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Accurate-PGNet: Learning to Assemble Perceptual
Body Parts for Accurate Human Skeleton
Establishment

Renjie Zhang ', Di Lin
C. L. Philip Chen

Abstract—The human skeleton establishment aims to provide
accurate localization information of the human body from RGB
images and establish a complete human skeleton for many
applications, such as action recognition, video surveillance, and
human-computer interaction. Considering the inherent human
body structure, many recent methods group the relevant body
parts and utilize the deep convolutional network to learn the visual
context from the part groups. However, the grouping approaches
used in these methods heavily rely on prior knowledge of the human
body shape but lose important relationships between parts. In
this paper, we introduce the Accurate Part Grouping Network
(Accurate-PGNet), a novel network for hierarchically grouping
body parts in a data-driven manner. In contrast to the previous
methods, we use neural architecture search (NAS) to optimize
the architecture of Accurate-PGNet and properly group the body
parts. The part grouping respects the diverse visual patterns of
parts, producing groups containing different body parts. From
each group, we learn the visual feature map. It helps to capture
the correlation between parts and predict their locations. The
feature maps of the part groups are merged hierarchically to
capture the higher-order context of parts in larger groups. We
extensively evaluated our method on the challenging benchmarks,
demonstrating that Accurate-PGNet effectively helps to achieve
state-of-the-art results.
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I. INTRODUCTION

UMAN skeleton establishment is a long-standing problem
H in multimedia and vision. It requires the localization and
classification of human body parts, then builds a human skele-
ton by connecting them. Many applications (e.g., autonomous
driving, video surveillance, human-computer interaction) ben-
efit from such tasks, which provide detailed information about
the human body. As a critical task, the accuracy and robust-
ness of human skeleton establishment methods must be guar-
anteed. However, in real-world scenarios, we face variations of
occlusion, truncation, scales, and human appearances, which
may cause severe performance deterioration. To this end, accu-
rately extracting human body part features from images is crucial
to developing the human skeleton establishment and its rele-
vant tasks. Thanks to the deep convolutional networks (DCNs)
that learn discriminative features from the image data, recent
deep-learning-based approaches [2], [3], [4], [5], [6], [7] can
directly learn the visual features for the recognition of all parts
of one person. However, these methods ignored the inherent
knowledge of human body structure, only capturing the global
visual features of the overall human body. Intuitively, the parts
of an individual form a graph, where we denote a part as a node.
Different groups of the parts capture specific spatial articulation
and semantic correlation. Thus, state-of-the-art methods [1], [8],
[9], [10] proposed to assemble single body parts into different
part groups. From each group, DCN learns the spatial and se-
mantic dependency between parts to enhance the visual features
of parts.

Previous methods mainly adopt two different dependency
types (connections) between parts, regarded as the edges in
the graphical structure. The physical connection is illustrated
in Fig. 1(a). It is based on a basic human skeleton and has
been broadly used by many human pose estimation (HPE) meth-
ods [2], [11], [12], [13], [14] for part assembling. A couple of
parts are assembled with a physical connection in-between (see
the red edges at the bottom of Fig. 1(a)). A group of parts is re-
garded as a sub-graph of the entire graph. Note that the physical
connections are deterministic, which means the long-range parts
(see the red dots at the top of Fig. 1(a)) have to be connected via
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Fig. 1. The illustration of different connections and examples of skeleton es-

tablishment. The body parts (the gray dots) are naturally connected by (a) the
physical connections (the red edges). The pictorial and mutual-correlation mod-
els rely on the intuition of the human body and employ (b) the latent connections
(the multi-branch arrow in green) to yield the part group. We learn (c) the au-
tomatic connections (the multi-branch arrow in blue) for part grouping. (d) and
(e) are the establishment results of PBN [1] and ours, respectively. Larger dots
are the parts with problematic locations.

other parts, forming an overlarge group (see the dash-line region)
that captures a less focused correlation of parts. This brings in
much irrelevant information about correlation, which inevitably
deteriorates the accuracy of the establishment. To overcome this
problem, more recent methods [1], [9], [12], [15], [16], [17],
[18] constructed the latent connections of parts. In contrast to
the physical connection that normally connects a pair of parts,
the latent connection connects two or more groups' (see the
green dash-line arrow in Fig. 1(b)). The latent connections al-
low the long-range and highly correlated parts to be assembled
into a group (see the dash-line region at the top of Fig. 1(b))
without requiring extra parts for connection. The part can join
more groups in various ranges, achieving richer information
from other parts for feature enhancement. The pictorial mod-
els [10], [12], [15], [18] and the mutual-correlation models [1],
[17] established latent connections for groups. However, these
models are straightforwardly based on the intuition of the hu-
man body (e.g., the adjacency of parts and the symmetric shape
of the body) or simple clustering according to spatial informa-
tion. They may miss the underlying connections essential for
learning the higher-order context of parts. Moreover, the most
effective part of the hierarchical structure may have yet to be
found among various potential grouping patterns. For example,
in Fig. 1(d), the occluded left knee and left ankle were detected
wrongly by PBN [1], which utilized physical and latent connec-
tion. Inspired by the skeleton of the right leg, PBN [1] considered
that the human in the image was on one knee, causing its mistake
of skeleton establishment.

'We refer to a single part as a group, reducing the redundant differentiation
of the part and the group.
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In response to these challenges, we propose a novel approach
that treats the parts as perceptual components of the human
body. These parts can be automatically combined by establish-
ing group connections, which form larger groups. The novelty
of our approach lies in its goal of recognizing parts accurately
without relying on human experience or other prior knowledge.
This approach has the potential to significantly improve the ac-
curacy of human pose estimation.

Specifically, we propose an Accurate Part Grouping Net-
work (Accurate-PGNet) to learn the connections between groups
for providing accurate human skeleton information. Accurate-
PGNet learns feature maps of groups. We also model the part
grouping as the merging of feature maps. As illustrated in
Fig. 2(a), we merge the feature maps at several stages, yield-
ing the feature maps of new groups. In Fig. 2(b), we illustrate
a single stage of feature merging. At each stage, we use Group
Recognition Blocks (GRB) to predict the heat map for the visual
feature map, computing specific feature maps with part group
information for each group. The heat map indicates the locations
of the parts in the same group. Next, we input the specific feature
maps of different groups into a searchable Part Grouping Block
(PGB) between the adjacent groups of feature maps. In PGB, we
merge the feature maps using network connections. The feature
merging uses a novel neural architecture search (NAS) strat-
egy to determine the network connections between the specific
and visual feature maps. Furthermore, the merging result can be
regarded as feedback, which guides the optimization of the con-
nection weights. We prune the unnecessary connections based
on the optimized connection weight, yielding the optimized net-
work architecture. Note that the architecture search of the PGB
is guided by the task of recognizing the separate joints and by
the searched result of the NAS strategy. It helps to optimize the
network architecture better, allowing the features to be sensitive
to the natural property of the part groups. The searched architec-
ture captures the crucial effects of single parts and high-order
semantic relationships, forming an effective hierarchical part
grouping pattern. As shown in Fig. 1(e), without the solid mis-
leading of traditional human structure knowledge, our method
extracts contexts of human parts more freely, providing more
accurate establishment results.

Our work makes the following three main contributions:

e We advocate using automatic connections of perceptual

body parts without prior knowledge of the human body.
We propose a framework that models the part grouping
as the merging of visual feature maps and automatically
determines the merging patterns, providing a richer context
of parts for human skeleton establishment.

e We propose a novel NAS strategy by leveraging the in-
termediate result of part grouping to optimize the weights
of network connections in every searching epoch. Consid-
ering leveraging the specific visual information of various
human body parts to strengthen the learning of higher-level
human structures, we consider the part grouping progres-
sive and assemble the parts by combining the feature maps.
Also, we use the searched structure in the previous epoch
to initialize the next epoch, guiding the whole architecture
search.
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Fig. 2.

The illustration of Accurate-PGNet. We input the image of the human pose into the backbone CNN, producing the feature maps for different body parts.

