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Abstract—We introduce a new photographing guidance (Pho-
toHelper) for amateur photographers to enhance their portrait
photo quality using deep feature retrieval and fusion. In our
model, we comprehensively integrate empirical aesthetic rules,
traditional machine learning algorithms and deep neural net-
works to extract different kinds of features in both color and
space aspects. With these features, we build a modified random
forest with a structured photograph collection to identify types of
photos. We also define the composition matching score to measure
the similarity between the given photo and the reference photo.
By combining all of the above processes, a one-stop deep portrait
photographing guidance is constructed to provide users with
professional reference photographs that are similar to the current
scene and automatically generate spatial composition guidance
according to the user-selected reference photo. Experiments and
evaluations show that the aesthetic quality of portrait photos
can be significantly improved via the composition guidance of
our photographing guidance approach.

Index Terms—Deep feature fusion, photographing guidance,
aesthetic assessment, image retrieval, spatial composition rule.

I. INTRODUCTION

W ITH the development of smart-phone camera tech-
nology, it has become easier than ever before for a

common person to take a photograph. Among the general
public, portrait photos are the most popular type. However,
amateur photographers usually lack skills to take photos of
high quality. Common people are often incapable of designing
a harmonious photo composition including the background and
the person in the foreground. Conversely, experienced camer-
amen always handle these problems expertly based on their
professional skills and long-accumulated experience, which
are almost impossible to learn from textbooks or teaching
videos. To help novices improve the quality of their portrait
photos, the most direct method is retrieving professional
photographs that are similar to the current scene and imitating
them when taking pictures. However, it is almost impossible
in practice to manually find similar photos in real time when
photographing even if the photographs are indexed by category
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for fast access. In addition, learning the artistic style of
professional photographs is also a difficult task for amateurs.
The image search engine is another convenient choice since
users can obtain similar photographs quickly [1], [2]. However,
the retrieved results are sometimes of low quality. The search
engine also cannot teach photographers how to reproduce a
better photograph with the search results. Other studies tried
to obtain the best composition by cropping out a smaller
frame from the original photograph to help users obtain a
better picture [3], [4]. However, the limitation of this method
is also obvious. Since photographs taken by common people
are usually of low quality, the subregion in the photo with
high aesthetic value may also be very small; thus, the cropped
picture will lose much of the information and feeling that the
original photo intended to convey. With the knowledge that
existing techniques are not proper for current situations, we
sought to design a method to address these problems.

Here, we propose a one-stop portrait photographing assistant
for retrieving professional reference photos and instructing
users to improve the layout of their framing. Along with
the idea of combining both scene type and spatial compo-
sition similarity [3], our model is designed in a feature-based
manner [5] and is mainly composed of two parts: reference
photo retrieval and photographing guidance generation. We
combine empirical rules, existing traditional algorithms, deep
neural networks and statistical methods to extract several
kinds of image features. According to their functions, these
features are divided into three types: learned features, global
features and similarity matching features. In the reference
photo retrieval step, learned and global features are used to
train a modified random forest that can predict the scene
type of the given photo. After that, the similarity matching
features are used to calculate the composition matching score
for comparing the similarity between each retrieved photo
and the given photo. Finally, we show some top-ranked-score
photos on the screen, and once the user selects one of them
as his or her reference, our method will automatically provide
visualized spatial composition guidance to the photographer.
We show this process in a flowchart in Fig. 1. Notably, if users
want to obtain photos particularly similar to the scene in a
certain aspect, minor adjustment for weight parameters of the
corresponding feature can be carried out to meet this demand.
The analysis of the corresponding evaluation and comparison
experiments shows that our recommended photographs are
similar to the current scene and users can produce better
portrait photos by following our guidance. In general, our work
makes the following key contributions:
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Fig. 1: The flow path of our method. We first extract learned features, global features and similarity matching features of the
given photo. With learned and global features as input, the modified random forest predicts a certain scene type to the photo.
Next, the composition matching score of each reference photo is calculated by the similarity between itself and the given photo
with their similarity matching features. According to these scores, we get the ranking list of the reference photos, which will
be shown to the user for selection in this order. Suppose the user chooses the photograph in red rectangle as reference, our
method will automatically show the visualized composition guidance on the screen to help the user take a better picture.

