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MsgFusion: Medical Semantic Guided Two-Branch
Network for Multimodal Brain Image Fusion
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Abstract—Multimodal image fusion plays an essential role
in medical image analysis and application, where computed
tomography (CT), magnetic resonance (MR), single-photon
emission computed tomography (SPECT), and positron emission
tomography (PET) are commonly-used modalities, especially for
brain disease diagnoses. Most existing fusion methods do not
consider the characteristics of medical images, and they adopt
similar strategies and assessment standards to natural image
fusion. While distinctive medical semantic information (MS-Info)
is hidden in different modalities, the ultimate clinical assessment
of the fusion results is ignored. Our MsgFusion first builds a
relationship between the key MS-Info of the MR/CT/PET/SPECT
images and image features to guide the CNN feature extractions
using two branches and the design of the image fusion framework.
For MR images, we combine the spatial domain feature and
frequency domain feature (SF) to develop one branch. For
PET/SPECT/CT images, we integrate the gray color space feature
and adapt the HSV color space feature (GV) to develop another
branch. A classification-based hierarchical fusion strategy is also
proposed to reconstruct the fusion images to persist and enhance
the salient MS-Info reflecting anatomical structure and functional
metabolism. Fusion experiments are carried out on many pairs of
MR-PET/SPECT and MR-CT images. According to seven classical
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objective quality assessments and one new subjective clinical
quality assessment from 30 clinical doctors, the fusion results
of the proposed MsgFusion are superior to those of the existing
representative methods.

Index Terms—Brain image, feature extraction, image fusion,
two-branch network, medical semantic information.

I. INTRODUCTION

MAGE fusion has been widely applied in computer vision,
I remote sensing, traffic safety and other fields. Since the
1990 s, image fusion technologies have been developed and ap-
plied in the medical field. However, there are many differences
between natural and medical images such as the signal-to-noise
ratio, resolution, relevant area size and image scene [1], [2], [3],
[4]. It is often inefficient to directly apply traditional natural
image networks to medical images, because it will lead to a per-
formance degradation. Therefore, we think that it is necessary
to deeply analyze the characteristics of medical images and de-
sign a dedicated network model. Medical image fusion makes
it convenient for doctors to observe and estimate a case and
analyze lesions to make a more accurate diagnosis. In general,
CT/MR/SPECT/PET are often used to observe brain diseases
by doctors. Different medical image modalities have unique
MS-Info. The fusion results of different modalities should per-
sist and enhance the pertinent information (i.e., MS-Info) in
each modality that is significant for diagnosis. Therefore, we
propose a medical semantic guided dual branch network. In the
feature extraction stage, image features are guided according
to the MS-Info of different modalities, and the network branch
strategy conducive to the extraction of the corresponding image
features is adopted to ensure that the MS-Info of each modality is
maintained and enhanced in the fusion result. Image fusion tech-
nology integrates and enhances this information from two source
images into one image so that doctors can observe, comprehend
and diagnose diseases more conveniently and accurately. There-
fore, the fusion technology of brain CT/MR/SPECT/PET images
is of great significance to help doctors diagnose brain diseases.

In recent years, many medical image fusion methods have
been proposed. These existing methods mainly include two cat-
egories, i.e., traditional artificial fusion methods [5], [6], [7], [8],
[9], [10] and deep learning based fusion methods [11], [12], [13],
[14], [15], [16], [171, [18], [19], [20]. The traditional method
is driven by artificial cognition. Traditional feature extraction
methods mainly rely on manual extraction, which requires pro-
fessional domain knowledge and complex parameter adjustment
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processes. Moreover, each method is targeted at specific appli-
cation scenarios. Deep learning based methods are data driven.
They can obtain deeply abstract features by learning a large
number of samples. The expression of the dataset is more ef-
ficient and accurate, and the extracted abstract features have
strong robustness and generalization. Currently, deep learning
methods have been successfully applied in many fields of im-
age processing. However, deep learning based medical image
analysis is still at an early stage of development. Corresponding
studies are becoming hot topics and will have extensive applica-
tion prospects. This article focuses on a new fusion method for
CT/MR/SPECT/PET brain images, which aims to persist and
enhance important MS-Info of the original images to assist doc-
tors in diagnosing brain diseases. In sum, our work makes the
following contributions:

e This is the first study to focus on the distinguished MS-
Info of multimodal medical images and map them into
corresponding image features. A medical semantic guided
two-branch network is designed to effectively learn the
deep features corresponding to the MS-Info of the different
modalities (MR/PET/SPECT/CT).

¢ Inthe SF-branch, we propose a spatial-frequency combined
feature extraction scheme to more conveniently extract the
corresponding features of key MS-Info from MR images
on the basis of preserving the original image information,
which is the first time to do so in the neural network of
medical image fusion.

e In the GV-branch, we propose a novel scheme to com-
bine information from both the gray color space and the
improved luminance component in the HSV color space
to extract deep features corresponding to the key MS-Info
of the PET/SPECT images on the basis of preserving the
original image information.

® We propose a new clinical assessment that is derived from
doctors. They assess fusion quality depending on how
much MS-Info from source images was pertained and en-
hanced in their fusion image. Simultaneously, seven clas-
sical assessment indicators are adopted in this research.
Many experiments illustrate that the proposed MsgFusion
method is superior to nine kinds of representative fusion
methods under all these assessment mechanisms.

The rest of the article is organized as: Section Il introduces the
related works. Section III describes the proposed image fusion
method in detail. Section I'V shows the experimental results and
analysis. The conclusion is given in Section V.

II. RELATED WORK

Existing fusion methods include traditional and deep learn-
ing based methods. In this section, we mainly introduce related
works of medical image fusion, the theory of Fourier transform
and HSV color space transform in image processing.

A. Medical Image Fusion

Medical images have therr own particularities, and medical
image fusion plays an important role in image-guided medical
diagnosis, treatment and other computer vision tasks. Among
them, multimodal image fusion modules are also designed for

disease auxiliary diagnosis, such as [18], [21]. Algarni proposed
a diagnosis system based on multimodal image fusion, which is
suitable for fusing MR and CT images [22], however, it is only
suitable for fusing MR and CT images. To develop a fusion
method that can accurately preserve detailed information even
if the image is damaged, Li et al. applied the low-rank sparse
matrix dictionary learning method to medical image fusion [23],
which can achieve the effect of denoising and enhancement at
the same time. Panigrahy et al. proposed a medical image fusion
method (WPADCPCNN) by using dual channel PCNN [24],
which can obtain a good fusion effect but is only suitable for
MR-SPECT fusion. Parvathy proposes a fusion model based
on optimized threshold and deep learning [25] that can provide
anatomical and physiological data to experts to facilitate the
diagnostic process. Focusing on pseudocolor images in the color
space domain, a dual-scale image fusion method based on the
Otsu adaptive threshold (atsIF) is proposed [8].