Accurate-PGNet uses several stages to merge the feature maps. It computes the heat map for localizing the parts in the groups, as illustrated in (a), it merges the
body parts at several stages. (b) From the ¢ ~ (¢ + 1)th stage, the Group Recognition Blocks (GRBs) take input as the visual feature maps and yield the heat map of
the parts in different groups. Each GRB also computes the specific feature map for a group. The Part Grouping Block (PGB) is equipped with NAS. It determines
the network connections for merging the specific feature maps and forming the visual feature maps of the new groups.

e Extensive experiments are conducted based on the
MPII [19] and COCO [20] datasets. Our proposed NAS
framework, Accurate-PGNet, achieves state-of-the-art ac-
curacy on these two public datasets. Our searched net-
work component can help achieve higher accuracy than
most NAS-based networks. Compared with most tradi-
tional methods, Accurate-PGNet costs less computation
resources with competitive performance. These verify that
our proposed framework can obtain search results that con-
tain the effective potential human skeleton knowledge.

II. RELATED WORK

A. CNN-Based Human Skeleton Establishment

With the significant development of DCNs, many human
skeleton establishment methods [2], [3], [4], [11] used DCNs
to learn the visual features of parts and estimated the part loca-
tions. Typically, they included a backbone to capture high-level
representations and a hand-crafted detection head to detect part
locations. Xiao et al. [11] used the ResNet [21] as the back-
bone to extract global visual features and employed deconvo-
lutional operations to obtain part locations. Sun et al. [3] de-
signed multi-resolution fusion sub-networks as the backbone
to exchange visual information between multiple resolutions.
In the feature extraction of these CNN-based methods, multi-
ple resolutions of convolutional feature maps were combined
to model the relationships between parts from the perspective

of global image space. The shared feature maps extracted by
the backbone were used to localize all body parts. However, the
shared feature maps obtained by traditional CNN-based meth-
ods may need to be more effective for capturing different parts’
specific appearances and locations. In our work, we introduce a
framework that leverages a hierarchical network to learn specific
features for parts. With the shared representations learnt by the
backbone and the part group representations by the hierarchical
network, our framework simultaneously learns the part features
globally and locally.

B. Body Part Grouping for Human Skeleton Establishment

The latest methods group the body parts and learn the visual
context of body parts. The visual context enriches the part fea-
tures. Tian et al. [14] proposed the articulation tree to represent
all body parts. The tree structure connected the parts, forming
the visual context. Park and Zhu [22] employed the annotations
of bounding boxes to divide the body parts into various groups.
According to the degree of freedom from the kinematics of hu-
man pose, Nie et al. [13] used different layers to group the parts
with diverse appearances. Yang and Ramanan [23] used the rel-
ative part locations to indicate co-occurrence between parts and
formed the groups. Tang and Wu [1] employed the normalized
mutual information between each pair of body parts to measure
their correlations. With the mutual information, they resorted
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to spectral clustering to group body parts. Qiu et al. [17] con-
structed dynamic graphs to tolerate the variations of human pose
when grouping body parts. However, the above methods heavily
rely on prescribed strategies for grouping body parts. They may
miss the critical part groups, thus achieving sub-optimal perfor-
mance. In contrast, we employ NAS to optimize the network ar-
chitecture, merging the visual features of body parts to form the
groups. The accurate recognition of body parts drives our group-
ing. We hierarchically merge the parts without requiring extra
annotations or other prior knowledge. It captures higher-order
relationships between the body parts.

C. Neural Architecture Search

NAS has been broadly used to learn network architecture
for various visual recognition tasks. Some NAS methods de-
pended on reinforcement learning [24], [25], [26] and evolu-
tionary algorithms [27], [28] to optimize network architectures.
Recently, Liu et al. [29] proposed the gradient-based method
for NAS at lower computation cost. The current works [30],
[31], [32] have demonstrated NAS’s effectiveness in merging
feature maps for feature augmentation. There have been HPE
methods that borrow the success of NAS and achieve signifi-
cant progress in HPE. Yang et al. [33] utilized NAS to search
the cell-based neural fabrics to connect body parts that belong to
already-determined groups. Bao et al. [34] searched the architec-
ture of pose encoder to exchange visual context between various
scales of parts, whose features were augmented by multi-scale
information. Zhang et al. [35] restricted the search space of the
network architecture for computing efficient backbone network
for HPE. Gong et al. [36] used parallel branches to connect the
feature maps of parts in various scales. In gradient-based NAS
methods, the final step is network pruning. Early NAS pruning
method [37] tried to learn the weights and connections simulta-
neously. However, Liu et al. [38] proved that the learnt weights
are insignificant in the following learning process. Then, Mei
et al. [39] proposed a dynamic network shrinkage method to
cut down network architecture by removing those “dead” NAS
blocks. However, these methods employed a general NAS strat-
egy without considering the special structure knowledge of hu-
man body. In this paper, we propose a NAS scheme that respects
the diverse patterns of the part groups for merging the feature
maps. This approach dynamically prunes inactive connections
between parts based on the architecture parameters of candidate
operations and important factors. By doing so, we create more
opportunities for discovering potential part groups that contain
valuable information for human skeleton establishment. More-
over, we merge highly correlated body parts to produce more
consistent representations of the part groups. This research has
the potential to inspire new approaches in the fields of human
pose estimation.

III. OVERVIEW

This paper proposes a novel framework called Accurate-
PGNet to deal with the perceptual part ensemble issue for human
skeleton establishment. As illustrated in Fig. 2, Accurate-PGNet
learns the context information of the part groups via Group
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Recognition block (GRB). The context information enhances
the part features. Accurate-PGNet starts from the feature maps
of the independent parts. It hierarchically merges the feature
maps corresponding to different part groups at multiple stages.
This work introduces the NAS-based block called Part Grouping
Block (PGB) for feature merging between two adjacent stages.
We regard the activation of network connections in PGB as the
feature merging and the part grouping. In the PGB, we propose
anovel NAS strategy called Part Grouping to activate the con-
nections associated with part-specific feature maps. The hierar-
chical framework learns the local and global semantic correla-
tions between parts in this fashion. Fig. 3 illustrates the training
process of the PGB between two adjacent stages. The training is
divided into two phases: searching and fine-tuning. In the search-
ing, we learn the network weights and group the feature maps
of part groups iteratively. The part grouping has been updated,
along with the connection weights. The Part Grouping merges
part-specific feature maps to achieve this goal. In this strategy,
we initialize the activation status with no connections activated.
With updated connection weights, we employ 4 operations to de-
termine useful groups, activate corresponding connections, and
compute each group’s new specific feature maps. Following tra-
ditional NAS methods, we set a convergence threshold for our
optimization to indicate the end of searching. If the threshold
is unmet, we continue updating the network connections with
the newly obtained activation way and repeatedly employ the
Part Grouping. Otherwise, we end the search and prune inactive
connections. In the fine-tuning, we fix the pruned network archi-
tecture and only optimize the network weights. Finally, the se-
mantic contexts of different levels are extracted via the learning
of a fixed grouping network, bringing richer visual information
about the human body.

IV. AUTOMATIC PART GROUPING NETWORK

In this section, we first elaborate on the overall architecture of
Accurate-PGNet. Then, we give more details about the proposed
GRB and PGB. Further, we describe the Part Grouping. Finally,
we present the optimization details of our framework.

A. Network Architecture

We illustrate Accurate-PGNet in Fig. 2. We employ the
backbone DCN to extract a set of visual feature maps, i.e.,
FO = {FJ e RAXW>C|5 =1 ... J}, where FY is the feature
map of the jth body parts. H x W and C' indicate the resolution
and the number of channels of the feature map. J is the total
number of body parts. Accurate-PGNet learns the semantic and
spatial context from the groups of body parts to enhance the
features of the individual parts. Accurate-PGNet consists of T’
stages of part grouping. At each stage, we rely on the visual
feature map of each part group, using GRB to predict the part
locations. Based on the visual feature map and part locations,
GRB produces the specific feature map of each group. Next, we
use PGB to merge the specific feature maps of different part
groups. PGB produces the visual feature maps to represent the
groups at the next stage.
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Fig. 3. Illustration of the training of the PGB between the ¢th and (¢ 4 1)th stages. In the searching phase, we use Part Grouping to merge feature maps. Given

connections weights, It use (a) the grouping initialization to initialize the part feature maps’ grouping. And it adopts (b) the main group selection, (c) the normal
group merging and (d) the inactive group activation to progressively activate the connections. The hidden feature maps associated with activated connections are
merged to compute (e) the visual feature maps of the new groups. If the searching continue, the obtained visual feature maps will be used to optimize the connection
weights, which can be used in the next iteration of grouping. Otherwise, we prune all inactive connections to form a fixed architecture for the fine-tuning of the
Accurate-PGNet. Here, the yellow box represent the Part Grouping. The multi-branch arrow represents the feature merging. The pink/black/transparent arrow

indicates the activating/activated/inactive connection.

