,
and then compared our 3D head creation from a single image
with the methods (RingNet [14], and DECA [18]) qualitatively
and quantitatively on a 2D face image dataset (CelebA [6]) and
our established 3D head datasets.

3D Scalp Prediction We compared our UV-UNet-based head
prediction results from 3D facial regions with our previous
3DMM-based transformation method [11] and 3DMM-based
fitting method [2] using 30 Chinese identities [11] and 30 Cau-
casian identities from HeadSpace [19], as shown in Fig. 11.
The mean scalp prediction errors of our UV-UNet, 3DMM-
based transformation, and 3DMM-based fitting methods are
1.87+£0.82, 3.58£1.88, and 3.974+ 1.61mm, respectively (see
Fig. 11(a)). Hence, our method could predict scalp regions more
accurately from 3D facial regions for 3D head creation.

3D Head Reconstruction In the qualitative evaluation of head
geometry, we used the 2D face images from CelebA [6] to pre-
dict full 3D head shape and compared our results with two
state-of-the-art self-supervised-learning-based head reconstruc-
tion methods (RingNet [14] and DECA [18]), as shown in Fig. 9.
Compared with other methods, our method achieved better facial
contour consistency. Furthermore, from the first row, it is clearly
visible that our method can model a more accurate mouth clo-
sure, compared with DECA [18]. For the quantitative evaluation
of full-head geometry, especially the scalp region, we collected
an additional 75 full heads from 25 identities with three different
head poses, ranging from frontal to profile view. We furthermore

TABLE III
QUANTITATIVE COMPARISONS OF 3D HEAD CREATION ON 75 MESHES OF 25
SUBJECTS WITH THREE DIFFERENT HEAD POSES: ME + STANDARD
DEVIATION (MM)

Region RingNet [14] DECA [18] Ours
Region-I 3.09+2.24 1.97+1.60 2.02+1.46
Region-F 3.461+2.63 2.334+2.00 2.25+1.78
Region-S 5.00+4.06 4.4943.87 4.244-3.89

compared our results from a single image with RingNet [14] and
DECA [18] using the same evaluation metrics [30], as shown in
Table III. We evaluated three head regions: the inner facial re-
gion (Region-I), the full facial region (Region-F), and the scalp
region (Region-S), as shown in Fig. 4. Table III shows that our
method has a similar rate of errors as DECA [18] in Region-I,
but performs favorably against both [18] and [14] in Region-F
and -S.

D. Runtime Analysis

The runtime performance of our method was evaluated on
a computer with an Nvidia GeForce RTX™ 3090 GPU with
24 GB memory. The analysis included the time taken for 2D face
image reading and preprocessing (including facial landmark de-
tection for alignment and cropping utilizing FAN [33]), 3D face
estimation from 2D face images (using ResNet50 [37]), and 3D
head prediction from 3D face regions (using our UV-UNet). For
2D face images (size: 256 pixels x 256 pixels), the image read-
ing and preprocessing time, including facial landmark detection,
is approximately 0.321 seconds. This time, though, is influenced
by the size of input image. The time required for 3D face esti-
mation from a 2D face image (size: 224pixels x 224pixels) is
approximately 0.007 seconds. The 3D head prediction from face
regions takes around 0.205 seconds. This time includes the steps
of projecting the 3D face (with 53,215 points) into a 2D UV po-
sition map (size: 256 pixels x 256 pixels), predicting the 2D
head UV map, and retrieving the 3D head mesh (with 56,804
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Diverse application scenarios for our 3DCMM, encompassing headset and helmet customization, and avatar creation. When provided with a headwear

product template meticulously crafted by professional designers, our system seamlessly transfers the product from the template head to the accurately predicted

specific head.

points) from the 2D UV map. In total, the computation time of
our method was approximately 0.526 seconds. These runtime
measurements offer a performance overview of our method on
the specified hardware setup and the actual runtime may vary
depending on hardware specifications and data complexity.

