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Abstract—The reuse of 3D CAD models is crucial for industrial
manufacturing because it shortens development cycles and re-
duces costs. Significant progress has been made in deep learning-
based 3D model retrievals. There are many representations
for 3D models, among which the multi-view representation
has demonstrated a superior retrieval performance. However,
directly applying these 3D model retrieval approaches to 3D
CAD model retrievals may result in issues such as the loss of the
engineering semantic and structural information. In this paper,
we find that multiple views and B-rep can complement each
other. Therefore, we propose the view graph neural network
(VGNet), which effectively combines multiple views and B-rep to
accomplish 3D CAD model retrieval. More specifically, based on
the characteristics of the regular shape of 3D CAD models, and
the richness of the attribute information in the B-rep attribute
graph, we separately design two feature extraction networks
for each modality. Moreover, to explore the latent relationships
between the multiple views and B-rep attribute graphs, a multi-
head attention enhancement module is designed. Furthermore,
the multimodal fusion module is adopted to make the joint rep-
resentation of the 3D CAD models more discriminative by using
a correlation loss function. Experiments are carried out on a real
manufacturing 3D CAD dataset and a public dataset to validate
the effectiveness of the proposed approach. Our source code and
dataset are available at: https://github.com/xzzz011/VGNet.

Index Terms—3D CAD model retrieval, graph neural network,
multi-view, multimodal fusion, attention mechanism.
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I. INTRODUCTION

THE increasing quantity and complexity of 3D CAD
models have made their retrieval and reuse a heightened

topic of research interest. 3D CAD models are crucial for
industrial manufacturing because they serve as the foundation
for the entire product life cycle. According to statistics, the
reuse rates of 3D CAD models are close to 75% [1]. In
practical applications, the model designer selects a model that
is similar to the requirements in the existing model library
and makes a slight modification to obtain a new model.
Therefore, a high-performance retrieval approach that can
effectively reuse models plays a key role in the product life
cycle and is an important factor in improving enterprises’
core competitiveness. In recent years, with the development of
computer technology, scholars have introduced computer vi-
sion and artificial intelligence for 3D model retrieval, proposed
various methods [2]–[6], and achieved great success. Retrieval
approaches for 3D models can be categorized into voxel-based,
point-cloud-based and view-based approaches. However, none
of the existing approaches are specifically tailored for 3D
CAD model retrieval, as industry-standard 3D CAD models
predominantly employ boundary representation (B-rep). B-
rep is a precise representation containing rich engineering
semantics information, namely, comprehensive geometric and
topological data, as well as higher-level information such as
design intent, design constraints and other implicit knowledge
embedded within models [7]. Moreover, the existing 3D CAD
model retrieval approaches cannot effectively describe and rep-
resent 3D CAD models: hence, the retrieval performance is not
sufficient to meet the requirements of industrial applications.

This paper presents VGNet, a joint convolutional net-
work of attribute graphs and multiple views for 3D CAD
model retrieval. The motivation behind this method lies in
addressing the limitations of using either multi-view data
or graph structural data representations alone for expressing
3D CAD models, which are inherently constrained in their
expressive capabilities. Therefore, the approach leverages the
joint learning of features from both modalities to represent
3D CAD models. By employing image modal information,
specifically multi-view features, to guide the representation
of the graph structural features, the method enriches the
expression of 3D CAD models with multimodal information,
resulting in a more comprehensive and nuanced representation
of the models. VGNet aims to combine the strengths of
both representations to achieve more accurate and efficient
model retrieval. VGNet is divided into three modules: feature
extraction module, multi-head attention enhancement module,

https://github.com/xzzz011/VGNet
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Fig. 1: Architecture of the proposed VGNet. VGNet takes two modalities of 3D CAD models as input: views and B-rep
attribute graph. VGNet consists of three modules: Feature Extraction Module, Multi-head Attention Enhancement Module,
and Multimodal Fusion Module. The Feature Extraction Module extracts features from two modalities of 3D CAD models
respectively. Then, the extracted feature vectors are used as inputs to the Multi-head Attention Enhancement Module. The
view features are passed through a transition network and interact with the graph features in the Attention Score Block to
generate attention scores, which are then used to enhance the graph features. In the Multimodal Fusion Module, the pooled
view features are combined with the enhanced graph features to produce the final descriptor for the 3D CAD model. The
correlation loss function aims to minimize the distance between the features of different modalities from the same model.

and multimodal fusion module. The feature extraction module
uses an improved convolutional neural network branch and a
graph neural network branch to extract and abstract features
from the two modalities of CAD models respectively. Since
the multi-view and B-rep representations refer to the same
objective object, there is a latent relationship between them.
Therefore, this paper proposes a multi-head attention enhance-
ment module that uses multi-view information to enhance B-
rep information, effectively improving the discriminability of
B-rep features. In the multimodal fusion module, a joint loss
function is designed. The main contributions of this paper can
be summarized as:

• We introduce a novel multimodal approach for 3D CAD
model retrieval that leverages both B-rep and multi-view
data in a joint learning framework. This method capital-
izes on the inherent complementarity between these two
modalities to enhance the retrieval performance.

• A specific convolutional neural network branch within
VGNet is meticulously designed to extract view features
from CAD models, with improved ResBlocks tailored to
capture appearance characteristics of solid models. These
blocks are engineered to focus on visual aspects that
are critical for model differentiation. Concurrently, the
graph neural network branch employs specialized graph
convolution and pooling operations, e.g., BAGConv and
BAGPool, to aggregate hierarchical graph features. This
design ensures that rich and informative B-rep attribute
graph information is preserved, providing a detailed struc-
tural representation that complements the visual data.

• An effective multi-head attention enhancement module is
designed for enriching the B-rep graph features based
on multi-view information. This module is capable of
dynamically focusing on the most informative features
from the multi-view data, thereby enhancing the rep-
resentational capacity of the B-rep graph features and

improving the overall retrieval performance of VGNet.
• Multimodal fusion is designed to integrate graph features

with view features, harnessing both topological and ap-
pearance information for a robust multimodal representa-
tion of 3D CAD models, which ensures a more cohesive
and effective representation for 3D CAD model retrieval.

II. RELATED WORK

This section presents the existing approaches that relate to
the research topic of this article, including voxel-based 3D
model retrieval approaches, point-cloud-based 3D model re-
trieval approaches, view-based 3D model retrieval approaches,
and B-rep-based 3D CAD model retrieval approaches.