There are N groups® at the tth stage. We let G!, €
{GY,...,G%} contain the indices of the human body parts in
the mth group. The visual feature maps in the set F* = {F! &
RE>*WxClp = 1,..., N} represent all of the N groups. We
feed the visual feature maps into GRB to localize the parts in
each group. Given the specific feature map F! , GRB com-
putes the heat maps P!, € R¥*WxIGLl Here, P!, is a com-
bination of heat maps, and each heat map indicates the loca-
tion of one part in the part group G!,. The group-truth part
locations supervise these heat maps. Then we use the heat map
P! and visual feature map F! to compute the specific feature
map S!  which contains the more specific part visual context
for each group. For all groups, GRB produces the specific fea-
ture maps in set St = {Sf € RT*W*C|;m =1 ... N}. More-
over, we input the set of specific feature maps S’ into PGB,
which merges the specific feature maps and yields the visual
feature maps F' ! = {FtH ¢ REXWxC|py = 1,... N} atthe
(t + 1)th stage. The body parts in the group G4+ are determined
by architecture search of PGB, which learns the weighted con-
nections CH'1 = {cL!*1 € Rjm,0=1,...,N} between the
specific feature maps in S* and the visual feature maps in Ft+1,
They are computed based on activation, deactivation, and im-
pact weights (af;/T1, dLIF1 iLEE1). Between the feature maps
St and F{*1, a high connection weight indicates that the group
G!, is likely merged into the new group G:tl. We use Part
Grouping to activate/deactivate the connections C***'! in PGB.
Eventually, after removing inactive connections, our framework
constructs an effective part grouping pattern, and the PGB of the
last stage outputs the visual feature map of all parts.

2To simplify the notations, we use unified group number at different stages.

Visual
Feature
Map

Heat Map P!,

P = =y

Specific
Feature
Map

@ Convolution
@ Average

Pooling
Element-wise
Add

Hadamard
Product

Fig. 4. In the group recognition block, we use the visual feature map and the
heat map to compute the specific feature map.

B. Group Recognition Block

We illustrate GRB at the tth stage in Fig. 4. For the group
G!,, we use the separate convolutions to process the visual fea-
ture map F! , yielding the heat maps P? . Each convolution is
associated with a single part detection in the part group G/ . It
produces a channel of an, and each channel is a separate heat
map indicating the localization of a single part. Given the heat
maps P! and the visual feature map F , we compute the spe-
cific feature map S, with the specific part information of G,
as:

S;, = C[F},,] + C[A[P} ]| o F},, ()

where C, A, and © represent the convolution, the channel-wise
average pooling, and the Hadamard product. The heat map P?,
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Specific
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Visual
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o Hidden
Feature
Map

Zero
Connection
S’;V Hi\’,tjl Convolution
’ Connection

Fig. 5. The connection between the feature maps, which represent the part
groups at adjacent stages. As highlighted by the cyan region, each connection
consists of a hidden map and three weights (i.e., the activation, deactivation and
impact weights).

plays a role in weighting the visual feature map F? . The loca-
tions, where the parts likely appear, have high heat values. Thus,
the heat map can be regarded as a dynamic filter. It respects the
prediction result and adaptively augments the information of
the parts propagated from the visual feature map to the specific
feature map.

C. Part Grouping Block

We illustrate the connections in the PGB between the ¢th and
(t 4+ 1)th stages in Fig. 5, where we merge the specific feature
maps and compute the visual feature maps of the new groups
via Part Grouping. The cyan region of Fig. 5 indicates the con-
nection between the feature maps F!, € F! and Si! € St

The connection is associated with the weight cf;5?, which is
computed as:
0 abttl < gtt+l
thtj;l _ m,0 m,o (2)

abt+1 . i/t,t—(&)—l

oy otherwise.

Given al;/ T1 < dl;/T!, we deactivate F}, when we compute
FIt1. We remark that all connection weights have been opti-
mized before merging features. The connection is also associ-

ated with the hidden feature map H}/5! € H*'*'. Based on the

specific feature map S, and the connection weight ¢,/ !, we
. L] .
compute the hidden feature map H,, 7" as:
tt+l ottt t
Hm,Jor - cm:(t ' C(Sm) (3)

Here, welet H' 1 = {HLITL € REOWXC 1m0 =1,... N}
contain all of the hidden feature maps at the tth stage of Part
Grouping.

D. Part Grouping

In the PGB, the gradient-based NAS [29] is employed to
search the network architecture with the first order approxima-
tion. Instead of simply picking up the connections with highest
values like traditional NAS methods, in Part Grouping, we use
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Fig. 6. Illustration of main group selection between the ¢th and (¢ + 1)th
stages. In (a), the operation S respects the non-zeros connection weights (see
the weights in pink), activating the connections (see the arrows in pink) between
the main groups and new groups in (b). In (c)—(d), we schematically illustrate
the traverse and the update, which are iterated by the operation S. In (e), the
selected weights correspond to the activating connections in (b).

the main group selection S, the normal group merging M, the
inactive group activation Z to choose effective connection acti-
vation way and merge the features of different groups with the
group computation G at each stage.

1) Main Group Selection: For each GY' in the (¢ + 1)th
stage, the main group selection S tries to find the part group from
tth stage which has the largest impact (see Fig. 3(b)). Given the
set CH**1 of the connection weights at the tth stage, S yields
the weight set Mt +1 as:

Mt — S((Ct’tﬂ), 4)

where M5t is a subset of CH**1 (i.e., MUt  CHIFHL) It
contains the weights of the network connections. Here, each
connection (see the pink arrows illustrated in “Main Group Se-
lection”) uniquely indicates a main group of a new group.
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We illustrate S in Fig. 6. In Fig. 6(a), we prepare the full con-
nections between the feature maps in S* and F**1, respectively.
We use the operation S to select the connections, which are high-
lighted by the pink arrows in Fig. 6(b). Here, Fig. 6(b) shows an
example, where the mth and Nth groups at the ¢th stage play
as the main groups of the oth and pth groups at the (¢ + 1)th
stage. To select the main groups, the operation S respects the
connectlon weights in the set CH*H! = {chIT! e R|m, 0 =

., N'}. We provide more details of S in Flg 6(c)—(e). First,
we sort the connection weights in descending order, yielding the
list in Fig. 6(c). The first column contains the sorted connection
weights. The second and third columns represent the sets S* and
F*1, where the feature maps are sorted along with the connec-
tion weights. Some of the weights are zeros, e.g., ct 1 Lkt
and ¢/, in last rows. This is because the corresponding con-
nections, e.g., the connections between the feature maps St1 and
F;*l, St and Fi+!, St and ng‘“ in Fig. 6(a), are deactivated
by the zero connections. The zero weights are neglected by S.

The sorted list is input to the iteration between traverse and
update. The traverse is top-down, allowing the connections with
relatively large weights to be selected. The selected weight be-
longs to the main group, whose connection to the new group
is activated. In Fig. 6(c), we show an example, where c/!T1 is
selected. It means that the mth group is the main group of the
oth new group. We let ¢,/ 71 € M *1. After selecting a weight,
we input the list to the update process in Fig. 6(d). Some of the
weights, e.g., cfn“gl, ct1 tOH and ct H , are associated with the
traversed main groups and the corresponding new groups. These
weights are neglected, when the list is fed backward to the tra-
verse process in Fig. 6(d). Given that all of the non-zero weights
are traversed, we achieve the list in Fig. 6(e), where the selected
weights belong to the set M**+1,

Generally, for the feature map FLH1, S select the feature map
S! whose associated connection weights c.’; T s the highest in
the set {c;/t! m e {1,...,N}}. We can formulate operation
S as:

ci,7to+1 — t, t+1 Gi

argmax c,), C GZH. (®)]

me{l,...,N}

The feature map S! represents the main group included into
the new group Gt“ and the weight set M“t+1 = {cb4 | o
{1,...,N}}. We remark that each new group contains a main
group, which has larger connection weights than other groups.