Hermessi et al. [26] proposed a multimodal MR and CT image
fusion method based on similarity learning of a convolutional
neural network. Das et al. proposed a new image fusion based
on low-rank texture prior decomposition and super-pixel seg-
mentation [27], which combined three kinds of schemes, i.e.,
gray wolf optimization, optimized low rank texture prior, and
a pixel-related Gaussian mixing model to improve the visual
fidelity of the fused image effectively. Kumar et al. proposed
a new CNN method that is specifically used for MR and PET
image fusion [14], and the structural similarity index (SSIM)
was used as the loss function in the training process. Liang et al.
[28] proposed a multilayer cascade fusion network (MCFNet).
The network supplements the spatial information lost in the two
downsampling processes of the fused medical image. Yu et al.
[16] proposed the network (IFCNN) and Li et al. [17] proposed
the universal convergence network (NestFuse). Both of these
methods used a convolution neural network to extract features
and then adopted the maximum value of features strategy for
multimodal medical image fusion. They can obtain a good fu-
sion effect, however, the loss of global texture information can-
not be avoided because convolution networks cannot capture
long-distance dependencies.

Currently, most medical image fusion methods have limi-
tations. First, MR/CT/PET/SPECT are commonly used brain
imaging technologies, however, only two modalities are con-
sidered in most medical image fusion methods. Second, most
of the methods mainly follow the idea of natural image fusion.
In fact, there are differences between medical images and natu-
ral images, and there are also large differences among different
modalities of medical images. The key MS-Info of the different
modalities is not fully considered. Third, the fusion strategy of
the existing methods adopts the weighted summation strategy
and the maximum strategy. The selection of the weight coef-
ficient needs to be tested many times and determined by the
result. The summation strategy will result in fuzzy fusion im-
ages, and the maximum strategy will lose some key features.
Such a simple and single fusion strategy will lead to the loss of
key MS-Info in the source images. Fourth, the ultimate purpose
of medical image fusion is to facilitate the reading of scans by
clinicians, and the quality of the fusion image will affect the doc-
tors’ diagnosis of diseases. Therefore, a quality assessment by
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clinicians should be the gold standard. Existing medical image
fusion methods take little account of clinician evaluations. Over-
all, the most important point is that the MS-Info of the source
images is not fully considered. Therefore, this article constructs
a novel fusion network focusing on MS-Info, the fusion target
of brain medical images and clinician evaluations.

B. Application of Frequency Domain Transform in Image
Processing

In the process of image processing, the image is often con-
verted to frequency domain processing, commonly used Fourier
transform. In the field of image processing, Fourier transform
can be used to obtain the frequency distribution of the spatial
images, and then various image processing in the frequency do-
main can purposefully achieve many functions. In recent years,
Fourier transform in image coding [29], image detection [30],
image compression [31], image analysis [32], [33], image reg-
istration [34] and image reconstruction [35] have wide appli-
cations. Fourier transform should have potential advantages in
image fusion. Naidu et al. [36] proposed a fast Fourier transform
(MFFT)-based algorithm for the pixel-level fusion of multires-
olution images. However, this method is based on the fusion
of multiresolution natural images. To the best of our knowl-
edge, there is no method for medical image fusion using Fourier
transform. In addition, frequency-domain analysis methods also
have undeniable potential in deep learning-based methods. For
example, Kai et al. [37] proposed a frequency-based learn-
ing method, which proved the universality and superiority of
frequency-domain learning methods in the classification, detec-
tion and segmentation tasks. The processing of the image in
the frequency domain saves image information effectively and
improves the accuracy. Therefore, we also adopt frequency do-
main processing to process medical images and combine deep
learning methods to achieve a better fusion effect.

Fourier transform is a very important algorithm in the field
of digital image processing that can transform images from the
spatial domain to the frequency domain. Essentially, the image
is the same as the original image, and the amplitude and phase
components, that is, the global and local information of the im-
age, can be more intuitively analyezd. This is very important
information for the global texture and local geometry shape in
MR images, and represents the semantic features of the soft tis-
sue edges and the internal structures. Processing MR image by
Fourier transform plays a key role in the localization of lesions
resulting from fusion.

C. Application of Color Space Transform in Image Processing

The RGB, YUV and HSV color spaces are commonly used in
image processing. The RGB color space is the most commonly
used image color representation space. YUV is easy to com-
press, facilitating transmission and processing. The HSV color
space is most suitable for the visual perception of human be-
ings because color changes in this space are easily distinguished
by human beings. H (Hue) represents the hues, expressing the
color preference of images, and S (Saturation) represents the
intensity or purity of colors. V' (Value) indicates the brightness
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of a color. RGB and HSV conversion is often used in image pro-
cessing to enhance the image [38]. (R, G, B) are the red, green,
and blue coordinates of a color, respectively, whose values are
real numbers between O and 1. If M is equal to the maximum
of R, G and B, and m is equal to the minimum of these values,
the conversion process between RGB and HSV is shown in (1):

0° it M =m
60° x =L 4 07, if M =Rand G > B
H = 60" x££ 1360°, if M =RandG < B
60° x D=2 4+ 120°, if M =G
60° x B=C 4 240°, if M =B
0, if M =0
S = M—-—m m :
T = 1— 3, otherwise
V=M. (1

HSV is more consistent with human visual characteristics than
the RGB color space [39], The use of multiple channels in the
HSV color space can be handled separately and independently of
each other. Therefore, the workload of image analysis and pro-
cessing can be greatly simplified in the HSV color space. Itis also
used in image fusion [40]. The HSV color space is widely used
in image processing, and different channels are usually used to
address different problems. Compared with the RGB space, the
HSV space can express the lightness and shade of color, tone and
vividness very intuitively, which is convenient for the contrast
between colors and the communication of feelings. Therefore,
in this article, we also apply the advantages of the HSV color
space to medical image fusion. To better extract useful MS-Info,
we adopt a self-defined V' component, which will be introduced
in detail in the next chapter.