A. Voxel-based 3D model retrieval approaches
The voxel-based approaches use a set of voxels in the

three-dimensional space to represent the 3D model and then
establish the neural network based on the voxel to extract
the features and complete the recognition and retrieval of the
3D model. Wu et al. [8] proposed the 3D ShapeNets network
and 3D models are represented as the probability distribution
on the 3D voxel grid, where each voxel is represented by
a binary vector that indicates its presence or absence in the
grid. The 3D grid’s voxel characteristics of the 3D model
are learned using a deep convolutional network. However, the
use of full-voxel-based models may incur significant compu-
tational and memory costs, especially as the voxel resolution
increases. To address this issue, Wang et al. [9] and Riegler
et al. [10] employed tree structures that selectively perform
computations on the occupied voxels and discard empty grids.
While Octree-based approaches exhibit good performance,
preserving the fine details of input data needs high-resolution
representations. Insufficient resolution will result in several
points being aggregated in the same voxel grid, leading to
a loss of distinguishability.
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B. Point-cloud-based 3D model retrieval approaches

Point-cloud-based models utilize a collection of points that
are sampled from a 3D shape’s surface as the input data.
While they retain more complete structural information, their
unstructured and irregular nature makes them unsuitable for
conventional 2D CNN. PointNet [11] was the first to introduce
a deep neural network to handle disordered point cloud data.
To ensure permutation invariance, PointNet applied symmetric
function-max pooling and used a spatial transform block.
Furthermore, In PointNet++ [12], the PointNet module was
used for local points and local features were aggregated in
a hierarchical way. Kd-Network [13] extracted and gathered
features by subdividing points on Kd-trees. DGCNN [14]
proposed EdgeConv operation to better exploit local structure
information and obtain edge features among points. Li et
al. [15] proposed the χ-Conv operation, which can extract local
patch features. DSACNN [16] employed novel convolutional
operations to process point cloud data directly and also dynam-
ically focused on local semantic information. CurveNet [17]
proposed a long-distance point cloud feature extraction op-
erator, which can provide additional geometric information
for the whole point cloud features by using guided walk on
the isomorphic graph to gather a series of curves of fixed
number and length. DCNet [18] is a network used to solve
fine-grained 3D point cloud classification tasks, and a novel
mechanism of mutual complementarity is designed between
the attention block and the dynamic sample confusion block.
RECON [19] unifies contrastive and generative modeling for
3D representation multimodal learning, achieving state-of-the-
art performance by combining the strengths of both paradigms.
FGPNet [20] is the first weakly supervised network for fine-
grained 3D point clouds task. Unlike supervised fine-grained
classification approaches that use category labels and other
manually annotated information, FGPNet has developed a
unified framework that only uses category labels as input to
process local geometric details and global spatial structures.
However, such approaches lose some structural information
and topological information of the model in the process of
sampling as a point set.

C. View-based 3D model retrieval approaches

View-based models are often used to describe 3D objects
through multiple views from various angles. Handcraft de-
scriptors are investigated in the beginning. The initial and
classic view-based 3D descriptor, known as Lighting Field
descriptor [21], consists of a collection of ten views obtained
from a hemisphere. The similarity between two 3D objects is
measured using probabilistic matching in [22], [23]. Many
deep neural network based models have been extensively
studied with the development of deep learning. For example,
Su et al. [24] proposed a convolutional neural network for
multi-view that employs a weight-shared CNN to generate
features for each view. Furthermore, Feng et al. [25], proposed
a group based approach to mine the relationship among views.
Due to the high maturity of deep neural networks in 2D
images, this kind of approaches can capture a wealth of
appearance information. However, due to the projection from

different angles, some details are lost and the internal structural
information of 3D model cannot be used effectively [26].

D. B-rep-based 3D CAD model retrieval approaches

There are few neural networks that have the ability to
directly process B-rep data. Before the maturity of deep
learning, Mohamed et al. [27], [28] first converted the CAD
model into an attribute graph representing its topological
structure, where the vertices correspond to the faces of the
model, the lines between vertices correspond to the edges of
the model and the attribute values in the graph represent the
spatial geometry information in the 3D CAD model. Then,
models are compared by inexact graph matching using the
attribute graph. However, the performance of this approach
cannot meet the requirements of the industry. With the rapid
development of deep learning, many new approaches have
been proposed. Jayaraman et al. [29] proposed the UV-Net
network architecture, which uses two-dimensional UV coor-
dinates to represent the geometric shape information of 3D
models and efficiently combines image convolutional neural
networks with hierarchical graph neural networks to achieve
retrieval. Colligan et al. [30] used hierarchical graphs to
represent 3D CAD models to complete feature recognition.
Mandelli et al. [31] proposed the CADGCN method, which
uses GNNs for classification and retrieval by converting 3D
models in CAD format into graph data for processing. In
addition, Bai et al. [32] completed the partial retrieval of 3D
CAD models by constructing hierarchical descriptors based
on B-rep and feature graphs. Although these approaches can
capture the internal structure and topology information of 3D
models well, some important appearance information could be
ignored.

III. METHOD

In this section, we introduce the proposed novel multimodal
learning framework VGNet for 3D CAD model retrieval in
detail. VGNet presents an innovative approach that effectively
leverages both B-rep and multi-view data to enhance retrieval
performance. This method capitalizes on the complementary
nature of these two modalities, providing a more compre-
hensive and robust representation for accurate and efficient
retrieval of 3D CAD models. Fig. 1 depicts the overall network
architecture, which takes the B-rep attribute graph and multi-
views as inputs to the VGNet’s respective branches. The output
of VGNet is a 3D CAD model descriptor. VGNet consists of
three modules: Feature Extraction Module, Multi-head Atten-
tion Enhancement Module, and Multimodal Fusion Module.
In the feature extraction module, we propose an innovative
feature extraction method tailored for solid models. In the
view feature extraction network, we employ an improved
ResNet [33], which is more suitable for capturing the nuanced
visual details and geometric features from 3D CAD models.
In the B-rep attribute graph feature extraction network, novel
graph convolutional and pooling operations are designed to
fully leverage the rich topological and geometric information
inherent in B-rep data. Based on the characteristics of the
B-rep attribute graph feature and multiple view features, an
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effective multi-head attention enhancement module is designed
for mining the relationship between the two modalities, and en-
riching the B-rep graph features with multi-view information,
leading to a more comprehensive and accurate representation
of 3D CAD models. In the multimodal fusion module, a
carefully designed joint loss function and a fusion network are
implemented to seamlessly integrate the complementary fea-
tures extracted from B-rep graphs and multi-view images. This
integration strategy is pivotal in enhancing the discriminative
power of the final CAD model descriptor, thereby improving
the overall retrieval performance of VGNet.

A. Feature extraction module

Different modalities of data, i.e. graph and views, are
input respective branches in the feature extraction module.
In the view branch, we utilize multiple convolutional layers,
specifically designed for CAD models, to extract features from
projected views of the model. In the B-rep attribute graph
branch, based on the rich attribute information contained in
the graph, the graph convolutional layer and the graph pooling
layer that can fully utilize attributes are designed to extract
graph features. In addition, we combine the different levels
of features to get a B-rep attribute graph feature that contains
structural information and hierarchical information of the 3D
CAD model.
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Batch Norm

Conv.
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(a) ResNet for 3D CAD model (b) Proposed ResBlock (c) Original ResBlock

Fig. 2: Details of the view branch network.

View branch: People can distinguish different models by
observing the appearance of 3D CAD models, which shows
that the appearance of models contains rich recognizable
information. The effect of people viewing a 3D model from a
specific angle is the same as a 2D image. Hence, in this paper,
the multi-view approach is utilized to obtain the appearance
information of the 3D CAD model. Each 3D CAD model is
represented by 12 rendered views captured with a predefined
camera array. These cameras surround the model every 30
degrees. In addition, residual learning is good at capturing
view features, hence we construct residual blocks. As shown
in Fig. 2(a), we use the ResBlocks to construct a ResNet for
extracting view features. To be more accommodating to the re-
trieval of 3D CAD models, we adopt a new way to implement
ResBlock [Fig. 2(b)]. In comparison to the original ResBlock
[Fig. 2(c)], we remove the batch normalization layers from

residual mapping. This is because, in the industrial application
field, 3D CAD models are often more structured and regular
due to they are constrained by engineering specifications and
industry standards. Hence, the normalization of features by
the batch normalization layer might be less effective for 3D
CAD model retrieval. The implementation of ResBlock is as
follows: the residual mapping consists of two convolutional
layers followed by an activation function ReLU. The input
and output of the residual mapping are added together, and
then the output of ResBlock is obtained by passing through a
batch normalization layer and a ReLU activation function.