2) Normal Group Merging: As formulated in (6), we sub-
tract the set M*"**! from the entire set C***! of the connection
weights. The rest of the connection weights are input to the
operation M of the normal group merging (see Fig. 3(c)). M
produces the weight set N*!*1 as:

_ M(Ct’t+1 _ Mt,t-‘rl)’ (6)

where NG+ © ChiHL — M5+ The set Nt also contains
the connection weights (see the pink arrows). We use these
weights to determine the normal groups in the new groups. It
should be noted that the normal groups have smaller connec-
tion weights than the main groups. We illustrate M in Fig. 7.
In Fig. 7(a), we show the activated connections between the
feature maps of the main groups and the new groups (see the

Nt,t-i—l
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Fig. 7. Tlustration of normal group merging between the tth and (¢ + 1)th
stages. In (a), the operation M selects the retaining non-zeros connection
weights (see the weights in pink), activating the connections (see the arrows
in pink) between the normal groups and the new groups in (b). In (c)—(d), we
illustrate the process of merging, which are decided by the operation M. In (e),
the selected weights correspond to the activating connections in (b).

connections highlighted by the black arrows). Except these con-
nections, we employ the operation M to activate the connec-
tions of the normal groups in Fig. 7(b). In Fig. 7(c)—(e), we
detail how the operation M works. In Fig. 7(c), we illustrate
the weights in the set M»**!, where the connections of these
weights have been activated in S. We exclude these weights from
the set Ct**1, The operation M selects the non-zero weights
in Fig. 7(d), where these weights are associated with the con-
nections (see the connections highlighted by the pink arrows)
between the normal groups and the new groups. Then, we can
obtain the list in Fig. 7(e).

For the feature map F! ™!, M select the feature maps S% whose

tt+1
associated connection weights cy +

mulate M as:

are not 0, and we can for-

Gl C GLY, st et 0. (7
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The feature map S$ represents the main group included into

the new group G/ and the weight set N***' = {c b0 e

{1,...,N}}.

3) Inactive Group Activation: Possibly, any new group in the
set {Gi™, ..., G} contains little or even no parts. It means in
the subsequent stages, the feature learning of these parts will be
missed. These parts let their groups in the set {G!, ..., G4 } be
the inactive groups. For the inactive groups, the weights of the
zero connections are larger than the convolution connections,
where the zero connections may eliminate the information of
the inactive groups. To avoid the information loss of these parts,
we leverage the inactive group activation Z to re-activate those
inactive groups and pass them to the next stage. The proposed
inactive group activation Z excludes the connection weights of
the main and normal groups from the set C:'*! (see Fig. 3(d)).
We use 7 to identify the inactive groups. Z chooses some of the
inactive groups and activates the associated connections (see the
activating arrow in pink). It produces the weight set I+ as:

T (Ct,t+1

where ]It,t+1 C Ct,t+1 _ Mt,t—i—l

We illustrate the operation Z in Fig. 8. Assuming that the jth
body partis missed in (¢ 4 1)th stage and G, is an inactive group
containing j, in Fig. 8(a), we show the connection weights of
the inactive group. And we use operation Z to select the con-
nections, which are highlighted by the pink arrows in Fig. 8(b).
In Fig. 8(c)—(f), we provide more details of operation Z. Taking
the result of M as initialization in Fig. 8(c), first, we exclude
those activated connections in & and M. Then we search the set
{G},...,G%} to find the inactive groups which contains part
Jj. Here we find G?,. Including the connections of these inac-
tive groups and sorting the connection weights in descending
order, we obtain the result in Fig. 8(d). Then we traverse these
connections of inactive groups and select connections with the
largest weights. Fig. 8(e) gives an example, where c};’." is se-
lected. It means that connection ¢/, +1 i

It —

_ Mt,t+1 _ Nt,t+1> , (8)

_ Nt,t+1

is re-activated and the G,
is merged to Gt+1 After traversmg all missed parts and update
the connections of them, we achieve the result in Fig. 8(f), where
the selected weights belong to the set I *1,

Generally, in operation Z, we select the inactive group with
the largest impact to the new group in the set {G/**, ... G}
For the missed jth part, Z firstly search the subset ] = {G!, | j €
Gt,n € {1,...,N}} whose each element G, contains jth part,
then A select the feature map St whose associated connection

weights ¢{2*" is the highest in the set {c4}!|GL € I,y €
{1,...,N }} Hence, Z can be formulated as:

C; L = argmax C;’f;l,
” G.elye{l,...,N}
G{ c G, st. j € Gi. 9)

Equation (9) enables the activation on the inactive group G,
where arelative large weight of the convolution connection helps
to propagate more information of the part j to the oth new group.
The weight set TH!+1 = {ct t“} For the simplification, we will
regard the * as o in the followmg description.
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Fig. 8. Illustration of inactive group activation between the tth and (¢ + 1)th

stages. In (a), the missed part j is in !, and operation Z respects the non-zeros

connection weights(see the weights in pink), activating the connections (see the
arrows in pink) between the inactive group and the new groups in (b). In (c)—(e),
we illustrate the process of the inactive finding, the traverse and the update which
are decided by the operation Z. In (f), the selected weights correspond to the
activating connections in (b).

4) Group Feature Computation: The group feature compu-
tation G use all the active connections. As shown in Fig. 3(e),
we use the connections (see the activated arrows in black) that
are associated with the weights in the sets M *+! N&#+1 and
I%*+1, along with the feature maps in S? and the heat maps in
H?, to compute the feature maps in the set F**! and the heat
maps in the set H' ™! as:

Ft+1 _ g (Mt’t+1, Ntﬂf"rl’ I[t,t-‘rl7 St7 Ht) .

(10)

Specifically, we merge the hidden feature maps of the main,
normal, and inactive groups to compute the visual feature map
of each new group. For the feature map F.!, we compute it as:

Ff)"rl Ht t+1 + Z Ht 41 + Z H;Z-"_l. (1 1)
GlcGEt! GlcGy™!
In (11), the hidden feature maps Ht A Ht 1 and Ht i1

are associated with the main, normal and znactlve groups of
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the new group G'*t!. We use the set of visual feature maps
{Fi*lo=1,...,N} as the specific feature maps {St"!|o =
1,..., N} atthe (¢ + 1)th stage of part grouping.

E. Network Optimization

Similar to previous NAS methods [29], our network optimiza-
tion also consists of searching and fine-tuning. We employ the
Part Grouping to obtain new connection activation in each iter-
ation of network optimization. And we use the searched results
(activation) and to optimize all weights (including searchable
connection weights C and non-searchable network weights) in
the next optimization iteration. To supervise the part detection
and specific information extraction of part group, we propose a
novel objective consisting of several parts.

First, the heat map representation loss is used to supervise the
accuracy of part detection. We input the visual feature map F% !
into GRB, predicting the heat map P’ !, whose difference with
the ground-truth heat map 132“ is computed as:

T-1 N

Lo=)_ Y PG =PI,

t=0 m=1

12)

where £, measures the localization error of parts. We minimize
L}, during the network searching.

Besides the traditional heat map representation supervision,
we explore the supervision at feature level to promote specific
feature learning of body parts. We encourage different main
groups to capture the diverse visual patterns of the part groups.
It helps to reduce the redundant information of the feature maps
that represent the main groups. For this purpose, we employ the
cosine similarity between the feature maps of the main groups.
The similarity is accumulated as:

- Y

tt41 41
Crmo s Cnyp EMPEEHL

[ I e |
cos [Hy;/ 7t H

13)

where we use (3) to compute the hidden feature maps (e.g.,
H! T and HY;' F). We minimize £, during the network search-
ing.

Moreover, we encourage the normal groups and the inactive
groups to have a strong correlation with the main group. It allows
the merged groups to form relevant information. For the tth
stage, we use the dot-product between the hidden feature maps
to measure the group correlation as:

c-y| ¥

o=1 Gt ,G?CGZ+1

*

t,t+1 t,t+1
H*,o : HT,O

oY H

Gt GGt

SHRTL A

where the correlation is maximized during searching.

We allow the result of part grouping to guide the network
weight optimization. Thus, we use (12), (13), and (14) to for-
mulate the overall searching objective as:

L=Lp+o-Ls—p-Le, 5
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where « and 3 serve as hyper-parameters in our network to
balance the ratio of different terms. Empirically, we set o« =
1 and 8 = 1. And, the further explanation for the settings of
hyperparameters are in Section V-B5. During network searching,
we minimize £ to optimize connections.

When the end condition of searching is met, we prune all
the inactivated connections with the zero hidden feature map
in-between and fix the network architecture. Previous methods
mostly set the convergence for optimization as the searching end
condition [29]. While unaware of this, in practice, we set a max-
imum iteration number of optimization for each stage, like [40].
Once the optimization iteration number reaches the preset max-
imum, the weight optimization and part grouping in the corre-
sponding stage are done. We set the end iteration number for each
stage, increasing along with the stage number. Then, the search
for the previous stages can stop early, and we obtain this stage’s
fixed part grouping pattern. This can make the Part Grouping
in the following stages more specific and easy to extract the
high-level correlation information between learnt part groups.
Given the fixed network architecture, we follow the convention
to use the localization error £y, (see (12)) for further fine-tuning
the learnable parameters, which are used for human skeleton es-
tablishment eventually. Fig. 3 describes the brief process of the
optimization.