III. METHOD

Different modalities of medical images contain distinctive
MS-Info, which is very important for clinical disease diagnosis.
Therefore, we should persist and enhance the respective MS-Info
of multimodal medical images in their fusion result. To achieve
this goal, we first analyze the MS-Info of each modality accord-
ing to clinical medicine and imaging theory. Then, we map the
key MS-Info into the image features and design effective ex-
traction strategies for the different features. The details of how
the key medical semantic information of MR/CT/PET/SPECT
guides the design of the two branches of MsgFusion are shown
in Table I, which guides us to construct the two branches of the
proposed MsgFusion.

The overall framework of MsgFusion is illustrated in Fig. 1,
where extracting features after preprocessing and fusing are
critical procedures. First, in the stage of deep MS-Info extrac-
tion, the network combines two feature extraction branches, the
SF-branch and GV-branch, as shown in Fig. 1. Fourier trans-
form used in the SF-branch and the HSV color space considered
in the GV-branch not only makes full use of the spatial and fre-
quency relationship but also extracts rich semantic features from
the image’s important information. Second, is our hierarchical
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TABLE I
How KEY MEDICAL SEMANTIC INFORMATION OF MR/CT/PET/SPECT GUIDES THE DESIGN OF TWO BRANCHES OF MSGFUSION
Modality Key MS-Info Image Feature Extraction Strategy Branch
. High frequency band
MR Clear shape of soft tissue Boundary zone . .
in Frequency Domain
Clear internal structure . Low frequency band SF-branch
) Internal texture detail . )
of soft tissue in Frequency Domain
NIL More source image information Spatial Domain
CT High-resolution global anato-
mical structure of hard tissue . .
Global contour lines; Multi-scale;
High-resolution local anato- . .
Local shape location of tiny area; Concatenate;
mical structure of hard tissue . . .
More source image information Gray color space GV-branch
Obvious display of early
small lesion
High-distinguished functional- . Brightness component
Brightness
metabolic abnormity tissue of HSV color space
» Training
Spatial Domain
SF, SF,
FFT Phase Magnitude
o] | |
b .
Frequency el — Fusion
MR Image o v ] .
g Domain o HF P Rule of SF;
Transform 4
SF-branch
Maximum &
. GV, GV, Convolution (64x3)
Multi-scale & Activate(tanh)
Gray color space
Brightness from
SPECT Image HSV color space
GV-branch Maximum

Input Images—+7Preprocessing—>|<—Feature Extraction—+7 Fusion Rult—>|<—0utput Image

Fig. 1.

The framework of our MsgFusion method: Medical Semantic Guided Two-Branch Network for Multimodal Brain Image Fusion. Two feature extraction

branches proposed: SF-branch(the branch combines spatial domain and frequency domain to more conveniently extract the corresponding features of key MS-Info)
and GV-branch(the branch combines gray color space and self-defined brightness information from HSV color space to enhance the extraction of corresponding
features of key MS-Info). The fusion of SF-branch and GV-branch, we adopted the classification level fusion strategy: the anatomical structure features (SF and
GV 1) were fused at the first level, and then the fusion results were fused with the functional metabolism features (GV2) at the second level, which was beneficial

to preserve and enhance key MS-Info of source medical images.

fusion strategy. The combination of these two feature extraction
branches not only improves the performance of the algorithm
but also efficiently obtains the important deep MS-Info of the
multimodal medical brain images.

A. SF-Branch

The SF-branch is designed for extracting deep features from
MR images. As illustrated in Table I, the MS-Info of MR,
i.e., the clear shapes and internal structures of soft tissue, is
more easily distinguished in the frequency domain as high- and

low-frequency band information. To effectively extract deep fea-
tures corresponding to the MS-Info and more source image in-
formation, we adopt the strategy of combining the frequency
domain with the spatial domain. Fig. 2 shows the procedure of
the SF-branch.

The SF-branch of feature extraction includes two parts, one
part is to obtain the deep features of the source MR image from
the convolution characteristics of the neural network; the other
part is to obtain the features corresponding to the MS-Info
from the frequency domain. In the first part, the channel was
amplified to 64, the size of the convolution kernel was set as
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' Convolution (3x64)
=P Normalize & LeakRelu
=% Normalize & Relu

+ ... Deep Spatial Feature

i __ i Fast Fourier Unit

@ {;-norm & Softmax
Operation

O Fuse rule of SF;

Fig. 2. Procedure of extracting SF-branch feature, which combines informa-
tion from both the spatial domain and frequency domain to keep and enhance
the key MS-Info of MR as much as possible.

7 x 7, the stride size was set as 1 and the padding was set as
3. Batch normalization occurs when the convolution feature is
obtained and activated using LeakyReLU (alpha = 0.2, inplace
= true). The output of this part is recorded as SF;, as shown
in Fig. 2. In the other part, frequency domain processing was
adopted first, and its output is recorded as SF,. An example of
frequency domain processing is displayed in the square pointed
to by an arrow marked with Frequency Domain Transform
in Fig. 1. Concretely, the two-dimensional discrete Fourier
transform and inverse transform of a piece of an M x N image
are represented as (2) and (3). In the formula, x and y are image
variables in the spatial domain, f(x,y) represents the gray
value at the point (z,y), u and v are frequency variables, and
when u and v are 0, it is the Fourier transform at the origin,
which is equivalent to the average gray value of an image.

M-1N-1

1 ,
F(U,’U) = 7MN Z Z f(:[;’y)e_]271—(u"‘c/]\/[""vy/1\[)7 (2)
=0 y=0
M—-1N-1 )
_ Z Z F(u7v)ej27r(uz/M+vy/N). 3)
u=0 v=0

If Re and Im are used to represent the real and imaginary
parts of F, respectively, their calculation is according to (4) and
(5) as:

N-1N-1
Zfoycos(%r(N—i—N)) 4)
=0 =0

N-1N-1

Zfoysm(%r(N N)) )

=0 y=0

After the image is transformed into the frequency domain by
Fourier transform, every pixel is a complex number containing
real and imaginary parts. The amplitude and phase of the image
can be obtained by calculating the amplitude and phase of the
complex number of each pixel. Then, the Fourier spectrum, the
phase angle, and the amplitude are defined as:

P(u,v) = |F(u,v)|* = Re(u,v)* + Im(u,v)?,  (6)
¢(u,v) = arctan [ZZ((Z’Z))] (7
|F(u,v)| = [Re(u,v)* + Im(u,v)ﬂ% . (8)
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This is the first time medical image fusion has been performed
using Fourier transform. The meaning of Fourier transform is to
transform the gray distribution function of the image into the
frequency distribution function of the image, and the inverse
Fourier transform is to transform the frequency distribution func-
tion of the image into the gray distribution function. The ampli-
tude and phase of the MR image can be obtained after Fourier
transform. The amplitude of the image contains the global in-
formation of the image, namely, the texture information, while
the phase contains the local information of the image, namely,
the shape. Given the properties of Fourier transform, it can and
does achieve a good fusion effect, which is illustrated by our
proposed method.