PlaneToroidalToroidal CylindricalCylindrical ConicalConical PlaneToroidal Cylindrical Conical

Fig. 3: Modification of the bolt part results in changes to the
B-rep attribute graph.

Graph branch: The Standard for the Exchange of Product
model data (STEP) [34] file plays an important role in geo-
metric data exchange as an intermediate exchange format for
3D CAD. This paper extracts information from STEP files to
obtain B-rep attribute graphs. As shown in Fig. 3, the left side
shows the 3D CAD model of a bolt, and the right side shows
its corresponding generated B-rep attribute graph. In the B-rep
attribute graph, the node represents the surface in the CAD
model, and the edge represents the curve between intersecting
surfaces. Considering the tradeoff between the precision of
representation and the computational cost, the attributes in
the B-rep attribute graph are defined based on the particular
information extracted from the 3D CAD model, e.g. surface
type, normal vector, tangent vector as face attributes, and curve
type, direction, length as edge attributes, and they could be
adjusted according to specific tasks. The B-rep attribute graph
is associated with the structure of the 3D CAD model, and
the farther the distance between nodes, the weaker the mutual
dependence of the structure in the CAD model.

After obtaining the B-rep attribute graph, this paper uses a
graph neural network to extract information from it. GCN [35]
is a typical graph neural network that can capture global
information of graphs and effectively represent node features.
However, the convolution operation in GCN requires the entire
graph to be stored in memory, which can be very memory-
intensive and limit its ability to handle large graphs. Addition-
ally, GCN requires information of the entire graph’s structure
during training, which limits its inference capabilities. In the
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(c) Visual illustration of the BAGPool

(b) Visual illustration of the BAGConv
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(a) Graph feature extraction network for B-rep attribute graphs consists of three components: BAGConv, BAGPool, and residual connection structure.
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(c) Visual illustration of the BAGPool
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(b) Visual illustration of BAGConv. It considers both the node attributes and edge attributes of B-rep attribute graph during the convolution process.

① B-rep attribute graph ② Calculate the importance scores ③ Merge to generate new nodes

(c) Visual illustration of BAGPool. It is a pooling mechanism based on edge contraction, which preserves the original structural information of the
graph during the pooling process while utilizing the node and edge attributes of the B-rep attribute graph.

Fig. 4: Details of the graph branch network. A graph neural network, as shown in (a), is designed to extract features from the
B-rep attribute graph. (b) and (c) depict the BAGConv convolution operation and BAGPool pooling operation, respectively.

scenario of 3D CAD model reuse, 3D CAD model modifica-
tions are usually involved, which means that the corresponding
B-rep attribute graph will change frequently. For example, In
Fig. 3, compared to the CAD model in the upper part, the
CAD model in the lower part removes a groove, resulting
in significant changes to nodes in local regions of the B-
rep attribute graph. This indicates that scenarios involving the
reuse of 3D CAD models require strong inference capabilities,
which GCN does not provide. Therefore, this paper proposes
a network architecture shown in Fig. 4(a). In this architecture,
the BAGConv (B-rep Attribute Graph Convolution) convolu-
tional layer is designed with reference to SAGEConv [36],
the BAGPool (B-rep Attribute Graph Pooling) pooling layer

is designed with reference to EdgePool [37], and the residual
connections are adopted to transfer shallow graph features to
deep networks to supplement local information.

BAGConv completes the convolution by considering adja-
cent node attributes and edge attributes at the same time, as
shown in Fig. 4(b). Firstly, select a node to be updated, which
is represented by a red node in Fig. 4(b). Secondly, sample
the neighborhood of the node to be updated with variable
proportions, obtaining the features of the sampled neighbor
nodes and corresponding edge features, which are respectively
represented by blue nodes and yellow lines in the figure.
Finally, node updating is performed using an update function
that leverages both node and edge features. BAGConv can be
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represented in the following as:

h
(k+1)
i = σ(W (k)·[h(k)i ,Mean(f (k)∆ (e

(k)
ij )⊙

h
(k)
j ,∀j ∈ ξϵ(N (i)))]),

(1)

where h
(k+1)
i represents the newly generated feature vector

of the i-th node in the (k+1)-th layer. e(k)ij represents the
edge features between node i and node j, and f∆ is a
linear projection used for projecting the edge to node feature
space. {h(k)j ,∀j ∈ ξϵ(N (i))} represents the sampled neighbor
nodes, where N (i) represents the neighbor nodes of node
i, ξ represents the sampling function and ϵ represents the
sampling rate. The Mean function calculates the average of
the sampled neighbor nodes along each dimension. W is the
weight matrix. The resulting vector is then passed through a
nonlinear activation function σ to produce the (k+1)-th layer
representation for the target node. In the BAGConv convo-
lutional operation, both surface features and curve features
are used, resulting in learned graph features that contain rich
attribute characteristics.

Algorithm 1 B-rep Attribute Graph Pooling

Input: B-rep attribute graph G(k)(V,E), node features
{h(k)i ,∀i ∈ V }, edge features {e(k)ij ,∀ij ∈ E}

Output: B-rep attribute graph G(k+1)(V,E)
1: Calculate the score for each edge using Eq. (2);
2: Sort the edges in descending order by their scores;
3: for each edge do
4: if nodes at the ends of edge haven’t been merged then
5: Merge two nodes using Eq. (3);
6: end if
7: end for
8: for unmerged nodes do
9: Connected to adjacent merged subgraph;

10: end for
11: Update the edges using Eq. (4);
12: return B-rep attribute graph G(k+1)(V,E);

In addition, for graph neural networks, graph pooling can
be roughly divided into three categories: graph collapse, edge
contraction, and top-K. In the B-rep attribute graph, edges
reflect the relationship between adjacent nodes, and edge
attributes contain important information. Therefore, pooling
should be based on these characteristics. However, graph
collapse and top-K do not make use of edges, hence this
paper proposes BAGPool. Algorithm 1 shows the process of
BAGPool. Firstly, the importance scores between each pair of
adjacent nodes are calculated using node and edge features as:

Score(k)ij = Softmax(W (k)(f
(k)
∆ (e

(k)
ij )⊙

[hi
(k), hj

(k)]) + b(k)),
(2)

where Score(k)ij is the importance scores between node i and
node j. h(k)i is the feature vector of node i, W (k) is the
weight matrix and b(k) is the bias. f∆ is a fully connected
layer FC(5, 14) used for aligning feature dimensions.

After obtaining the importance scores, the edges in the

graph are sorted in descending order based on these scores,
and the nodes on both sides of each edge are merged. This
ensures that the important nodes are prioritized for merging.
The feature of the newly merged node is obtained as:

h
(k+1)
ij = Score(k)ij ⊙ (h

(k)
i + h

(k)
j ), (3)

where + is a summation operation and h(k+1)
ij represents the

feature vector of the new node. The updated equation for the
edge features after pooling is as follow:

e
(k+1)
ij = Score(k)ij ⊙ e

(k)
ij , (4)

the edge features are updated by using the importance score.
Based on the connection relationship of nodes, the edge
contraction pooling operation does not affect the structural
information of the graph. This pooling operation merges neigh-
bor nodes without losing attributes, making it more consistent
with the characteristics of accurate representation of 3D CAD
models represented by B-rep.