V. EXPERIMENTAL RESULTS
A. Experimental Settings

1) Implementation Details: Accurate-PGNet 1is imple-
mented based on PyTorch [41]. We use an Nvidia GeForce
RTX™ 3090 GPU with 24GB memory to train and test it. We
set the maximum training epochs to 270. The explanation of the
setting of the training iterations is shown in Section V-B6. We
use the Adam solver [42] with the initial learning rate of le-4
for optimizing the network parameters. The learning rates are
decayed linearly. After the pruning, we set the learning rate to
3e-3 for fine-tuning. Each mini-batch contains 12 images. The
resolution of feature maps in PGB and GRB is set according to
the resolutions of input images for different backbone networks.
The maximum iteration number of searching for the first stage
is 30 epochs. Moreover, the maximum number of the following
stages will increase by 15 epochs for each stage, with the
number increasing.

2) Dataset: We use the MPII dataset [19] for the major
evaluation. This dataset contains 25K images extracted from
YouTube videos. About 40K instances of humans are cropped
from the images to produce 28K, 3K, and 11K images in the
training, validation, and test sets. 16 parts annotate the human
body. The split of the train/validation/test datasets is the same
as in [19]. We also report the results on the MSCOCO Keypoint
dataset [20]. The train, val, and test-dev sets contain 57K, 5K,
and 20K images. 17 parts annotate each person’s instance. We
use the OCHuman [55] dataset for evaluation to measure the per-
formance of different models in dealing with occluded persons.
OCHuman contains human instances with heavy occlusions and
is only used for evaluation. It consists of 4K images and 8K in-
stances. We conduct architecture searches on MPII, MSCOCO,
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TABLE I TABLE II
SENSITIVITY TO THE NUMBER OF GROUPS SENSITIVITY TO THE NUMBER OF STAGES
Groups M \ Params \ FLOPs \ PCKh@0.5 Stages T' \ Params \ FLOPs \ PCKh@0.5
0 28.9M 10.2G 90.4 0 28.9M 10.2G 90.4
2 29.3M 11.3G 90.5 1 29.3M 11.5G 90.6
4 29.7M 14.0G 91.7 2 29.7M 12.7G 91.5
8 30.8M 16.1G 91.4 3 29.8M 13.1G 91.7
16 34.8M 33.1G 91.3 4 29.9M 13.4G 91.3
We list the results on the MPII val set. 5 30.0M 13.6G 91.0
We list the results on the MPII val set.
. . TABLE III
and OCHuman, respectively. Besides, to evaluat.e rqbustness, SENSITIVITY TO THE BACKBONE DCNS
we construct COCO-C dataset based on the validation set of
MSCOCO by applying different corruptions. In this paper, we Backbone | Grouping | Params | FLOPs | PCKh@0.5
focus on the influence of noise and lighting. For the noise, we % 245M | 5.2G 87.0
- - - ResNet-50 [21] ‘ v 26.1M ‘ 10.4G ‘ 88.6
apply three common types of corruption: Motion Blur, Gaussian : : .
Noise, and Impulse Noise. As for lighting, we simulate various MobileNet [44] ‘ x ‘ égllt/[’[ ‘ g-‘;g ‘ gg-g
lighting conditions using three types of corruptions: Brightness, ' . -
X 8.1IM 5.8G 89.8
Darkness, and Contrast. HRNet-W32-S3 [3] 7 S OM 8.6G 90.6
3) Evaluation Metrics: We use two metrics for the.evaluation HRNet-W32-54 [3] ‘ % 28.5M ‘ 935G ‘ 9023
of HPE models, called percentage of correct keypoints (PCK) 4 29.8M | 13.1G 91.7
and object keypoint similarity (OKS). PCK is the proportion of =~ We report the results on the MPII val set.
correct keypoints estimated. It is to calculate the ratio of the TABLE IV

normalized distance between the real part locations and corre-
sponding predicted ones less than the given threshold. Normally,
the length of human head is set as the normalized reference. And
this kind of metric is called PCKh. We report the performance
of our approach on the MPII validation and test sets, in terms
of PCKh. A lot of datasets adopt OKS as the evaluation index.
It calculates the similarities of groundtruth and predicted part
positions of human body. For a person instance p, the OKS can
be defined as:

> exp{—d2, /25202 }6(vyi-1)
Zi 5(1)1)1‘,:1) ’

where d,,: is the Euclidean distance between the predicted and
ground-truth part positions, s,, represents the scale of the human
instance, v, is the visibility label of the human body part, and
o; defines the offset of the artificially labeled location. Based on
the OKS between the predicted and the ground-truth parts, given
OKS threshold, we compute the average precision (AP) and the
average recall (AR) on the COCO val and test-dev sets. For the
evaluation of model robustness, we use mean average precision
(mAP) and mean average recall (mAR). We report mAP as the
average of AP values at thresholds ranging from 0.5 to 0.95, with
a step size of 0.05. mAR is similar. Following [43], we intro-
duce the robustness metric, mean Relative Robustness (mRR),
to evaluate how much a model’s performance drops under cer-
tain corruptions compared to clean images. In the following, in
Tables I to XIII, the best results are highlighted in bold.

OKS, = (16)

B. Ablation Study and Discussion

We conduct ablation experiments on the MPII dataset, and
the models are basically searched based on HRNet.

1) Sensitivity to the Groups and Stages: InTable I, we change
the number of the part groups. We choose the number of groups
from the set {0, 2,4, 8, 16}, evaluating the effect on the number

RESULTS OF DIFFERENT INITIAL ARCHITECTURES ON THE MPII VAL SET

Architecture | Groups | Params | FLOPs | PCKh@O0.5
Pyramid {2.4.8} 29.7M 12.7G 91.2
Inv-Pyramid {8,4,2} 30.1M 14.0G 91.7
Bottleneck {8.2.8} 30.2M 14.2G 91.3
Spindle {2,8,2% 29.6M 12.3G 91.4
Plain {444 29.8M 13.1G 91.7

of network parameters (“Params”), the floating point of oper-
ations (“FLOPs”) and the accuracy (“PCKh@0.5”). By setting
the group number to 0, we turn off the part grouping and degrade
the accuracy. Too many groups (8 and 16 groups) increase the
complexity of the architecture search. It requires more training
time and also degrades performance. Below, we use four groups.

In Table II, we experiment with using a different number of
stages ({0,1,2,3,4,5}). Again, 0 means that the part grouping
is disabled. The single stage (1" = 1) loses the context of parts in
various ranges, yielding an unsatisfactory accuracy. More stages
enrich the context but require more computation. Considering
the trade-off between the performance and computation, we use
three stages as default.

2) Sensitivity to the Backbone DCNs: Accurate-PGNet can
be built on different backbone DCNs. We use the popu-
lar backbone DCNs [3], [21], [44] to construct Accurate-
PGNet. The accuracies and the computational costs are listed in
Table III. Accurate-PGNet effectively learns richer context from
the groups. Compared to the independent DCN without group-
ing, Accurate-PGNet successfully improves the accuracy. More-
over, the optimization of Accurate-PGNet removes the redun-
dant network connections between the feature maps, allowing
the relevant groups to be merged. On average, Accurate-PGNet
additionally requires 1.2 M network parameters and 3.7 G
FLOPs with different backbone DCNSs.

3) Sensitivity to Initial Architectures: InTable IV, we present
acomprehensive comparison of the HPE performance of various
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TABLE V
RESULTS OF DIFFERENT GROUPING STRATEGIES ON THE MPII VAL SET

Method |  Group | Params | FLOPs | PCKh@O0.5
Fully-connected {4, 4} 29.8M 13.4G 90.5
PBN [1] {5, 1} 29.2M 11.2G 90.4
PNFS-8 [33] {8, 1} 29.4M 11.6G 90.3
PNFES-3 [33] {3, 1} 29.2M 11.0G 90.6
DLCM [9] {12, 6} 29.7TM 12.2G 90.7
Accurate-PGNet-S2 {4.4} 29.7M 127G 91.5
Accurate-PGNet-S4 {444} 29.8M 13.1G 91.7

Accurate-PGNet-S2 and -S4 have 2 and 4 stages of part grouping.

initial network architectures. Notably, we found that the number
of stages set to 3 for different initial architectures ensures a fair
comparison. The column “Groups” provides a clear breakdown
of the number of groups at each stage, which is a key factor in
our evaluation.