When we are finishing the above steps, we need to fuse fea-
tures between the spatial domain and frequency domain next.
In this article, the weighted graph features are the fusion of the
multiscale depth features to obtain the detailed structure of the
spatial features. The weight mapping is done by the /;-norm and
softmax operation via the objective function as:

19w (2, 9)ly
&z, y) = ; )
iy i y)lh
where, || - ||; is the ly-norm, k € 1,2. (z,y) shows the corre-

sponding position in the feature map, and each position denotes
a dim dimensional vector in the deep features. 1) denotes a vec-
tor that has dim dimensions. The final fusion feature map, ¢, is
the superposition of two enhanced feature maps, which is rep-
resented by (10) as:

2
=D Erley X Vin (10)
i=1

B. GV-Branch

The GV-branch is designed for extracting deep features from
CT/PET/SPECT. On the one hand, by adopting a multiscale
cascade strategy from the gray space, the GV-branch aims to
extract global contour and local shape features from the source
image and compensate for the loss of information at different
scales. On the other hand, according to the analysis in Table I, the
key MS-Info of PET/SPECT (highly distinguished functional
metabolic abnormity tissue) is mainly reflected in the level of
brightness of the image. To obtain the brightness information, we
use an HSV color space transformation to compute the V' com-
ponent and improve it into a new luminance value to highlight the
MS-Info of the functional images (PET/SPECT). The MS-Info
of CT (high-resolution global and local anatomical structure of
hard issue) and the part MS-Info of PET/SPECT (obvious dis-
play of early small lesion) are guided to multiscale strategies,
concatenated in the gray color space. To capture information
from different scales and layers with less information loss, mul-
tiscale and skip connection strategies are adopted. CT does not
contain functional metabolic information. When CT is input into
the GV-branch, only the deep features in the gray color space
are needed. In total, to effectively extract the deep features cor-
responding to the MS-Info and more source image information,
we adopt the strategy of combining the HSV color space with
the gray color space.
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3x64

64x64

64x128

128x256

25664

384x256

Maximum '
Operation |

Convolution & Normalize
& Activate(Relu)

Convolution
i Feature

@ Concatenate

. X Feature Map of
--» Skip Connection

: . i-
=P MaxPooling ~ Functional Organization

UPsampling

Fig. 3. First procedure of extracting feature of GV-branch feature, which
adopts multiscale and concatenate strategies in the gray color space to extract
both global contour and local shape features from source images.

1) Obtaining Deep Convolution Features by a Multiscale
Strategy: Since convolution operations at different levels and
resolutions can extract information with different importance
degrees, a method of functional tissue feature extraction is pro-
posed for brain images. The functional organization’s feature
branch network in this method is shown in Fig. 3. The network
block mainly includes convolutional layer, pooling layer, up-
sampling and skip connection operation. In Fig. 3, the specific
steps to obtain the MS-Info are given. Different color cubes rep-
resent different numbers of input and output channels, which
correspond to different thickness displays.

Multiple uses of concatenate can expand high-dimensional
features and find more important semantic features more accu-
rately. When multiple routes are merged, the maximum value
method is used to highlight the high-frequency texture informa-
tion. Because all kinds of brain diseases are uneven, using this
feature extraction strategy can make the classification between
the lesion degree and normal tissue more obvious. Then, we
can more easily determine whether the local area is abnormal
in the PET image, and observe clear contour and global struc-
ture information in the CT image. Moreover, the long and short
skips are used to enhance the transfer of features with the green
dotted line in Fig. 3, which can fully fuse different levels of vi-
sual features and reduce the loss of features in the process of
feature transfer. This idea is inspired by DenseNet [41], which
is mainly implemented by numerous dense network blocks. To
solve the vanishing gradient problem, the network only cascades
the weight coefficients of the front and rear layers of the convo-
lutional operation, and does not cascade the pooling operation.
In our network, we input the features of the previous layer and
the previous multilayer to the next layer, and the connection
modality is expressed as:

fa = Ha([fo, f1,-- - fa-1]), (11)

949
>
g w & a fi
: 0 f 508
.2 82
=3 Z =3 =
g e 5 =
g g & 8
s =
S
Input Conv Output
Fig. 4. Procedure of feature skip, which in order to capture long-term and

multi-layer dependencies across regions and reduce the loss in the process of

feature transfer.

Convolution (* Convolution =9 Normalize _>Normalize& {;-norm @tanh Fusion
Gred) | (6ax3) LeakRelu &Softmax rule

Fig. 5. Second procedure of extracting feature of GV-branch, which com-
bines self-defined brightness information from the HSV color space to keep and
enhance the key MS-Info of PET/SPECT as much as possible.

where, f represents the output, d represents the number of layers
in the network and H () represents the combination of nonlin-
ear transfer functions, including the concatenate, BN, activation,
and convolution operations. The parallel input of the multilayer
features (not necessarily the adjacent layers) is operated by the
combination function to obtain a new feature. The channel num-
ber of the new feature is determined by different convolution pa-
rameters. The detailed steps are shown in Fig. 4. This operation
helps to capture long-term and multilayer dependencies across
regions and to reduce the loss in the process of feature transfer.
Therefore, a more complete structure of the brain image can be
preserved.

2) Obtain Brightness Information Via a Color Space Trans-
form: HSV (hue, saturation, brightness value) is a color space
created according to the intuitive characteristics of colors, and
is also known as the hexagonal cone model. The HSV color
space can be processed separately and are independent of each
other. Therefore, the workload of image analysis and processing
can be greatly simplified in the HSV color space. Moreover, it
is more consistent with human visual characteristics than the
RGB color space. In this feature extraction part, we calculate
the V' component of the HSV space of the functional image
to extract its luminance features for subsequent processing, as
shown in Fig. 5. In this figure, I, represents the original RGB
image, I 4 represents the RGB image, V' represents the bright-
ness component after transforming I, into the HSV space. To
further enhance the local information of the areas with obvious
brightness, we define a new luminance value V', which is shown
in Algorithm 1.