With the deepening of the convolution layer and pooling
layer, the perceptual range of the network becomes larger and
larger and the semantic information it contains becomes richer
and richer. However, the representation of the deep layers is
more inclined to the overall characteristics of the 3D CAD
model and will ignore the local information contained in the
shallow layers. Hence, the graph embedding of the shallow
layers can be transmitted to the deep layers to supplement the
local information that is ignored in the deep layers. Inspired
by JKNet [38], we transfer graph embedding from shallow
layers to deep layers and combine them by concatenation
so that the final graph embedding contains rich hierarchical
structure information. To obtain graph embedding from the B-
rep attribute graph, we utilize the readout mechanism, which
is defined as follows:

Hk = {hk1 , hk2 , ..., hkn}, (5)

R(Hk) = σ(
1

n

n∑
i=1

hki ), (6)

where Hk represents the set of nodes of the graph of the k-th
layer. hki denotes the feature of the i-th node in layer k. R
means the Readout function. After the graph embedding of
each layer is obtained, they are concatenated and aggregated,
which is defined as:

g = MLP([R(H1),R(H2), ...,R(Hk)]), (7)

where MLP consists of two fully connected layers
FC(1280, 256) → FC(256, 256). The graph embeddings of
the middle layers are concatenated at the end and the graph
embedding g of the 3D CAD model is obtained by MLP.

B. Multi-head attention enhancement module

In order to make full use of the view features and B-
rep attribute graph feature, it is necessary to mine the latent
information in each view and its relationship with the B-
rep attribute graph. Inspired by Transformer [39], this paper
adopts the multi-head attention mechanism in Fig. 5 to mine
the latent information. The view features are used to assign
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Fig. 5: Attention Score Block using a multi-head attention
mechanism. g represents graph feature, while V represent view
features. Qi is operated with each ki to obtain a similarity
score αi. pi are then weighted and summed based on the simi-
larity scores to obtain the attention score of this attention layer.
Finally, the attention scores from each layer are concatenated
and passed through a fully connected layer to obtain the final
attention score.

weights to the graph feature, so as to enhance the graph
feature. As shown in Fig. 1, after the view features are
obtained, they are fed to the transition network to make view
features and graph feature have the same vector dimension. In
this paper, the transition network consists of fully connected
layers FC(4096, 1024) → FC(1024, 256). The attribute graph
feature and the transition view features interact to produce the
attention score S(g, V ), which is defined as:

S(g, V ) = A(Q,K,P ) = A(L1g, L2V,L3V ), (8)

where the B-rep attribute graph feature is represented by
g ∈ R1×n1 and view features is represented by V =
{v1, v2, . . . , vN} ⊆ RN×n1 . n1 is the feature dimension. V is
the collection of all view features of the model and vi is a 1×n1
tensor representing the feature of the i-th view. Q is equal to
L1g, K is equal to L2V and P is equal to L3V . L1, L2

and L3 represent the linear projection layer. The relationship
between the B-rep attribute graph and views is reasoned by
the function A, which is defined as:

A(Q,K,P ) = ϑ(Concat(b1, . . . , bt)), (9)

bi = Softmax(
QiK

T
i√

n1
)Pi, (10)

where bi ∈ R1×n1
t represents the attention score generated

by each head. In this paper, the number of headers is equal
to 8, which means t is equal to 8. The generated bi are
concatenated and subsequently fed into a fully connected layer
ϑ = FC(256, 256) to obtain the final attention score. More-
over, Q, K, P are divided into Qi, Ki and Pi. Qi ∈ R1×n1

t ,

Ki = {k1i , k2i , ..., kNi } ⊆ RN×n1
t and Pi = {p1i , p2i , ..., pNi } ⊆

RN×n1
t . The final output attention score S(g, V ) ∈ (0, 1).

Attention score reflects the strength of the correlation between
views and attribute graph. The higher the score, the stronger
the correlation. On the contrary, the weaker. For feature
enhancement, local information that is more relevant to cross-
modal features should be given greater importance. So we
use the attention score S(g, V ) to enhance the B-rep attribute
feature through residual connections:

g̃ = g + S(g, V )⊙ g, (11)

where g̃ represents the enhanced B-rep attribute feature.

C. Multimodal fusion module

To fuse the view features and attribute graph feature, this
paper adopts max pooling to obtain the global view feature
from the transition view features and uses the global view
feature and the enhanced graph feature for cross-modal fusion.
To make the feature representation of two modalities of the
same 3D CAD model close to each other in the embedded
space, this paper proposes a correlation loss function, which
is defined as:

Lc = ||δ(v)− δ(g̃)||2, (12)

where v is the global view feature and δ = Sigmoid(log(|·|))
represents a normalized activation function. Aiming to learn
separable features of each of the categories in the dataset,
it could preliminarily filter models in the relevant categories
for a given input by calculating classification probability. To
this end, the cross-entropy loss function is used for VGNet
learning, which is defined as:

Ls = − 1

n

n∑
i=1

(y(i) log p(i) + (1− y(i)) log(1− p(i))), (13)

where p = {p1, p2, ..., pk} is the output scores of all k
categories in VGNet, y is the labels of the input and n is
the minibatch size. Based on the above two loss functions, the
final loss function is defined as:

Lm = αLs + βLc, (14)

where α and β are assigned weights. In this paper, both α and
β are equal to 0.5. In addition, the B-rep attribute graph feature
and view feature are concatenated and the final 3D CAD model
descriptor M is obtained through the fusion network, which
is defined as:

M = ψ([g̃, v]), (15)

where ψ is the fusion network, which is a multi-layer per-
ceptron with two fully connected layers FC(512, 256) →
FC(256, 256) in this paper.

IV. EXPERIMENTS

In this section, the dataset CADNet30 used in the experi-
ments is first introduced, then the experiments of VGNet in
3D CAD model retrieval are introduced, and the performance
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Fig. 6: Some model examples of the CADNet30 dataset.

of the proposed approach in this paper is analyzed by com-
paring with the state-of-the-art approaches, including point-
cloud-based approaches, view-based approaches. To verify the
effectiveness of the proposed module in this paper, we also
performed ablation experiments.

A. Experiment preparation

This section provides a detailed description of the datasets
and training strategies used for the experiments.

TABLE I: Attributes of the B-rep attribute graph.

Attributes Explanations
Ftype Face types in the CAD model, including

Plane, Torus, Sphere, Cylinder, Cone, and
B-spline.

Farea Area of the face in the CAD model.
Fnormal Normal vector of the face centroid in the

CAD model.
Ftangent Tangent vector of the face centroid in the

CAD model.
Etype Edge types in the CAD model, including

Line, Circle, and B-spline.
Edirection The direction of the edge (if the edge is

a line), otherwise the line connecting both
ends of the edge is taken as the direction.

Elength Length of the edge in the CAD model.