The initial Accurate-PGNet is plain, which means the group
numbers at all stages are the same. We evaluate the pyramid
architecture, where the group numbers increase at later stages.
The pyramid enforces the network to produce larger part groups
at earlier stages, losing the relationship between parts in local
ranges. With an inverse pyramid (“Inv-Pyramid”), we achieve
accuracy on par with plain architecture. It demonstrates the im-
portance of using larger groups at earlier stages. Furthermore,
we use the bottleneck and spindle architectures to initialize the
network, where the middle stage has fewer and more groups, re-
spectively. Again, the spindle architecture degrades the accuracy
due to the loss of local information. Though the beginning stage
of the bottleneck architecture has more groups, fewer groups at
the middle stage disallow the multiple ranges of context to be
formed, thus leading to a lower accuracy than Accurate-PGNet.

4) Comparison With Prescribed Grouping Strategies: To
evaluate effectiveness of Accurate-PGNet, we compare
Accurate-PGNet with the prescribed strategies for part groups.
We report the performance in Table V. First, we evaluate the
fully-connected strategy for part grouping (see the first row).
The fully-connected strategy merges all of the groups into each
new group. It misses the correlation between parts, inevitably
injecting redundant information into the visual feature maps of
the new groups. Thus, the performance of the fully-connected
strategy lags far behind Accurate-PGNet. Next, we compare
Accurate-PGNet with the alternative architectures, which fol-
low the existing HPE methods [1], [9], [33] to determine the
part groups. Generally, these methods conduct the part group-
ing at 2 stages. They are in the inverse pyramid shape, for
capturing the local and global context in a bottom-up man-
ner. For a fair comparison, we report Accurate-PGNet with 2
stages (see “Accurate-PGNet-S2”) of part grouping in Table V.
Compared to the prescribed grouping strategies, the flexible
Accurate-PGNet yields a better accuracy.

5) Different Ways of Supervising Part Grouping: With (13)
and (14), we measure the similarities between the groups in dif-
ferent/identical larger group(s). In Table VI, we initialize the
hyperparameters of the similarities with different values and
compare the accuracies. It is evident that without any similarity
constraints (o = 0, 5 = 0), we rely solely on the localization
error of separate parts to supervise part grouping. This approach
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TABLE VI
RESULTS OF VARIOUS WAYS OF SUPERVISING PART GROUPING ON THE MPII
VAL SET
PCKh@0.5 \ 8
0 0.1 1 5
«
90.9 91.0 91.0 90.9
0.1 91.1 91.2 91.1 91.0
1 91.4 91.6 91.7 91.5
5 91.3 91.4 91.5 91.3

Heatmap_loss Accuracy

nnnnnn

nnnnnn

Fig. 9. Training losses and accuracies of Accurate-PGNet on the COCO train
datasets along the training process.

still yields better results compared to the original HRNet. By
incorporating these similarities, we further enhance accuracy.
However, the results from the first row indicate that £, may not
be effective in the absence of L. It is because that £. aims to
maximize the correlations between normal groups and the main
groups. But without L, main groups likely exhibit identical
features. Under this condition, £, will not affect the learning.
The superior performance in the first column validates the ef-
fectiveness of L. The results from the second and third rows
demonstrate that £, aids in the specific part feature learning of
our model, with the feature diversity of main groups is ensured
by L. Experiments of the last row show that inappropriate val-
ues of hyperparameter of L. can also deteriorate the model’s
performance, underscoring the importance of proper hyperpa-
rameter initialization. In this paper, we set values v = 1 and
g=1

6) Setting of Iteration Number: As is widely recognized, the
quantity of iterations plays a pivotal role in influencing both
the training process and the overall performance of a model. To
strike an optimal balance between training efficiency and model
efficacy, we train the model by varying the number of iterations,
capping it at 55,000. The outcomes of this approach are depicted
in Fig. 9. A sharp decline in loss is observed within the initial
10,000 iterations, followed by a more gradual reduction from
10,000 to 40,000 iterations. This indicates that the first 40,000
iterations are crucial for enhancing model performance. Around
the 45,000 iteration mark, the model is expected to converge,
with the loss stabilizing. A similar pattern is observed in the pre-
diction accuracy, mirroring the changes in loss. These findings
suggest that the optimal point for balancing the number of train-
ing iterations lies between 45,000 and 55,000. Consequently, in
this study, we have empirically determined the iteration count
to be fixed within this range.
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TABLE VII TABLE IX
COMPARISONS WITH STATE-OF-THE-ART METHODS COMPARISONS WITH STATE-OF-THE-ART METHODS
Method | Params | FLOPs | PCKh@O.5 Method Backbone | Input Size | Params | FLOPs | AP
_ Hourglass [4] 25.1IM 19.1G 89.2 CPN [54] ResNet-Inception | 384 x 288 | 42.0M - 72.9
SimpleBaseline [11] 68.6M 20.9G 89.6 SimpleBaseline [11] ResNet-152 256x 192 | 68.6M | 35.6G | 74.3
DLCM [9] 15.5M 33.6G 89.8 HRNet [3] HRNet-W32-S4 | 384 x 288 | 28.5M | 16.0G | 75.8
HRNet-W32-S4 [3] 28.5M 9.5G 90.3 HRNet [3] HRNet-W48-S4 | 384 x 288 | 63.6M | 32.9G | 76.3
DARK [45] 28.5M 9.5G 90.6 DARK [45] HRNet-W48-S4 | 384 x 288 | 63.6M | 32.9G | 76.8
TokenPose [46] 28.1M 12.8G 90.2 UDP [55] HRNet-W48-S4 | 384 x 288 | 63.6M | 32.9G | 77.2
TransPose [47] 17.5M 13.0G 90.3 FastPose [56] ResNet-152 256x 192 | 60M 35.6G | 74.3
HRFormer-B [57] 43M 12.2G 90.4 TokenPose [46] HRNet-W48-S4 | 256 x 192 | 27.5M | 11.0G | 75.8
ViTPose [48] 632M 121.05G 93.0 TransPose [47] | HRNet-Small-W48 | 256 x 192 | 17.5M | 21.8G | 75.8
HRFormer [57] HRFormer-B 256 x 192 | 43M | 122G | 75.6
PNES [33] 16.3M 9.4G 90.1 HRFormer [57] HRFormer-B 384 x 288 | 43M | 26.8G | 77.2
PoseNAS [34] 33.6M 14.8G 904 ViTPose [48] ViTPose-H 256 x 192 | 632M | 121.05 | 79.1
Accurate-PGNet-S3 8.9M 8.6G 90.6 PNFS [33] ResNet-50 384 x 288 | 27.5M | 114G | 73.0
Accurate-PGNet-54 29.8M 13.1G 91.7 PoseNAS [34] L18-C64 384 x 288 | 33.6M | 14.8G | 76.7
Accurate-PGNet-V 633.9M 126.9G 94.2 ViPNAS [52] HRNet-W32-S4 | 256 x 192 | 163M | 5.6G | 74.7
The total accuracies are reported on the MPII val set.
Accurate-PGNet-S3 | HRNet-W32-S3 | 384 x 288 | 89M | 15.0G | 74.1
Accurate-PGNet-S4 | HRNet-W32-S4 | 384 x 288 | 29.8M | 23.1G | 77.4
Accurate-PGNet-V ViTPose-H 256 x 192 | 633.9M | 126.9G | 79.8

TABLE VIII
COMPARISONS WITH STATE-OF-THE-ART METHODS

Method |Params|FLOPs|Head Shoulder Elbow Wrist Hip Knee Ankle Total
CPHR [49] - - 1979 951 899 853894857 81.7 89.7
Recurrent HPE [50][ - - |97.7 950 88.2 83.087.982.6 784 881
CPM [2] - - |97.8 950 887 84.088.4828 794 885
DeepCut [51] [42.6M|41.2G|96.8 952 89.3 84.4 884834 780 885
Hourglass [4] |25.1M|19.1G|982 963 91.2 87.1 90.1 87.4 83.6 90.9
SimpleBaseline [11]( 68.6M | 20.9G |98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
HRNet-W32 [3] |28.5M| 9.5G {983 963 91.9 88.0 90.187.7 84.0 91.3
DARK [45] 28.5M| 9.5G |98.3 96.5 91.9 87.8 90.7 88.1 84.3 91.5
TokenPose [46] |28.1M[12.8G|98.2 96.4 91.7 87.1 90.3 87.5 83.7 91.1
TransPose [47] | 17.5M [13.0G (982 96.5 92.0 87.8 90.388.3 84.6 91.4
ViTPose [48] 632M |121.05]96.0 912 824 76.181.6745 71.6 82.5
PNFS [33] 164M| 9.4G [982 959 915 87.690.1 87.3 83.2 91.0
PoseNAS [34] |33.6M|14.8G|98.3 96.7 925 88.490.387.4 83.9 91.5
Accurate-PGNet-S3| 8.9M | 8.6G |98.3 96.5 924 83291.788.9 84.8 91.9
Accurate-PGNet-S4(29.8M | 13.1G |98.6  97.3  93.3 89.3 91.8 90.2 86.5 92.7
Accurate-PGNet-V [633.9M[126.9G|98.9 98.0  95.4 92.5 943 94.1 91.2 95.1

‘We report the recognition accuracies of different parts on MPII test set, in term of PCKh@0.5. Each accuracy
accounts for the symmetric parts.