As illustrated in Fig. 5, I, is a piece of the PET image. Three
distinct color blocks (yellow, light green and dark blue) can
be found in it, which indicate areas with high energy or vigor-
ous metabolism. Lesions most likely exist in such areas. These
color blocks can be discerned from the foreground of I,, mainly
because of their brightness information. However, from the
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Algorithm 1: New Luminance Computation
Input: RGBA image I, : (R, G, B, A)
Output: New luminance value V'
1: newLum (I,):
2: 14 < Compress (I,);
Iysv : (H,S,V) « Conver (I,);
Vie—14-V;
return V/;
Compress (I,,):
Ipa < 1,:(R)+1,
return / 4;

Conver (I,):

10: 14 <+ Compress (I);

11: IHSV#()IAa

12:  return Iggy : (H,S,V);

(G)+1,:(B);

A A

Nt

brightness image V', we can see that these meaningful areas
are not yet clear enough for accurately locating the lesions. In
Algorithm 1, we compute the difference image through /4 — V
to further highlight these color blocks. Then, the lesions can be
clearly located on the right side of the V'’ image.

Based on the new luminance image, the deep features G5
in the HSV color space are extracted through the subsequent
procedures, as illustrated in Fig. 5.

C. Classification-Based and Hierarchical Fusion and
Reconstruction

To make full use of the deep MS-Info features extracted from
the two branches, we adopted a classification-based and hier-
archical fusion strategy, as shown in the fusion rule phrase of
Fig. 1. The anatomical structure features (SF and GV1) were
fused at the first level, and then the fusion results were fused
with the functional metabolism features (GV5) at the second
level, which was beneficial to preserve and enhance the key
MS-Info of the medical images to be fused. Our fusion strategy
is not a simple concatenate or a weighted sum. To maintain and
enhance the significant texture characteristics of the multimodal
images, we use the maximization method. At the same time, we
use the convolution and activation functions to obtain the local
detail structure features. As shown in Fig. 1, tanh is adopted as
the activation function.

D. Loss Function and Training

Due to the confidentiality of medical data, a large amount
of multimodal medical data is not easy to obtain. Usually,
many network models trained based on ImageNet data, such
as ResNet [42] and VGG [43], are chosen to produce the
pre-training parameters. In a quest for a better performance in
solving the shattering gradient problem and convergence rate,
we choose ResNet101 to migrate the last convolution feature on
ImageNet, that is, to use the first layer of ResNet101 pre-trained
on the ImageNet data as our first convolution layer to extract the
valid image features. Since the pre-training model is designed
for the classification task, the parameters of the first layer will
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be adjusted according to our task in our network structure to
achieve a better fusion effect. To obtain a more accurate recon-
struction of the source image, we combine the structural and
pixel information to construct a loss function as:

L=wLs+ (1 —w)Lp. (12)

The total loss function consists of structural similarity Lg
and pixel loss Lp, and w is an adjustment coefficient whose
value is determined by the training and testing effects accord-
ing to different values. Iy represents the result of a fusion,
I;,i = 1,2 represents the input image and the source image.
SSTM represents the structural similarity of two images [44].
For the two types of images, the structural similarity is calculated
and combined. Assuming that the structural similarity of the two
imagesis Fssrar,, Fssrv, =1 —SSIM(Iy,1;),i = 1,2, and
the total structural similarity function is calculated as follow.

Lszal B 2#1,«#[- +cl) (QO'IfCT[Z. +02) ’
(qu JFH] Jrcl) (o%f +Gi +02)

(13)
where, 117, is the mean of Iy and yuy, and p, are mean values of
I; and I respectively. 117, is the variance of Iy, and pi7, and 117,
are the variances of I; and I5 respectively. o +h and o +I, are
the covariance between the original image and fused image, and
¢; are constants. The pixel loss is the /s-norm. Assuming that
the pixel losses of the two images are Fy,, Fiar, = ||y — |2,
the total pixel loss function is calculated as follow:

Z Iy, — I,)

Jj=1

Lp = 52 Iy, — I,) (14)

7j=1

In (13) and (14), «;,i = 1,2, 8 are weight parameters for
users to set in the interval [0, 1]. In this article, the three parame-
ters are all set to 0.5. In (12), the value of w € [0, 1] is determined
by the training and testing effects according to different values.
When w is taken as 0.7, the best result is obtained. Therefore, we
choose this value to test the fusion effect in the experiment. In
the training process, the initial learning rate is 0.001, 250 epochs,
the batch size is 2, we employ batch normalization, and the opti-
mization function is Adam. In addition, we adopted an adaptive
loss adjustment strategy to update the learning rate to 0.1 times
its original value every 50 epochs because a smaller learning
rate is used to adjust the weight to obtain a better weight in the
training process. Our approach has been implemented in Python
3.7.9 under the PyTorch version 1.5.0 with its corresponding
CUDA version 10.1.

IV. EXPERIMENTAL RESULTS

To further prove the effectiveness of our proposed fusion
method, experiments were carried out on different pairs of
brain images (MR-SPECT/MR-CT/MR-PET). A total of 555
MR-PET image pairs as the training set were obtained from
ADNI (http://adni.loni.usc.edu/data-samples/access-data/), and
their sizes were 256 x 256. Thirty pairs were used in the test
MR-CT, MR-SPECT and MR-PET image pairs from the Whole
Brain Atlas (http://www.med.harvard.edu/aanlib/), which are
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Quality Assessment Of MR-SPECT Fusion
9
8
! 7
SD' =SD/8 6
MI' = MI-5 5
rSFe’ =rSFe*(-11) 4
sM'=smxi0 3
VIFF' = VIFF*10 5 I
RQ' =RQ*10 0
EN SD' Mmr 1SFe' SM' VIFF' RQ'
= LatLir 6371 32680 7.7421 58223 7504  3.161 6.697
IFCNN 6.3416 32103 7.6833 42163  8.06 4126 5438
NestFuse 62592 33050 75184 49511  7.669 3413 3.662
atsIF 63732 39762 77464 41503 7403 4125 6428
FusionDN 6.0335 27899  7.067 54043 7215  2.541 8.488
FusionGAN  6.1349  2.7832 72698 51337 7335 2873  6.844
FunFuseAn  6.3731 33644 77462 47839 7492 3876  8.073
WPADCPCNN  6.3289  3.5269  7.6578  3.5178  7.956  4.033  5.635
OLTPSpS 6.0088  2.8887  7.0177 52987  6.468 128 5.550
= MsgFusion  6.5606 51588  8.1212 23991 8218  6.302 7528
Fig. 6. Histogram of evaluation index values of different methods on MR-

SPECT fusion. EN [45], SD [46], MI [47], SM [48], VIFF [49], RQ [50] means
entropy, standard deviation, mutual information, structural similarity, visual in-
formation fidelity of fusion and edge information respectively. The larger the
value is, the better the fusion effect is. rSFe [51] reflects of improved spatial fre-
quency. The smaller its absolute value is, the better the fusion effect is. Except
RQ, other six evaluation indexes reflect that MsgFusion achieves best fusion
effect.

cerebrovascular disease (stroke) and tumor disease (brain tu-
mor). All experiments were carried out on the GNU/Linux
x86_64 system of the GeForce RTX 3090 Ti 12 Intel Core In-
terl(R) Xeon(R) CPUE5-2678 v32.50 GHz 64 GB RAM device.
We have released the source code on GitHub through the link
https://github.com/22385wjy/MsgFusion.

