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Abstract—This supplementary document provides more details
of our method, including algorithm details, searched network
architectures and experimental results together with the ground
truth images, which could not be fit in the main paper.

I. ALGORITHMIC DETAILS OF JOINT GROUPING

We use NAS to determine the architecture of Accurate-
PGNet. To present the joint grouping clearer, we provide
the algorithmic details of architecture search and parameter
optimization of Accurate-PGNet in Algorithm Here, we
define grouping_epoch_start and max_epoch as the epoch
when we start the part grouping and the maximum epoch
for training. Besides the architecture parameters in searchable
connections C, we define the set of network parameters as W.
And we denote grouping_epoch as the pruning epoch num-
ber. We let grouping_epoch_start < grouping_epoch <
mazx_epoch,t € {0,....,T — 1}.

II. IMPLEMENTATION DETAILS

In our work, all backbone networks used in our experiments
are pretrained on ImageNet [1]]. We set the total training epoch
as 270, and the architecture searching is processed in the
first 75 epochs. And as we described in the paper, we search
the architecture of PGB in each stage progressively. After 30
epochs from the search beginning, we start to do pruning,
and every 15 epochs, the architecture of PGB in a certain
stage will be pruned. It means the prune_epoch is set as
{30, 45, 60, 75}. During searching and training, the batch
size is set to 12. For network weight parameters w, we use
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Algorithm 1: Network Optimization of Accurate-
PGNet
epoch = 0;
while epoch < grouping_epoch_start do
Update W and C to minimize Ly;
epoch + +;

end

while epoch < grouping_epoch do

for t = 0 to T-1 do

foreach G!'! do
S: Select the main groups Gt for Gt 1,
M: Select the normal groups G for GJ;i;

end

foreach j ¢ G!™' VG! € {G},...,GY} do

‘ T: Select the inactive groups G, j in G};
end
G: Merge Hi’,toﬂ, H']i’foﬂ and H?;H;

end
Update the weights in C, W to minimize L;
epoch + +;

end
Prune the connections with the zero hidden feature
map in-between;
while epoch < max_epoch do
Update the weights in W to minimize Lp;

epoch + +;
end

the Adam optimizer [2] to update them with le-4 as learning
rate. For optimizing architecture parameters C, we also use
Adam optimizer with a fixed learning rate of 3e-3. After the
searching, we use a new Adam optimizer to update w with
le-4 as initial learning rate, and it is decay at 90*", 120" and
150" epochs with 0.25 factor.

We conduct architecture search seperately on the MPII [J3]
and MS-COCO [4] datasets. During the network architecture
search, we follow [5]] to randomly select half of the images in
train datasets belonging to COCO or MPII sets to update the
architecture parameters and the other half is used to update the
weight parameters, respectively. The searched architectures are
illustrated in Fig. [1]



IEEE TRANSACTIONS ON MULTIMEDIA 2

Lett Elbow (5

gt b 7
cnwis (s
Right Writst |8~

Lo i

Right Hip [11

Lettknee 12

— e
@ (b) (a) Fully-connected (b) PBN
Fig. 1. The connections between groups at adjacent stages. We train Accurate- - ——
PGNet on (a) MPII, and (b) COCO datasets. —- 4 '\\
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Fig. 3. The architectures of (a) fully-connected, (b) PBN [§], (c) PNFS-8 [7]),
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Fig. 2. The connections between groups at adjacent stages. Here, the (a)  (d) PNFS-3 [7], (¢) DLCM [8], and (f) Accurate-PGNet with 2 stages.
pyramid, (b) inverse pyramid, (c) bottleneck, and (d) spindle architectures are
used to initialize the architecture search.

We also provide more visual results of our method in Fig. [3]

III. SUPPLEMENTARY DESCRIPTION OF EXPERIMENTS to validate the effectiveness of our approach.

a) Sensitivity to Initial Architectures: In Table III of the
main paper, we compare the HPE performances of different ) . o
initial network architectures. For a fair comparison, we set the [} - Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
" A . A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
number of stages to 3 for different initial architectures. At each Vis. Pattern Recognit., 2009, pp. 248-255.
stage, the minimum and maximum group numbers are set to 2 [2] D.P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”

« » . in Proc. Int. Conf. Learn. Representations, 2015, pp. 1-15.
and 8. In the column Groups » We list the number of groups [3] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2D human pose
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(a) Ground Truth (b) HRNet (c) DARK (d) TransPose (e) Accurate-PGNet

Fig. 4. The part recognition results of HRNet-based methods on MPII and COCO datasets, respectively. Larger dots are the joints with problematic locations.
For a clear visualization, we only provide the predicted joints on a person in each image.
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Fig. 5. The part recognition results of our method on MPII and COCO datasets.
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