C. Comparison With State-of-the-art Methods

1) Results on MPII Dataset: In Table VII, we compare
Accurate-PGNet with state-of-the-art methods. Many meth-
ods [3], [4], [9], [11], [45] aggregated the convolutional
feature maps at multiple layers, also enabling the context ex-
change between parts. But they globally account for the cor-
relation of all parts, inevitably losing the local context. Com-
parably, Accurate-PGNet respects the specific content of the
groups to determine aggregation. It achieves a better accuracy
with fewer parameters and FLOPs, providing an efficient so-
lution for human pose estimation. Some latest methods [33],
[34] leveraged NAS to match the appropriate convolution ker-
nels for learning the visual patterns of parts. Rather than using
the single-part information alone, Accurate-PGNet builds more
effective latent connections between parts and allows convolu-
tion kernels to capture the diverse patterns of the part groups.
It harvests richer context to improve the recognition of parts. In
Table VIII, we compare the results of different methods on the
MPII test set. Compared to state-of-the-art methods [9], [33],
[34], [45], Accurate-PGNet-S3 based on HRNet-W32-S3 re-
quires less computation. Accurate-PGNet-S4 based on HRNet-
W32-S4 achieves a better accuracy. We search the network
architecture Accurate-PGNet-V based on a large model
ViTPose-H [48], also obtaining better performance. It is note-
worthy that our method achieves significantly higher results

‘We report the accuracies in term of AP on COCO validation set. We also compare the parameter numbers, FLOPs
and speed of different methods.

compared to other NAS methods such as PNFS [33], Pose-
NAS [34], and ViPNAS [52]. Because previous methods primar-
ily focus on the efficiency of the searched network, neglecting
the application of NAS for identifying the optimal part group-
ing pattern. In contrast, our proposed human-specific NAS for
data-driven part grouping effectively enhances the understand-
ing of body part correlations, thereby improving the performance
of human skeleton establishment.

2) Results on COCO Dataset: In Tables IX and X, we com-
pare the results of different methods on the COCO validation
and test sets. We use Faster-RCNN without bells and whistles
to detect the human bodies, which are input to Accurate-PGNet.
Here, Faster-RCNN achieves 60.9 AP on the human detection on
the COCO test-dev set. Based on the backbone HRNet-W32-S4,
Accurate-PGNet surpasses the latest methods [34], [36], [45] on
the COCO validation dataset. On the COCO test set, Accurate-
PGNet-S4 again achieves a very competitive accuracy compared
to DARK [45]. Compared to Accurate-PGNet, DARK requires
1.5~2 times the parameters and FLOPs. Our method can also be
employed on any backbone network with the same little com-
putational cost. Considering the speed, our Accurate-PGNet-S3
can achieve an acceptable performance with a very high speed.
The Accurate-PGNet-S4 can also achieve higher results com-
pared to the backbone HRNet with little speed degradation. As
for the huge-size model, we conducted a network search based on
ViTPose-H and obtained the best performance with little compu-
tational cost increase. Thus, Accurate-PGNet is a good choice
for HPE with limited computational budgets. Besides, similar
to the MPII dataset, we compare our methods with other NAS
methods. Our model also outperforms all of them, demonstrating
the generalization ability of our NAS strategy.

3) Results on OCHuman Dataset: To evaluate the perfor-
mance of different methods on human instances with heavy oc-
clusions, we compare our method against other state-of-the-art
methods on the OCHuman dataset. To focus solely on the perfor-
mance of pose estimation and eliminate the variable of person
detection accuracy, we utilized ground truth bounding boxes
rather than those generated by a person detector. This approach
was necessary because not all human instances are labeled in
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TABLE X
COMPARISONS WITH STATE-OF-THE-ART METHODS

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 27, 2025

Method Backbone | Input Size | Params | FLOPs | Speed(fps) | AP AP®0 AP  APM  ApL AR
Mask-RCNN [58] ResNet-50-FPN - - - - 63.1 87.3 68.7 57.8 71.4 -
G-RMI [59] ResNet-101 256 x 256 | 42.6M 57.0G - 68.5 87.1 75.5 65.8 733 733
CPN [54] ResNet-Inception 384 x 288 - - - 72.1 91.4 80.0 68.7 772 785
RMPE [60] Stacked Hourglass | 384 x 288 | 28.IM 26.7G - 72.3 89.2 79.1 68.0 78.6 -
SimpleBaseline [11] ResNet-152 256 x 192 | 68.6M 35.6G 76.3 73.7 91.9 81.1 70.3 80.0 79.0
HRNet [3] HRNet-W32-S4 384 x 288 | 28.5M 16.0G 87.1 74.9 92.5 82.8 71.3 80.9  80.1
HRNet [3] HRNet-W48-S4 384 x 288 | 63.6M 32.9G 75.5 75.5 92.5 83.3 71.9 81.5 80.5
DARK [45] HRNet-W48-S4 384 x 288 | 63.6M 32.9G 62.1 76.2 92.5 83.6 72.5 824  81.1
UDP [55] HRNet-W48-S4 384 x 288 | 63.8M 33.0G 67.9 76.5 92.7 84.0 73.0 824  81.6
TokenPose [46] HRNet-W48-S4 256 x 192 | 27.5M 11.0G 52.9 75.9 92.3 83.4 72.2 82.1 80.8
TransPose [47] HRNet-Small-W48 | 256 x 192 17.5M 21.8G 56.7 75.0 92.2 82.3 71.3 81.1 80.8
TokenPose with EMA [61] HRNet-W48-S4 256 x 192 | 27.5M 11.0G 52.9 75.4 92.5 82.5 72.5 799 783
FasterPose [62] ResNet-50 256 x 192 | 25.7M 3.8G 166.4 70.8 91.3 78.8 67.2 76.8 764
HRFormer [57] HRFormer-B 384 x 288 43M 26.8G 25.2 76.2 92.7 83.8 72.5 823 812
ViTPose [48] ViTPose-H 256 x 192 632M 121.05 21.8 78.1 93.3 85.7 74.9 83.8  83.1
PNEFS [33] HRNet-W32-S3 384 x 288 15.8M 14.8G 84.2 72.3 90.9 79.5 68.4 792 779
PoseNAS [34] L18-C64 384 x 288 | 33.6M 14.8G - 75.9 93.0 83.8 72.2 81.4  80.7
ViPNAS [52] HRNet-W32-S4 256 x 192 16.3M 5.6G 151.1 73.9 91.7 82.0 70.5 79.5 804
LitePose [63] LitePose 448 x 448 5.7M 9.17G 133.0 62.4 82.5 67.9 54.8 737 67.1
Accurate-PGNet-S3 HRNet-W32-S3 384 x 288 8.9M 15.0G 167.5 72.4 91.1 79.5 68.3 794 78.0
Accurate-PGNet-S4 HRNet-W32-S4 384 x 288 | 29.8M 23.1G 61.3 76.3 92.7 83.9 72.7 824 813
Accurate-PGNet-V ViTPose-H 256 x 192 | 633.9M | 126.9G 21.7 79.1 94.1 86.9 76.0 83.9 84.0
‘We report the accuracies in terms of AP and AR on COCO test-dev set. We also compare the parameter numbers, FLOPs and speed of different methods.
TABLE XI TABLE XII
COMPARISONS WITH STATE-OF-THE-ART METHODS THE RESULTS OF THE STATE-OF-THE-ART METHODS ON THE OCHUMAN
DATASET
Method |  Backbone  Resolution Params | AP AP° AR
SimpleBaseline [11]| ResNet-152 384 x 288 68.6M | 588 727 63.1 Method | Backbone  Input Size Speed(fps) | OC-val OC-test
HRNet [3] HRNet-W32-S4 384 x 288 28.5M | 60.9 76.0 65.1 SimpleBaseline [11] Swin-B 256 192 16.6 40.1 39.8
HRNet [3] HRNet-W48-S4 384 x 288 63.6M | 62.1 76.1 659 HRNet [3] HRNet-W48-S4 384 x 288 355 38.1 38.1
MIPNet [53] HRNet-W48-S4 384 x 288 63.7M | 74.1 89.7 81.0 DARK [45] HRNet-W48-S4 384 x 288 355 38.6 392
HRFormer [57] HRFormer-S 384 x 288 7.8M [53.1 73.1 59.6 UDP [55] HRNet-W48-S4 384 x 288 67.9 38.6 38.8
HRFormer [57] HRFormer-B 384 x 288 43.2M (504 71.5 588 HRFormer [57] HRFormer-B 384 x 288 25.2 40.5 40.3
ViTPose-S [48] ViTPose-S 256 x 192 22M |57.6 752 61.8 Poseur [64] HRFormer-B 384 x 288 25.8 44.4 45.6
ViTPose-H [48] ViTPose-H 256 x 192 632M | 675 79.6 70.7 ViTPose [48] ViTPose-H 256 x 192 21.8 46.7 45.8
Accurate-PGNet-S3 | HRNet-W32-S3 384 x 288 89M [50.3 70.2 57.1 Accurate-PGNet-S3 | HRNet-W32-S3 384 x 288 121.5 36.8 36.9
Accurate-PGNet-S4 | HRNet-W32-S4 384 x 288 29.8M [63.2 769 66.4 Accurate-PGNet-S4 | HRNet-W32-S4 384 x 288 61.3 39.5 39.7
Accurate-PGNet-H ViTPose-H 256 x 192 6339M [ 87.3 93.5 88.6 Accurate-PGNet-V ViTPose-H 256 x 192 21.7 47.6 47.1