For each pair of experimental images, we use the pro-
posed MsgFusion and nine other representative kinds of meth-
ods, i.e., LatLrr [7], IFCNN [16], NestFuse [17], atsIF [8],
FusionDN [19], FusionGAN [15], FunFuseAn [14], WPAD-
CPCNN [24] and OLTPSpS [27] to produce the fusion results.
We adopt six kinds of often-used assessment indices, including
EN [45], SD [46], MI [47], rSFe [51], SM [48], VIFF [49] and
a relatively novel index Rg/ (AB)) (RQ for short) [50], to eval-
uate the fusion effect of these ten kinds of methods. RQ reflects
how much edge information is perserved in the fusion image
by computing fractional order differentiation, which substitutes
the noise-sensitive Sobel operator used in [52]. Three sigmoidal
functions (tanh, arctan, logistic) are adopted to obtain three
metrics in that article. Considering their common monotonicity
of function, we only choose one metric based on the logistic
function to apply in our tests. Due to the large difference be-
tween the values of the different indicators, we made suitable
linear transformations that are marked on the top left of Figs. 6
and 7 for the convenience of comparing them in the same figure.

A. Fusion of MR-SPECT Fairs

The first column in Fig. 8 shows the source MR and SPECT
images. The MR images clearly show the texture details of the
cerebrospinal fluid and other soft tissues. The different colors
and brightness in SPECT can reflect the metabolic information.
Fig. 8(a)—(i) show the results of the ten considered fusion meth-
ods. Fig. 8(j) shows the fusion results obtained by MsgFusion.

Quality Assessment Of CT-MR Fusion

9

8

| 7

SD' =SD/6 6

MI' = MI-§ 5

1SFe' = 1SFe*(-10) 4

SM'=sm*102 3
VIFE' = VIFF*10 2 | |

RQ' =RQ*10 é

EN SD' Mmr

1SFe' sMm' VIFF' RQ

® LatLir 59757 41380 69811 3323 6427 2527 4707
IFCNN 6.0634 41904 7.725 3312 6586 2769  3.089
NestFuse 57155 37843 65621 3939 6099 1478  3.735
atsIF 63552 50766  7.6621 1471 6036 3373  2.028
FusionDN 56086 41469 63117 3153 6132 1846 4397
FusionGAN ~ 5.8469  3.9004 67672  3.718 6.24 1.865  2.825
FunFuseAn  6.0964  4.1793  7.2422 3396 6448 2316  3.59
WPADCPCNN  6.0492 43775 7.0985 3499 6506 2825  3.747
OLTPSpS 6.0665  4.6828  7.1331 3011 5888 1649 4401

= MsgFusion  6.6525 51458 83049 2933 6756 3415  5.009

Fig. 7. Histogram of seven evaluation indexes of ten kinds of fusion methods

corresponding to MR-CT fusion images displayed in Fig. 9. Our MsgFusion
occupies six best index values, only its rSFe is sub-optimal.

Focusing on the regions indicated by the seven arrows, one can
see that clearer structure and texture details are displayed than
the corresponding regions in fusion images obtained by the other
seven methods. Combining clinical information, we analyzed
whether the MS-Info of MR and SPECT was well retained in
the fusion results for the 7 regions indicated by the arrows in
Fig. 8(j) inside the blue rectangle frame.

There is a nodule of the cerebellum in Region 1. A small white
triangle with a clear contour can be seen in the MR source image,
with a slight blurring of the upper right corner. However, in the
SPECT source image, there is no obvious feature. In the fusion
result of LatLrr, the image appears vague and indistinguishable
from the surrounding tissues. In the fusion results of IFCNN,
NestFuse and FusionDN, they all retain much more information
from MR than SPECT. The enhancement effect of the upper
right corner is not obvious. The small triangle in the results of
FusionGAN and FunFuseAn is distorted. In the fusion result of
OLTPSpS, the brightness information is significantly lost.

Region 2 is the left cerabellar hemisphere, and the features
mainly come from the features in SPECT, which appear as a
bright spot with a fuzzy edge, and it looks like a small black
hole in the MR image. In the fusion results of LatLrr, IFCNN,
NestFuse atsIF, WPADCPCNN and OLTPSpS, we cannot easily
find the bright spot. In the fusion results of FusionGAN and
FunFuseAn, the bright spot is enhanced, but it is slightly blurry.
In the fusion result of FusionDN, this bright spot is obvious,
but it is integrated with the surrounding organizations, and the
specific location cannot be determined. In the fusion result of
MsgFusion, there is obvious brightness and contours, and the
position is accurate.

Regions 3 and 6 represent the right cerabellar hemisphere.
In the MR image, it is a region with an uneven distribution of
gray values, which is shaped like a leaf. In the SPECT image,
there are three adjacent gray hollow rings. From the SPECT
image, we can find that there is a clear gray hollow ring at the
position indicated by Arrow 6. It can be recognized in the fusion
images obtained by NestFuse and atsIF, but is not very clear.
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SPECT Image
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Fig. 8.
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(d) atsIF
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(h) WPADCPCNN (1) OLTPSpS (j) MsgFusion

Performance comparison of different methods (LatLrr [7], IFCNN [16], NestFuse [17], atsIF [8], FusionDN [19], FusionGAN [15], FunFuseAn [14],

WPADCPCNN [24], OLTPSpS [27], and our MsgFusion) for brain MR-SPECT image fusion. Focusing on regions pointed by seven arrows in the locally enlarged
image(h), one can see that clearer structure and texture details are displayed than the corresponding regions in fusion images obtained by other seven methods.
Both the MS-Info of MR and SPECT are well retained and enhanced. More detailed medical interpret refers to the corresponding text.

The ring at Region 3 disappears. In the fusion results of [IFCNN,
FusionDN, FusionGAN, FunFuseAn and WPADCPCNN their
rings at Region 6 are clearer, but not at Region 3. In our approach,
several of the rings can be shown well, and it is easy to find their
position.