Dataset: Now there are many 3D model databases on
the Internet. Some of them are based on grids and point
clouds, such as the Princeton ModelNet dataset. However,
such inexactly represented models are not practical for indus-
trial manufacturing with high precision requirements. There

are also databases whose representations are exact, such as
SolidLetters. However these datasets are not real models
used in industrial manufacturing. Based on this situation, we
collected industrial models from local companies and factories
and constructed a new 3D CAD model dataset, called CAD-
Net30. These part models are used in real production, they
are accurate and can be converted to STEP representations.
The dataset is constructed under professional guidance and
consists of 10,365 parts. It is categorized into 30 categories
based on the standard mechanical parts catalog. Some of the
categories include normal gear, flange, bolt, bevel gear, wire
tensioner, coupling sleeve, nut, lifting hook, etc. In this paper,
experiments are performed based on this dataset to confirm the
effectiveness of VGNet. Some models in the dataset are shown
in Fig. 6. In the B-rep attribute graph, nodes represent faces
of the CAD model, and edges represent links between faces.
Taking into account both performance and computational cost,
we selected the face attributes and edge attributes shown in
Table I as node features and edge features from the 3D CAD
model’s B-rep data. Furthermore, to verify the universality of
VGNet, we also completed the performance evaluation on the
publicly available FabWave dataset [40]. The FabWave dataset
is similar to CADNet30, as both contain realistic industrial
manufacturing models. The FabWave dataset consists of 4475
3D CAD models, which are divided into 45 categories.

Training strategy: The training process of the VGNet frame-
work was performed in an end-to-end manner, where both
the B-rep attribute graph branch and the multi-view branch
extracted features using their respective feature extraction
networks. The train-to-test ratios were set to 3, and we trained
the VGNet for a maximum of 50 epochs. In addition, we
employed a decayed learning rate, the ADAM optimizer, and
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a loss function composed of correlation loss and cross-entropy
loss. The experiments were performed with an Intel® Xeon®

E5-2686 v4 @ 2.30GHz CPU and an Nvidia GeForce RTXTM

3080 Ti GPU.

B. Comparison to state-of-the-art approaches

TABLE II: Retrieval results on the CADNet30 dataset. In ex-
periments, our proposed framework VGNet is compared with
state-of-the-art models that use different representations of 3D
CAD models. MVCNN (GoogLeNet) means that GoogLeNet
is employed as the base architecture for weight-shared CNN
in MVCNN.

Approach Classification Retrieval
(Overall Accuracy) (mAP)

PointNet [11] 88.7% 81.6%
PointNet++ [12] 89.3% 84.0%
PointCNN [15] 90.5% 85.7%
DGCNN [14] 92.6% 87.3%
CurveNet [17] 96.8% 91.9%
MVCNN [24] 95.3% 90.6%

MVCNN (GoogLeNet) 97.2% 94.5%
GVCNN [25] 97.8% 95.3%

GCN [35] 84.3% 71.7%
GraphSAGE [36] 88.2% 81.2%

UV-Net [29] 98.2% 95.2%
CADGCN [31] 85.9% 77.1%
RECON [19] 97.8% 95.5%

VGNet 98.8% 96.1%

Fig. 7: The PR curves of our VGNet and other compared
approaches on the CADNet30 dataset. In MVCNN model,
GoogLeNet is employed as the base network.

To demonstrate the superiority of our approach, we
compare our VGNet to several state-of-the-art (SOTA)
approaches, including point-cloud-based 3D model ap-
proaches (PointNet [11], PointNet++ [12], PointCNN [15],
DGCNN [14], CurveNet [17], view-based 3D model ap-
proaches (MVCNN [24], GVCNN [25]), graph neural network

based approaches (GCN [35], GraphSAGE [36], UV-Net [29],
CADGCN [31] ), and the multimodal approach RECON [19]
on CADNet30 dataset and FabWave dataset. For a fair com-
parison, we trained the other approaches again using the same
training datasets.

Fig. 8: The PR curves of VGNet and the other compared
approaches on the FabWave dataset. In the MVCNN model,
GoogLeNet is employed as the base network.

TABLE III: Retrieval results of our VGNet and the other
approaches on the FabWave dataset.

Approach Classification Retrieval
(Overall Accuracy) (mAP)

PointNet [11] 76.8% 68.4%
PointNet++ [12] 80.6% 72.4%
PointCNN [15] 82.7% 70.2%
DGCNN [14] 70.3% 58.1%
CurveNet [17] 87.2% 78.9%
MVCNN [24] 87.2% 80.3%

MVCNN (GoogLeNet) 92.1% 83.7%
GVCNN [25] 92.8% 87.6%

GCN [35] 79.3% 70.2%
GraphSAGE [36] 83.6% 76.8%

UV-Net [29] 94.4% 89.1%
CADGCN [31] 84.5% 79.4%
RECON [19] 93.8% 86.2%

VGNet 98.0% 92.9%

Quantitative Results: Table II presents the quantitative re-
sults of the experiment. Compared to other approaches, VGNet
proposed in this paper achieved the best performance in terms
of accuracy and mAP. The classification accuracy reached
98.8%, and the retrieval mAP reached 96.1%. Compared to the
typical MVCNN in multi-view approaches, VGNet has shown
significant performance improvement in both classification and
retrieval tasks. Furthermore, compared with the state-of-the-art
GVCNN model in view-based approaches, VGNet achieved
1.0% and 0.8% improvement in classification accuracy and
retrieval accuracy, respectively. VGNet also outperformed
point-cloud-based retrieval approaches, where it significantly
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Fig. 9: When given inputs normal gear and flange, different retrieval methods yield varying results.

improved classification and retrieval accuracy compared to the
typical PointNet model in point cloud. Additionally, VGNet
outperformed network models based on GNN. Compared to
UV-Net, VGNet improved 0.6% and 0.9% in classification
and retrieval accuracy, respectively. Furthermore, VGNet out-
performed the multimodal method RECON. Fig. 7 shows the
precision-recall (PR) curves for all approaches listed in Table
II. It can be seen that VGNet has the best retrieval perfor-
mance, and compared with other approaches, the proposed
approach can maintain a high level of precision when the recall
rate is high. Moreover, the area enclosed by the PR curve of
VGNet is the largest, indicating that VGNet has better stability.

To validate the generalization ability of VGNet proposed

in this paper, we evaluated its performance on the publicly
available FabWave dataset. As presented in Table III, VGNet
also exhibits the highest performance. Fig. 8 shows the PR
curve of each approach on FabWave. As can be seen from
the figure, VGNet achieved the best balance between recall
and precision, demonstrating the best performance. Compared
to other approaches, VGNet showed higher precision in the
high recall rate area. For example, when the recall rate is 0.9,
VGNet had a precision rate of 0.81, while the precision rates
of other approaches were all below 0.8. These experimental
results indicate that VGNet proposed in this paper showed
good retrieval performance on the FabWave dataset, which
demonstrates its good generalization ability.
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Fig. 10: When given inputs bolt and bevel gear, different retrieval methods yield varying results.

Qualitative Results: Qualitative results are shown in Fig. 9,
Fig. 10, and Fig. 11. These figures demonstrate the different
models returned by different retrieval methods when inputting
a model. Among them, the models highlighted in green
boxes indicate that VGNet has better detail capture capability.
The models highlighted in blue boxes show that the models
returned by VGNet exhibit diversity in geometric appearance,
providing more choices for retrieval. The models highlighted
in red boxes indicate retrieval errors, as they differ from the
category of the input model. Specifically, in Fig. 9, when the
input model is a normal gear, the models in the green boxes
have rounded corners in the middle protruding section, while

the models without rounded corners from other methods have
higher rankings. This demonstrates that VGNet has a better
capability to capture details. In Fig. 9 and Fig. 10, the models
in the blue boxes exhibit significant geometric differences from
the input model, but they still belong to the same category as
their respective input models. This illustrates that VGNet can
provide more choices in model retrieval.