E. Application Scenarios

Compared to existing 3DMMs that primarily focus on the
frontal face region, including the forehead [7], [8], [9], [47],
the scalp region is often overlooked. Fortunately, our developed
UV-UNet-based method demonstrates the capability to predict
the full head based on 3D faces generated or synthesized by
other 3DMMs [7], [8], [20], [47] (see Fig. 12). This expansion
of functionality effectively broadens the applications of previ-
ous studies and holds great promise for future tasks related to
3D face/head reconstruction and prediction. This represents a
key advantage of our UV-UNet-based head prediction method,
even when compared to our previous model-based transforma-
tion approach [11]. Notably, the accuracy of the created full-head
mesh is influenced by the quality of the reconstructed face from

images or scans (see Fig. 12(d)). An accurate full-head mesh,
encompassing not only the face but also the scalp region, brings
about significant advancements in various applications beyond
face reconstruction and manipulation. These applications in-
clude the creation of realistic avatars [2], [60], the customization
of headwear products [4], and the facilitation of headwear virtual
try-ons [3], as depicted in Fig. 13. The inclusion of the scalp re-
gion in the full-head representation holds particular importance
for ergonomic headwear design, as it directly impacts the shape
design of the contact area between the headwear and the scalp.
By incorporating the scalp region, precise measurements and
simulations can be conducted, resulting in enhanced headwear
comfort, fit, and overall design.

V. LIMITATIONS

In this study, there were still limitations that could affect the
efficiency of our 3D face reconstruction and 3D head prediction.
The first limitation is the impact of hair contamination on 3D
head capture and modelling. In our Chinese head database, par-
ticipants were required to wear a tight, custom-designed latex
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cap during scanning to mitigate surface distortions caused by
hair [31], [32]. However, despite these precautions, compressed
hair can still affect the scanned scalp regions, particularly in
individuals with longer hair. This is a recognized issue, with
previous studies [61] reporting average hair thickness offsets of
3.6 mm for males and 5.8 mm for females in Australian adults,
even when participants’ hair was compressed by wearing a wig
cap. To address this concern in future research, we intend to ex-
plore the utilization of 3D head data obtained through Computed
Tomography (CT) imaging [62]. CT imaging offers a more de-
tailed representation of internal structures, enabling the removal
of hair and cap effects from 3D head meshes. By adopting this
approach, we aim to enhance the accuracy and reliability of our
methods by eliminating biases introduced by hair and caps dur-
ing the scanning process. The second limitation is the impact
of extreme face poses or expressions on 3D face reconstruction
from 2D images. The detected facial landmarks can only cover
facial contours, eyes, noses, and mouths. Thus, ensuring accurate
reconstruction of the forehead (see Region-I in Fig. 4), which
is greatly related to head completion, is challenging. Inaccura-
cies in the reconstructed face (especially the forehead regions),
particularly under extreme poses or expressions, can propagate
to the final 3D head model and result in inaccuracies in the
predicted scalp regions (see Fig. 12(a)). During extreme poses,
the limited visibility of certain facial regions and the occlusion
of landmarks by other facial components can further contribute
to inaccuracies in head reconstruction. Under extreme expres-
sions, facial geometry can undergo significant changes, leading
to challenges in accurately capturing the shape and details of
the head. In the future, we plan to collect more face images with
a variety of extreme poses and expressions as a supplementary
training dataset to improve the robustness and accuracy of our
proposed method.

VI. CONCLUSION

We constructed comprehensive 3D morphable models of
human heads by leveraging large-scale real 3D human head
data, which included incorporating 3D morphable models of
human faces and our UV-UNet-based head prediction model.
Additionally, we developed a 3DCMM-based 3D face recon-
struction method using self-supervised learning techniques.
We maximized the utilization of image-level information
and introduced two innovative losses: facial boundary-aware
and structure-aware losses. The incorporation of these losses
improved the consistency of facial boundaries and structures.
Through model comparison experiments, we have demonstrated
that our model surpasses existing state-of-the-art 3DMMs in
terms of generalization ability and accuracy. Furthermore, thor-
ough evaluation experiments have shown that our head creation
method achieves outstanding results in 3D face reconstruction
and scalp prediction.
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