Regions 4 and 5 are the margins of the occipital bone and
right cerabellar hemisphere, respectively. This region in the MR
appears lacy, butis not easily detected. It appears as a small point
of inconspicuous brightness in SPECT. Comparatively speaking,
MsgFusion preserves both the edges of MR and can easily find
several points in SPECT.

Region 7 is the edge of the right cerabellar hemisphere near
the nodules of the cerebellum. In the MR image, which is rep-
resented by light white edge information, there seems to be one
straight line in the SPECT image. For the different results of all
the methods, only MsgFusion can clearly find the edge.

Fig. 6 shows the assessment indices of the fusion results in
Fig. 8. Different color curves refer to different index values, and
each node represents different fusion methods. The last column
is our approach, and we can find the advantages of our approach
in the different indices. The EN, SD, MI, rSFe and VIFF of our
approach are the best, so our approach has the most advantages.

Hence, our fusion results have a more suitable brightness, clearer
contours and finer texture. Further more, our results persist and
enhance important medical information. When abnormities ap-
pear in the brain, we can determine the possible types of diseases
by observing the color and brightness information in SPECT, and
combining the texture of MR for an effective analysis.

B. Fusion of MR-CT Pairs

The first column in Fig. 9 shows the original CT and MR
images. It is easy to find hard contours such as bone on CT
images, and soft tissue structures on MR images. On the right
are the results of the different fusion methods. Fig. 9(j) shows the
fusion result and locally enlarged image obtained by MsgFusion.
Let us focus on the six ROIs indicated by the arrows.

Region 1 represents the inferior horn of the lateral ventricle,
which is dark gray on the CT images but is bright and clear on the
MR images. The area of Region 1 in the MR images is large, so it
has important MS-Info and is often used to judge whether there
lesions exist. In the fusion results of LatLrr, IFCNN, FusionDN,
FunFuseAn and OLTPSpS, the contour is not obvious and is not
easy to find. In the atsIF result, the brightness of the position
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CT Image

MR Image (f) FusionGAN (g) FunFuseAn

Fig. 9.
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(e) FusionDN
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Performance comparison of different methods (LatLrr [7], IFCNN [16], NestFuse [17], atsIF [8], FusionDN [19], FusionGAN [15], FunFuseAn [14],

WPADCPCNN [24], OLTPSpS [27] and our MsgFusion) for brain MR-CT image fusion. From fusion results and ROIs pointed by six arrows, one can see that
MsgFusion shows best fusion effect. Both high-resolution global and local anatomical structure of hard tissue, and clear shape and internal structure of soft tissue
are better retained and enhanced in its fusion result than others. More detailed medical interpret refers to the corresponding text.

is improved, but the edge is smoothed. In the fusion results of
FusionGAN and WPADCPCNN, the edge classification of the
position is obvious, but the brightness is not sufficient. In the
fusion result of this article, we can easily find the region, and its
boundary.

Region 2 is insular, which is mainly reflected on the MR im-
ages. The area at this region is not as full as shown in the normal
brain image, which indicates tissue loss of water or atrophy. In
Fig. 9, we can find that only the region in the fusion result of
MsgFusion is obvious and displays a clear contour distinguished
from the other tissues.

Region 3 is the fourth ventricle in the CT image, and part
of the information of the cerebro pontile and basilar artery is
also connected on the MR image. The brightness of the atsIF
method has good image contrast of bright and dark, however, the
structural completeness of this region is destroyed. The results
of the others in Region 3 are clear but not bright enough, while
WPADCPCNN and MsgFusion are better.

Region 4 is the cornu posterius ventriculi lateralis, which is
mainly reflected on the CT images. It is not particularly obvi-
ous on the MR images, however, it can be discovered through a
careful differentiation from the surrounding tissues. For LatLtrr,

IFCNN, NestFuse and FusionGAN, the outline of Region 4 can
be found. However, artifacts exist near its boundary, and the
brightness information is insufficient. For FusionDN, this posi-
tion is obvious, but the surrounding tissues are lost. The Fun-
FuseAn fusion results show that the region becomes fuzzy. The
result of OLTPSpS has enough brightness but the area is slightly
smaller. Region 4 in our approach not only has a clear contour
and an obvious boundary but also has sufficient brightness. The
important medical features of the cornu posterius ventriculi lat-
eralis in our approach persisted and were enhanced.

Region 5 is the central sulcus, which is mainly shown on the
MR images. The density and brightness information of this loca-
tion can help doctors determine whether abnormities exist. For
the MsgFusion region, which has a clear profile and brightness
information, it is easy to find.

Region 6 is the parietal bone, which is mainly reflected in
the CT image. When there are edge defects or incompleteness
in this region, we can judge whether there is a brain injury.
From the above analysis, we can determine that MsgFusion has
a relatively better fusion effect. Furthermore, Fig. 7 shows the
quality assessment values corresponding to Fig. 9. It shows that
all the index values for MsgFusion except rSFe are the best.
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TABLE I
RUNNING TIME OF IMAGE FUSION METHODS (UNIT: S)
LatLrr IFCNN NestFuse atsIF FusionDN
41.2933 0.2241 0.9762 6.7982 0.6873
FusionGAN  FunFuseAn ~ WPADCPCNN  OLTPSpS  MsgFusion
0.4924 0.3599 39.6705 48.59 2.0048

This means that the information of the original CT and MR not
only persists well but is also enhanced in the fusion result of our
approach. When intracerebral hemorrhage can be determined
by observing the MR density and area, the general area of the
cerebral hemorrhage can be found in CT images.

C. Computational Cost

Under our computation environment, 30 pairs of different
data modalities are tested by ten kinds of methods. The aver-
age run-time for each method is recorded. All results are listed
in Table II. We can see that the average run-time of our method
is 2.0048 seconds. Although it is not a fast method, the time cost
is acceptable.

D. Questionnaire Survey

For medical image fusion, the ultimate goal is to provide doc-
tors with easily observed fusion images for qualitative, quantita-
tive and locational analysis of lesions. Therefore, this subjective
evaluation can confirm the advantages of the MSG method in
a clinical sense. To prove the clinical effectiveness of our algo-
rithm, we conducted an online questionnaire survey on the fusion
effect, which we distributed to thirty doctors from the Neurol-
ogy Department and Medical Imaging Department of different
hospitals. These doctors’ clinical experiences were more than
10 years (15 doctors), between 5 and 10 years (3 doctors), be-
tween 3 and 5 years (6 doctors) and less than 3 years (6 doc-
tors). In this questionnaire, we designed 15 questions based on
15 groups of fusion experiments. For each question, there were
6 pieces of fusion images produced by 6 kinds of representative
methods (i.e., LatLrr, NestFuse, atsIF, FusionGAN, FunFuseAn
and MsgFusion) as options. The order of the fusion images from
the different methods was randomly arranged. Each respondent
was permitted to select one or two options with the best fusion
results as answers for each question. Doctors did not need to
identify how much the fused images retain the original image
information. They only needed to judge which fusion results
are more conducive to their observation and clinical diagnosis
based on their clinical experience. In the end, we received valid
answers from 29 participants.