In Fig. 9, Fig. 10 and Fig. 11, the models in the red boxes
do not belong to the same category as their corresponding
input models. It can be observed that other methods have
retrieval errors. For example, in Fig. 9, when the input model
is a normal gear, VGNet, RECON, UV-Net, and the view-
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Fig. 11: When given inputs wire tensioner and coupling sleeve, different retrieval methods yield varying results.

based methods MVCNN and GVCNN all returned the correct
models. However, the point-cloud-based methods CurveNet
and DGCNN both returned an incorrect model, which is a
lock washer. The GCN method returned two incorrect models,
namely a lock washer and a bevel gear. The CADGCN method
returned an incorrect model, which is a lock washer. When
the input model is a flange, the GCN method returned three
models, namely a normal washer, a round nut, and a grooved
pin. The CADGCN method returned two incorrect models,
namely a coupling sleeve and a normal washer. All the other
methods retrieved the models correctly. In Fig. 10, when the
input model is a bolt, MVCNN returned a grooved pin and
a stud, while GVCNN returned a grooved pin and a screw.

CurveNet, which exhibits better retrieval performance on point
clouds, returned a stud and a screw. Similarly, UV-Net also
returned two incorrect models, both of which are screws.
CADGCN returned two incorrect models, namely a stud and
a grooved pin. The multimodal method RECON returned a
stud. In contrast, VGNet consistently returned models that
belong to the bolt category. When the input model is a bevel
gear, MVCNN, GVCNN and CADGCN both returned a lock
washer, and MVCNN additionally returned an incorrect model,
a normal gear. The point-cloud-based methods CurveNet and
DGCNN each returned two incorrect models. CurveNet re-
turned a bearing and a normal gear, while DGCNN returned
a lock washer and a bearing. The GCN method returned
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three incorrect models, consisting of one normal gear and
two lock washers. Both UV-Net and RECON returned one
incorrect model, which is a bearing. Similar results can be
observed when other models are used as inputs. In Fig. 11,
when the input model is a wire tensioner, MVCNN, GVCNN
and CADGCN both returned a lifting hook and a wrench,
CurveNet returned a bolt. UV-Net and RECON, which have
better retrieval performance, also returned a wrench. When
the input model is a coupling sleeve, MVCNN returned two
incorrect models, namely a bearing and a flange. GVCNN
returned one incorrect model, a normal washer. Both CurveNet
and DGCNN returned an incorrect model, which is a bearing.
In addition, DGCNN also returned an incorrect model, a
normal nut. The GCN method returned three incorrect models,
consisting of two flanges and one normal nut. UV-Net returned
one incorrect model, a normal washer. CADGCN also returned
one incorrect model, a flange. It demonstrated that VGNet
exhibits superior retrieval performance.

C. Ablation experiment

In this section, we conduct ablation experiments to sys-
tematically evaluate the contributions of VGNet’s multimodal
feature fusion method, the improved ResBlock, the BAGPool
strategy, and the multimodal learning strategy, to the overall
performance of the model.

Multimodal fusion module. We analyze the effectiveness
of the feature fusion method by comparing the performance of
VGNet with different variants of multimodal fusion modules.
This comparison enables us to validate the effectiveness of the
multimodal fusion module employed in VGNet, ensuring that
the integration of view and B-rep features is optimized for the
task of 3D CAD model retrieval. These variants are defined
as follows:
• Attribute Graph Model: We only conducted experiments

using the B-rep attribute graph feature extraction network
in the graph branch.

• Multi-view Model: We only conducted experiments using
the view feature extraction network in the view branch.

• VGNet (None): We removed the Multi-head Attention
Enhancement Module (MAEM) and the Multimodal Fu-
sion Module (MMFM) in this variant for comparison with
other variants.

• VGNet (MAEM): We used a multi-head attention mech-
anism and direct fusion in the fusion module instead
of using the fusion approach proposed (MMFM) in this
paper.

• VGNet (MMFM): We used a correlation loss function
and did not use MAEM proposed in this paper.

• VGNet (Ours): We used the MAEM and MMFM mod-
ules, which constitute the final architecture of our model.

First, we conducted retrieval experiments using models
based on the B-rep attribute graph and view respectively.
As shown in Table IV, the accuracy and mAP of the B-
rep attribute graph based model reached 90.6% and 84.2%,
respectively. The view-based model achieved an accuracy of
97.2% and a mAP of 94.5%. Then, we conducted a controlled
experiment on the two modules.

MAEM: The multi-head attention enhancement module is
used to enhance the feature of the B-rep attribute graph,
making it more discriminative. To investigate the benefits
introduced by this module, we compared VGNet (MAEM)
with VGNet (None). As shown in Table IV, if MAEM is
removed, accuracy and mAP suffered decreases of 0.9% and
0.3% respectively. This demonstrates the importance of the
multi-head attention enhancement module.

MMFM: The multimodal fusion module is used to fuse
features from two different modalities. Compared to direct
fusion, we use a correlation loss function in the fusion module.
To investigate the benefits introduced by this module, we also
compared VGNet (MMFM) with VGNet (None). As shown in
Table IV, if MMFM is removed, accuracy and mAP suffered
decreases of 0.6% and 0.1% respectively. This is because the
correlation loss function makes different representations of the
same model closer together and the cross-entropy loss function
makes the representation of models of different classes farther
away.

TABLE IV: Impact Analysis: Evaluating the contribution of
VGNet’s architectural components to retrieval performance.

Approach MAEM MMFM Accuracy mAP

Attribute Graph Model 90.6% 84.2%
Multi-view Model 97.2% 94.5%

VGNet (None) 97.6% 95.4%
VGNet (MAEM) ✓ 98.5% 95.7%
VGNet (MMFM) ✓ 98.2% 95.5%

VGNet (Ours) ✓ ✓ 98.8% 96.1%

The above experiments show that both modules can effec-
tively improve performance, hence we also did the experiment
of VGNet (Ours) containing these two modules. As shown in
Table IV, VGNet (Ours) performed the best with accuracy and
mAP reaching 98.8% and 96.1% respectively.

To further validate the effectiveness of the loss function
designed in the Multimodal Fusion Module, we conducted ab-
lation experiments on the design of fusion weights. As shown
in Fig. 12, the results indicated that the optimal performance
was achieved when both α and β were set to 0.5, confirming
the utility of our loss function in effectively balancing the
contributions from different modalities for enhanced 3D CAD
model retrieval.

The improved ResBlock. We assess the role of the im-
proved ResBlock in the view feature extraction by replacing
it with a standard ResBlock and observing the changes in
retrieval performance. This experiment helps us understand
the importance of ResBlock’s design tailored for 3D CAD
model retrieval. The experimental results, presented in Ta-
ble V, demonstrate a significant difference in performance
when using the improved ResBlock compared to the standard
version.