The total accuracies are reported on the OCHuman test set with ground truth bounding boxes. We also compare the
parameter numbers of different methods.

the OCHuman dataset, and reliance on a person detector could
introduce false positives or omissions, potentially distorting the
true capabilities of the pose estimation models. The compara-
tive results are presented in Table XI. Our findings reveal that
Accurate-PGNet significantly outperforms established general
SOTA methods, such as HRFormer and ViTPose, by approxi-
mately 20 AP points. Moreover, compared to methods with intri-
cate architectures, for instance, MIPNet [53], Accurate-PGNet
improves over 10 AP points on the OCHuman validation set.
This is noteworthy as Accurate-PGNet does not explicitly in-
corporate specialized structural designs to address occlusions.
Instead, the enhancement in performance can be attributed to
the effective use of part relationships and context understand-
ing, which are learnt from the structures identified through our
NAS strategy. Besides, we specifically compare the prediction
results of occluded joints, which are shown in Table XII. It is
easy to tell that our method can obtain the best performance by
learning the specific part relationships and corresponding visual
contexts.

4) Comparison of Robustness: To evaluate the robustness of
our method, we conduct experiments with different noise and
lighting settings, which can degrade the model’s performance.
We conduct experiments via clean images from MSCOCO val

The metrics are computed only on the occluded joints that overlap with the COCO annotated joints. The GT
bounding box is used. “OC” denotes the OCHuman dataset. We also compare the speed of different methods.

(a)Ground Truth ~ (b) HRNet (¢) Dark (d) TransPose  (¢) Accurate-PGNet
Fig. 10.  Part recognition results of HRNet-based methods. The top and the
bottom rows contain the examples taken from MPII and COCO validation sets,
respectively. Larger dots are the parts with problematic locations. For a clear

visualization, we only provide the predicted parts on the salient persons.

and processed images from COCO-C dataset. The results are
shown in Table XIII. Compared with previous SOTA methods
like HRFormer and ViTPose, our method exhibits the best ro-
bustness under different corrupted conditions.
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TABLE XIII
ROBUSTNESS BENCHMARK RESULTS ON THE COCO-C DATASET, WITH MRR SCORES PRESENTED AS PERCENTAGES (%)

. Clean Blur & Noise Lightning
Method Backbone Input Size mAP mAR mAP mAR mRR mAP mAR mRR
SimpleBaseline [11] ResNet-152 256x 192 73.59 79.09 47.23 53.21 64.18 56.76 62.62 77.13
HRNet [3] HRNet-W32-54 384 x 288 74.90 8038 48.75 54.58 65.09 59.42 65.00 79.33
HRNet [3] HRNet-W48-54 384 x 288 75.58 80.85 50.29 56.09 66.53 60.12 65.60 79.54
MSPN [65] MSPN-50 384 x 288 7228 78.80 43.57 50.48 60.28 55.15 62.06 76.30
MSPN [65] 4 x MSPN-50 384 x 288 76.49 82.62 5142 58.39 67.22 60.63 67.42 79.26
HRFormer [57] HRFormer-S 384 x 288 73.84 79.27 47.30 5338 64.06 57.95 63.77 78.48
HRFormer [57] HRFormer-B 384 x 288 75.37 80.67 49.34 55.28 65.46 59.34 64.88 78.73
LiteHRNet [66] LiteHRNet-18 384 x 288 64.16 70.45 37.15 43.58 57.91 41.57 54.01 74.15
LiteHRNet [66] LiteHRNet-30 384 x 288 67.54 73.61 40.30 46.75 59.66 51.57 57.92 76.35
TransPose [47] HRNet-W32-54 256 x 192 74.17 79.45 46.43 52.11 62.60 58.29 63.82 78.59
TransPose [47] HRNet-W48-54 256 x 192 75.28 8033 47.94 53.61 63.68 60.23 65.58 80.01
Poseur [64] HRNet-W48-54 384 x 288 71.62 8233 5231 57.60 67.39 64.22 69.11 82.75
Poseur [64] HRFormer-B 384 x 288 71.97 82.95 54.48 60.18 69.88 65.54 70.73 84.07
Poseur [64] ViTPose-H 256 x 192 76.72 81.92 54.61 60.24 71.19 65.11 70.44 84.87
ViTPose [48] ViTPose-S 256 x 192 73.92 79.24 49.58 55.72 67.07 59.01 64.78 79.83
ViTPose [48] ViTPose-H 256 x 192 78.84 83.92 58.89 64.56 74.7 66.96 72.29 84.93
SimCC [67] | ViPNAS-MobileNetV3 256 x 192 | 69.48 7552 | 42.06 48.45 60.54 | 53.0 59.23 76.28
Accurate-PGNet-V | ViTPose-H 256 x 192 | 79.22 8473 | 59.01 64.99 753 | 6111 72.65 85.47

Fig. 11.

5) Comparison of Visual Results: In Fig. 10, we compare the
visual results of different HRNet-based methods on both MPII
and COCO datasets. It is easy to see that in some challenging
scenarios, such as occlusions and crowded backgrounds, our re-
sults are better than those state-of-the-art methods, namely, (b)
HRNet [3], (¢c) DARK [45], and (d) TransPose [47]. Accurate-
PGNet shows a better ability to handle visual degradation by
building specific connections between parts. In Fig. 11, we
present more visual results.

VI. CONCLUSION

Human body part correlation is a significant factor in the es-
tablishment of the human skeleton. In this study, we introduce
a novel framework, Accurate-PGNet, which features a flexi-
ble and automatic body grouping strategy. Accurate-PGNet has
the unique ability to merge related body parts, forming part
groups that effectively model the visual and spatial relationships
between parts. Our model also learns specific information from
the part groups, thereby respecting the diversity of different
groups. To our knowledge, this is the first study to employ the

The visual results of our method on MSCOCO and MPII datasets. The dots represent the detected human parts and the lines are the skeletons.

NAS strategy to identify an effective part grouping pattern for
human skeleton establishment. The experimental results confirm
that our model is not only efficient but also a highly practical
method. In the future, we will investigate a more innovative
scheme for learning the stage and group numbers. Rather than
the current method, which requires progressively grouping the
parts, we will investigate a faster grouping strategy to further
reduce the computational overheads. We will also investigate a
more general architecture to provide effective results appropri-
ate for different datasets. This topic is more challenging due to
the various datasets’ different scenarios and annotations.
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