The statistical results are shown in Table 111, in which the times
selected for the fusion images from each method are recorded.
In each column marked with Q;(i =1, ...,15), the following
numbers correspond to the times selected by doctors for the fu-
sion images of the six methods. In 15 groups of experiments,
the fusion images produced by MsgFusion are most frequently
selected as the best fusion images in 8 groups, and second fre-
quently selected as the best fusion images in 4 groups. From
the view of clinical doctors, the fusion effect of MsgFusion far
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Fig. 10. Results of the ablation experiments. (a) Without frequency domain
processing. (b) Without improved brightness from the HSV color space. (¢) Our
proposed MsgFusion.

exceeds that of any other considered method. The last column
marked with > lists the total times for each kind of fusion
method whose fusion images were selected. The calculation
shows that the times selected by our method are 26.5% and
10.17% higher than those of the suboptimal method.

E. Ablation Study

To illustrate the necessity and effectiveness of combining the
frequency domain in the SF-branch and HSV color space in the
GV-branch, we performed ablation experiments on the MR-PET
fusion. The experimental results are shown in Fig. 10. The first
two rows show the source images of the MR and PET and
their respective three locally enlarged ROIs. The following three
rows show the fusion results obtained by MsgFusion without
frequency domain processing, MsgFusion without considering
improved brightness from HSV color space, and the proposed
MsgFusion. In the last row of locally enlarged images, we mark
ten arrows to point to regions with obvious medical characteris-
tic information. Arrows 1 and 3 point to the frontal lobe, Region
2 is the frontal bone, Region 4 is the facies interna ossis frontalis,
Region 5 is the space between the frontal bone and frontal lobe,
the region of the parietal lobe is indicated by Arrows 6, 7 and
10, Region 8 is the superior sagittal sinus, and Arrow 9 points
to the mediastinum cerebri. When FFT is not involved in the
fusion process, the fusion results can preserve the structural fea-
tures in PET more completely but will lose more MR image
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TABLE III
TIMES SELECTED OF FUSION IMAGES FROM EACH METHOD IN THE QUESTIONNAIRE SURVEY

Q1 [ Q2 | Q3 | Qa4 [ Q5 | Qs | Q7 [ Qs | Qo | Qio | Qu1 | Qi2 | Q13 | Qua | Q15 | X

LatLrr [7] 6 12 9 5 3 3 7 4 8 4 7 4 10 6 10 98
NestFuse [17] 16 10 7 9 8 10 8 6 7 1 6 5 5 6 2 106
atsIF [8] 9 7 7 5 10 2 9 8 12 5 9 15 3 10 4 115
FusionGAN [15] 7 8 7 0 6 4 2 10 4 15 3 2 11 7 2 88
FunFuseAn [14] 0 1 1 6 4 4 5 4 9 7 4 6 6 1 12 70
Our MsgFusion 7 5 12 17 12 21 13 12 4 11 14 10 9 13 11 172

TABLE IV
Six EVALUATION INDICES OF THREE KINDS OF FUSION METHODS (W/0 FFU,
W/0 LIGHTV, AND MSGFUSION) CORRESPONDING TO MR-PET FUSION IMAGE
DISPLAYED IN FIG. 10

Whole image EN SD MI rSFe SM VIFF
w/o FFU 4.5027 | 56.8141 9.0054 | -0.5018 | 0.2704 | 0.3219
w/o LightV 3.5768 | 36.7745 | 7.1537 | -0.2977 | 0.3523 | 0.1262
MsgFusion 4476 | 67.5634 8.952 -0.4103 | 0.3205 | 0.4076
Average ROIs EN SD MI rSFe SM VIFF
w/o FFU 6.9201 | 52.0514 | 13.8401 | -0.4204 | 0.5594 | 0.3227
w/o LightV 5.9916 | 34.0278 | 11.9832 | -0.3802 | 0.6118 | 0.1738
MsgFusion 6.9598 | 54.9381 | 13.9195 | -0.3467 | 0.5830 | 0.3652

information. When only FFT is used without considering the
improved V' component of the HSV color space, the fusion re-
sults can preserve relatively complete MR image features but
cannot reflect the functional information of PET. The fusion re-
sults distinctly become much better when both are considered,
as shown in the fifth row of Fig. 10.

Table IV shows the corresponding calculation results of the
six evaluation indices in Fig. 10. The red value in the table is
the optimal value, and the blue value is the next best value. The
evaluation indices of the entire fusion image were calculated,
and it was found that, the method in this article had a better
effect (the optimal one had two indices, and the second-optimal
one had four indices). In addition, we also calculated the average
values of the evaluation indices of the three ROI regions shown
in Fig. 10, as shown in the next four rows of Table IV. From the
average value of the evaluation indices of the three ROI regions,
itcan also be found that the method in this article is better than the
other two methods (without Fourier and without a V' component
calculation).

V. CONCLUSION

In this article, a deep feature fusion approach for brain dis-
ease images guided by MS-Info, MsgFusion, is proposed. We
analyze the key MS-Info of MR/CT/PET/SPECT to obtain its
corresponding image features, and then find the most efficient
extraction strategies. Therefore, a two-branch network is de-
signed, including the SF-branch and GV-branch. The SF-branch
combines the spatial domain and frequency domain information
and the GV-branch combines the multiscale gray images and
brightness from the HSV color space. The dual network mech-
anism successfully improves the generalization ability of CNN
and fully reflects the importance of the frequency domain infor-
mation and color space information to ensure the effectiveness
of the fusion results. The medical brain images are processed and
analyzed, including the MR-CT image fusion, MR-SPECT im-
age fusion, and MR-PET image fusion. Experiments show that,

compared with the existing methods, our approach has obvious
advantages. We also asked clinical doctors to evaluate the fu-
sion results via a questionnaire survey. The statistical data also
proved that the proposed MsgFusion achieves the best fusion
effect. In the future, we will consider extending the framework
to integrate CT, MR, PET, SPECT, DTI and two or more other
imaging modalities and apply them to clinical diagnosis.
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