The number of views in view branch. To investigate the
impact of the number of views on the retrieval performance of
VGNet, we conducted an ablation study using 4, 8, 12, 16, and
20 views. The results, summarized in Table VI, demonstrate
how varying the number of views affects both accuracy and
mean average precision (mAP). The results indicate that using
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TABLE V: Ablation study on the improved ResBlock to evaluate its contribution to retrieval performance.

Approach Original ResBlock Improved ResBlock Accuracy mAP

VGNet (Ori. ResBlock) ✓ 98.2% 95.3%
VGNet (Ours) ✓ 98.8% 96.1%
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Fig. 12: Ablation study on the loss function designed in the
Multimodal Fusion Module to evaluate its contribution to
retrieval performance.

TABLE VI: The impact of the number of views on the
retrieval performance of VGNet.

Number of Views Accuracy mAP

4 98.2% 95.1%
8 98.5% 95.5%
12 98.8% 96.1%
16 98.8% 96.0%
20 98.8% 96.1%

12 views achieves the mAP of 96.1% with an accuracy of
98.8%. Increasing the number of views to 16 and 20 does
not lead to significant improvements in performance, and even
shows a slight decrease in mAP. Therefore, considering both
performance and efficiency, we decided to use 12 views in
our final implementation. This choice ensures that VGNet
performs effectively without unnecessary computational over-
head, making it a practical solution for industrial applications.

BAGPool strategy. We evaluate the effectiveness of the
BAGPool strategy by contrasting it with the EdgePool method
within the graph neural network branch. This comparison can
validate the BAGPool’s role in aggregating and preserving
the informative attributes of the B-rep graph. By removing
BAGPool and substituting it with EdgePool, we can directly
measure the impact on the model’s performance. As shown
in Table VII, the comparison demonstrates that BAGPool out-
performs EdgePool in maintaining the informative attributes
of the B-rep graph, resulting in improved retrieval accuracy
for VGNet.

Multimodal learning strategy. We investigate the perfor-

TABLE VII: Ablation study on the improved BAGPool
strategy to evaluate its contribution to retrieval performance.

Approach EdgePool BAGPool Accuracy mAP

VGNet (EdgePool) ✓ 97.9% 94.9%
VGNet (Ours) ✓ 98.8% 96.1%

mance of various multimodal learning strategies by exploring
the synergistic potential between B-rep graph data, multi-view
image data, and point cloud data. The experimental approach
involved sequentially replacing the graph branch and the view
branch in the VGNet architecture with a point cloud branch.
This allowed us to explore which pair of modalities exhibited
the best complementarity. In the point cloud branch, the multi-
head attention enhancement module and multimodal fusion
module remained unchanged, while the feature extraction
module was adapted to employ a method based on PointNet++.
The experimental results shown in Table VIII indicated that
the combination of point cloud and view data outperformed
the point cloud and graph data, but neither surpassed the
performance of the graph and view combination. This finding
underscores the varying degrees of complementarity between
different modalities and suggests that the graph and view
combination is the most effective for our retrieval task.

D. Visualization analysis

To provide a visual understanding of how 3D CAD models
are represented in the latent feature space by VGNet, we
performed t-SNE visualizations of the test set (see Fig. 13).
The t-SNE algorithm reduces high-dimensional features to
a two-dimensional space, allowing us to observe the clus-
tering behavior of different categories. The visualizations
show that VGNet successfully maps 3D CAD models into
a latent feature space where models from the same category
are grouped together, and models from different categories
are well-separated. This highlights the model’s discriminative
capability and confirms the effectiveness of our approach.

V. CONCLUSION

In this paper, we propose a new deep neural network
architecture named VGNet for 3D CAD model retrieval. Since
the B-rep representation of 3D CAD models contains rich
structural information and engineering semantic information,
and view representation has abundant appearance information,
which describes 3D CAD models from different angles, they
are complementary to each other. Hence, in VGNet, firstly the
view branch is designed to extract view features from multiple
projected views, and the graph branch is designed to extract
graph features from the B-rep attribute graph. A multimodal
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TABLE VIII: Ablation study on different multimodal learning strategies to evaluate its contribution to retrieval performance.

Approach B-rep graph Multi-view image Point cloud Accuracy mAP

Attribute Graph Model ✓ 90.6% 84.2%
Multi-view Model ✓ 97.2% 94.5%
Point cloud Model ✓ 89.3% 84.0%

VGNet (B-rep + Point cloud) ✓ ✓ 91.8% 85.2%
VGNet (Multi-view + Point cloud) ✓ ✓ 98.0% 92.6%

VGNet (Ours) ✓ ✓ 98.8% 96.1%

Fig. 13: T-SNE visualization of the latent feature space. (Top)
Complete test set. (Bottom) 10% random sample from the test
set. Different colors represent different categories.

fusion module is used to fuse these two types of features to
generate the final 3D CAD model descriptor. Furthermore,
inspired by MixFormer, the multi-head attention enhancement
module is designed to enhance the graph feature, making it
more informative. Thus, VGNet is very suitable for retrieval
needs in industrial manufacturing processes. Comprehensive
experiments validated the effectiveness of our approach.

Limitations & future work. Firstly, as the complexity
of CAD models increases, the B-rep graphs become more
intricate, potentially leading to difficulties for the graph branch
in capturing all essential structural information and long-range
dependencies, which could impact retrieval performance. In

the future, we plan to optimize the graph neural network and
conduct experiments on more complex 3D CAD models to im-
prove the scalability and generalization ability of our approach.
Secondly, the multi-view representation, while effective, may
struggle with capturing fine details in highly complex models,
especially if the number of available views is limited and the
resolution is constrained. We are investigating techniques to
enhance the view-based representation to better capture these
details. Additionally, we recognize that the balance between
the contributions of different modalities to the final descriptor
is crucial. As CAD models grow in complexity, the relative
importance of geometric, topological, and appearance features
may shift, requiring a more adaptive fusion strategy. We are
working on developing mechanisms to dynamically adjust
the fusion weights based on the model’s complexity. Also,
other modal representations of 3D CAD models could be
considered to enhance the representation ability of the learned
descriptors. Moreover, incorporating contrastive learning into
the framework to refine the embedding distribution within
the latent space could be an interesting extension. It could
be helpful to enhance the system’s robustness, enabling it
to effectively manage retrieval tasks with finer granularity,
even within the context of complex CAD models. Lastly, we
are exploring the integration of graph matching methods to
facilitate more nuanced and detailed attribute matching and
local retrieval. By incorporating these methods, we expect
to significantly improve the precision and accuracy of our
model in identifying and retrieving CAD models with specific
attributes. This will pave the way for more sophisticated
applications in the field of CAD model retrieval and analysis.

REFERENCES

[1] C. Zhang and G. Zhou, “A view-based 3D CAD model reuse framework
enabling product lifecycle reuse,” Advances in Engineering Software,
vol. 127, pp. 82–89, 2019.

[2] S. Bai, X. Bai, Z. Zhou, Z. Zhang, Q. Tian, and L. J. Latecki, “GIFT:
towards scalable 3D shape retrieval,” IEEE Transactions on Multimedia,
vol. 19, no. 6, pp. 1257–1271, 2017.

[3] D. Song, T.-B. Li, W.-H. Li, W.-Z. Nie, W. Liu, and A.-A. Liu,
“Universal cross-domain 3D model retrieval,” IEEE Transactions on
Multimedia, vol. 23, pp. 2721–2731, 2020.