• Comprehensive Feature Fusion: We utilize empirical
rules, traditional classification algorithms, deep learning,
and statistical methods to comprehensively fuse various
kinds of features, including color, illumination, and spa-
tial composition features. In addition to some commonly
used features, we also raise new features in our method,
such as homogeneous regions and dominant lines, which
are proven effective. With this feature-fused system, we
construct a model for analyzing, classifying and retrieving
photographs.

• Interactive Photographing Guidance: By integrating the
result of modified random forest and composition match-
ing scores, we provide users with the most similar pho-
tographs to the current scene in our dataset. Once the user
selects a photograph as a reference, our approach would
show the corresponding visualized spatial composition
guidance on the screen, which photographers can follow
to produce a better photograph conveniently.

II. RELATED WORK

A. Photograph Aesthetic Assessment

Although it has been studied for a long time, the evaluation
of photograph aesthetics is still difficult to summarize as
a common model. The existing knowledge of photography
suggests there should be some general standards for photo
evaluation underneath the current theory [6]. Most traditional
studies on image assessment attempt to assess photos’ aes-
thetic degrees based on various kinds of features. In previous
studies, visual features, including color, texture and composi-
tion, were introduced. Color features include light, colorful-
ness, brightness, saturation and hue of the photo. In addition,
color features are always different in different regions of a
single photograph; thus, the distribution of these features in the
whole picture is also considered a feature [7]. Texture features

are often described with edge information, blur distributions,
wavelet features and the histogram of oriented gradients. Com-
position features are also important in aesthetic evaluation.
Some studies have segmented the image into regions and
computed the importance of each region to extract salient
regions and determine their relative distances [8]. Other studies
have tried to use ovals and lines to represent the composition
of the photograph [3]. In conclusion, most traditional image
features are defined by empirical rules [9], and after the
extraction of these features, the quality of the photograph can
be evaluated by combining all the features, such as [10].

In recent years, the utilization of traditional features has
been gradually replaced by learned features extracted from
learning-based models in the computer vision field [12]. First,
machine learning approaches for aesthetic evaluation have
been extensively studied in the past ten years [13], [14], [15].
By constructing predictive models from large-scale labeled
training data, machine learning methods can be more robust
than traditional algorithms. Recently, deep neural networks
have achieved remarkable results in many image processing
tasks [16], [11], [17], including several methods to investigate
image aesthetics prediction [18]. Lu et al. [19] adopted a
deep neural network approach with unified feature learning
and classifier training to estimate image aesthetics, which
learned aesthetic-related features automatically from a large-
scale image dataset. Campbell et al. [20] trained a 10-layer
deep belief network to discover features of evolved abstract
art images. Luo and Tang [14] presented a work to extract
the subject region from a photo to evaluate its quality. Other
researchers have tried to use a content-aware approach to
remodel the scene [21]. However, the common disadvantage of
all of the above studies is that they do not adequately explain
what has been learned from the network; thus, it is almost
impossible to understand the implicit aesthetic standard from
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Fig. 2: The extraction of learned features. We use a pretrained ResNet [11] to get learned features. After removing the last
probability layer, we take the output of the last FC layer as our learned features to train the random forest in the next step.

the corresponding evaluation. In our method, we take these
previous studies as a reference to learn and improve their
feature extraction methods. At the same time, we still use
traditional aesthetic rules to choose and collect professional
photos for our database. This makes the aesthetic value of
our reference photo more analyzable and makes our feature
extraction method more well directed for the following photo
classification step.

B. Photographing Assistant Tools

The most direct idea to obtain a high-quality photograph
is postprocessing. However, it may change or even damage
the details of the original photograph, and it is often difficult
for common people to use the corresponding professional
tools. Thus, some methods instead provide auto-postprocessing
techniques. Most of these studies focus on searching for a
better subfigure from a given photograph. For example, Liang
et al. [3] applied an example-based recomposition to crop the
given photograph to a smaller frame that has a better layout
than the original one. There are also many other kinds of re-
composition models, such as the probabilistic model [22], the
maximally aesthetic model [23], and the energy model [24].
However, cropping will decrease the resolution of the pho-
tograph, and some important regions may be dropped out
during this process. Furthermore, if the original given photo
is of low quality, there may be no acceptable result even
with an exhaustive search. Thus, the demand for real-time
photographing assistance tools has come into being.