[4] H. Du, H. Shi, D. Zeng, X.-P. Zhang, and T. Mei, “The elements of
end-to-end deep face recognition: A survey of recent advances,” ACM
Computing Surveys, vol. 54, no. 10s, pp. 1–42, 2022.

[5] W.-Z. Nie, M.-J. Ren, A.-A. Liu, Z. Mao, and J. Nie, “M-GCN: multi-
branch graph convolution network for 2D image-based on 3D model
retrieval,” IEEE Transactions on Multimedia, vol. 23, pp. 1962–1976,
2020.

[6] Q. Liang, Q. Li, W. Nie, and A. Liu, “Unsupervised cross-media graph
convolutional network for 2D image-based 3D model retrieval,” IEEE
Transactions on Multimedia, vol. 25, pp. 3443–3455, 2023.



IEEE TRANSACTIONS ON MULTIMEDIA 16

[7] M. Groover and E. Zimmers, CAD/CAM: Computer-aided design and
manufacturing. Pearson Education, 1983, pp. 35–83.

[8] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao,
“3D ShapeNets: a deep representation for volumetric shapes,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
1912–1920.

[9] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN:
octree-based convolutional neural networks for 3D shape analysis,” ACM
Transactions on Graphics, vol. 36, no. 4, pp. 1–11, 2017.

[10] G. Riegler, A. Osman Ulusoy, and A. Geiger, “OctNet: learning deep 3D
representations at high resolutions,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 3577–3586.

[11] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: deep learning on
point sets for 3D classification and segmentation,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 652–660.

[12] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: deep hierarchical
feature learning on point sets in a metric space,” Advances in Neural
Information Processing Systems, vol. 30, 2017.

[13] R. Klokov and V. Lempitsky, “Escape from cells: deep Kd-networks
for the recognition of 3D point cloud models,” in IEEE International
Conference on Computer Vision, 2017, pp. 863–872.

[14] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,” ACM
Transactions on Graphics, vol. 38, no. 5, pp. 1–12, 2019.

[15] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “PointCNN:
convolution on x-transformed points,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[16] Y. Song, F. He, L. Fan, J. Dai, and Q. Guo, “DSACNN: dynamically
local self-attention CNN for 3D point cloud analysis,” Advanced Engi-
neering Informatics, vol. 54, p. 101803, 2022.

[17] T. Xiang, C. Zhang, Y. Song, J. Yu, and W. Cai, “Walk in the cloud:
learning curves for point clouds shape analysis,” in IEEE International
Conference on Computer Vision, 2021, pp. 915–924.

[18] R. Wu, J. Bai, W. Li, and J. Jiang, “DCNet: exploring fine-grained vision
classification for 3D point clouds,” The Visual Computer, vol. 40, no. 2,
pp. 781–797, 2024.

[19] Z. Qi, R. Dong, G. Fan, Z. Ge, X. Zhang, K. Ma, and L. Yi, “Contrast
with reconstruct: Contrastive 3D representation learning guided by gen-
erative pretraining,” in International Conference on Machine Learning.
PMLR, 2023, pp. 28 223–28 243.

[20] H. Shao, J. Bai, R. Wu, J. Jiang, and H. Liang, “FGPNet: a weakly
supervised fine-grained 3D point clouds classification network,” Pattern
Recognition, vol. 139, p. 109509, 2023.

[21] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung, “On visual
similarity based 3D model retrieval,” Computer Graphics Forum, vol. 22,
no. 3, pp. 223–232, 2003.

[22] Y. Gao, J. Tang, R. Hong, S. Yan, Q. Dai, N. Zhang, and T.-S.
Chua, “Camera constraint-free view-based 3D object retrieval,” IEEE
Transactions on Image Processing, vol. 21, no. 4, pp. 2269–2281, 2011.

[23] D. Zeng, S. Chen, B. Chen, and S. Li, “Improving remote sensing scene
classification by integrating global-context and local-object features,”
Remote Sensing, vol. 10, no. 5, p. 734, 2018.

[24] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3D shape recognition,” in IEEE
International Conference on Computer Vision, 2015, pp. 945–953.

[25] Y. Feng, Z. Zhang, X. Zhao, R. Ji, Y. Gao, and Gvcnn, “Group-
view convolutional neural networks for 3D shape recognition,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 264–
272.

[26] S. Ge, C. Li, S. Zhao, and D. Zeng, “Occluded face recognition in the
wild by identity-diversity inpainting,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 30, no. 10, pp. 3387–3397, 2020.

[27] M. El-Mehalawi and R. A. Miller, “A database system of mechanical
components based on geometric and topological similarity. Part I:
representation,” Computer-Aided Design, vol. 35, no. 1, pp. 83–94, 2003.

[28] El-Mehalawi, Mohamed and Miller, R Allen, “A database system of me-
chanical components based on geometric and topological similarity. part
ii: indexing, retrieval, matching, and similarity assessment,” Computer-
Aided Design, vol. 35, no. 1, pp. 95–105, 2003.

[29] P. K. Jayaraman, A. Sanghi, J. G. Lambourne, K. D. Willis, T. Davies,
H. Shayani, and N. Morris, “UV-Net: learning from boundary representa-
tions,” in IEEE Conference on Computer Vision and Pattern Recognition,
2021, pp. 11 703–11 712.

[30] A. R. Colligan, T. T. Robinson, D. C. Nolan, Y. Hua, and W. Cao,
“Hierarchical CADNet: learning from B-reps for machining feature
recognition,” Computer-Aided Design, vol. 147, p. 103226, 2022.

[31] L. Mandelli and S. Berretti, “CAD 3D model classification by graph
neural networks: A new approach based on STEP format,” arXiv preprint
arXiv:2210.16815, pp. 1–11, 2022.

[32] J. Bai, S. Gao, W. Tang, Y. Liu, and S. Guo, “Design reuse oriented
partial retrieval of CAD models,” Computer-Aided Design, vol. 42,
no. 12, pp. 1069–1084, 2010.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[34] International Organization for Standardization, “Industrial automation
systems and integration – product data representation and exchange –
part 111: Integrated application resource: Elements for the procedural
modeling of solid shapes,” ISO, Standard 10303-111, 2007.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, pp. 1–14,
2016.

[36] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in Neural Information Processing
Systems, vol. 30, p. 1025–1035, 2017.

[37] F. Diehl, “Edge contraction pooling for graph neural networks,” arXiv
preprint arXiv:1905.10990, pp. 1–9, 2019.

[38] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in International Conference on Machine Learning, 2018, pp. 5453–5462.

[39] Y. Song, F. He, Y. Duan, T. Si, and J. Bai, “LSLPCT: an enhanced
local semantic learning transformer for 3-D point cloud analysis,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–13,
2022.

[40] A. Angrish, B. Craver, and B. Starly, “FabSearch: A 3D CAD model-
based search engine for sourcing manufacturing services,” Journal of
Computing and Information Science in Engineering, vol. 19, no. 4, p.
041006, 2019.


	Introduction
	Related Work
	Voxel-based 3D model retrieval approaches
	Point-cloud-based 3D model retrieval approaches
	View-based 3D model retrieval approaches
	B-rep-based 3D CAD model retrieval approaches

	Method
	Feature extraction module
	Multi-head attention enhancement module
	Multimodal fusion module

	Experiments
	Experiment preparation
	Comparison to state-of-the-art approaches
	Ablation experiment
	Visualization analysis

	Conclusion
	References