Many kinds of modern real-time shooting techniques have
already been developed and are intended to help users increase
the color quality of their photo. Some methods also try to
help users in different aspects, such as providing pose and
composition suggestions [25], [26]. For PCs, consumer-level
depth cameras such as Microsoft Kinect and Intel RealSense
have been developed to collect the depth information of the
objects. For mobile platforms, Yin et al. [27] proposed a so-
cialized mobile photographing system to assist mobile users in
capturing high-quality photos using both the rich context avail-

able from mobile devices and crowd-sourced social media.
Wang and Cohen [28] proposed an algorithm that integrates
matting and compositing into a single optimization process
for implanting foreground elements into a new background.
Cheng et al. [13] presented a method to learn the object spatial
correlation distribution and applied this method to guide the
composition arrangement of professional photos.

Based on these previous studies, we find that regarding
photo enhancement, there has already been much work done
for the purpose of postprocessing, including the development
of many mature image-processing software programs. These
methods may have good effects on the improvement of the
color aspect of the photos, but at the same time, they almost
have no use for spatial composition enhancement. In turn, there
is little research focusing on the preprocessing or shooting
guidance of photographing. In addition, many studies on the
spatial composition of photos are often targeted at image
assessment rather than image generation. Focusing on these
problems and the research objective, we first combine deep
neural networks and traditional algorithms to extract different
kinds of features from the photo, and then use these features
to quantify and visualize the difference between a given photo
and its similar professional photo to achieve the goal of spatial
composition guidance before photographing.

III. MODEL CONSTRUCTION

A. Data Preparation

Our method mainly contains two parts: professional photo
retrieval and photographing guidance generation. First, we
restrict the photo type in our dataset to portrait photos and
construct our professional photo dataset, which includes a total
of 4122 photos. All photos are collected from professional
photography websites/electronic magazines and stored in our
local server. To classify these photos, we manually label these
photos by the environment where the photos were taken,
such as grasslands and highways, and finally summarize all
photos into 15 classes. During the whole working period, this



IEEE TRANSACTIONS ON MULTIMEDIA 4

Fig. 3: The distribution of learned features’ value. In (a),
we show the grassland and highway photos. Part of their
learned features’ value are shown in the scatter plot below.
We use green rectangles to show that two kinds of photos
have significant value distribution differences at some certain
feature dimensions. In (b), we show the t-SNE embedding
plot for the learned features and traditional GIST features
respectively, indicating the advantage of learned features in
this classification task

reference photo collection is used to be both the training set for
modified random forest and the data source for photo retrieval.

B. Feature Extraction

In our method, all features used are divided into three types:
learned, global and similarity matching features. Learned
features are used to train a random forest. Global features are
used to improve the classification accuracy of some leaf nodes
in the forest. Similarity matching features are used to quantify
the similarity between the given photo and the reference
photo. During feature extraction, in addition to using several
traditional methods, we also developed some new aesthetic
features and their extraction means.

1) Learned Features: Scene type, or in other words, the
environmental background, is always one of the most impor-
tant topics when implementing photo retrieval. However, scene
type is not an object with some special characteristics but a

macroscopic concept that is difficult for humans to quantify.
Thus, we use a deep neural network to extract these abstract,
incomprehensible scene types from the given photos as their
learned features. In our method, a pretrained deep residual
network [11] that has been well trained on the Places365
dataset [29] is employed to finish this work. In detail, we first
input the photo into the pretrained ResNet and then remove the
final classification probability layer of the network to obtain
the raw 365-dimensional feature vector from the last FC. We
then take this feature as the learned feature of the given
photo. This process is shown in Fig. 2. On the one hand,
photos of different scene types will produce different value
distributions on some dimensions of their learned features
(as in the example shown in Fig. 3(a)). On the other hand,
photos of the same scene type will become easier to cluster
on the t-SNE embedding plot by their learned features than
the traditional GIST features [30] (as in the example shown
in Fig. 3(b)). These experiments indicate that learned features
indeed have some superiority over other image features when
being used to implement photo classification to some extent.

2) Global Features: When learned features are extracted,
global features of the given photo can also be calculated and
prepared for the modification of the random forest in the next
step. The global features used in this model include three parts:
edge, texture and hue composition.

1) Edge The edge of an image is defined as the set of
pixels in which the grayscale of the surrounding pixels changes
dramatically. In our model, taking the HOG (histogram of ori-
ented gradient) feature extraction algorithm as a reference, we
directly calculate the gradient of a certain pixel in RGB color
space as Gp and its direction as Dp. After that, we implement
a noise reduction process to eliminate the disturbance of the
pixels with high Gp but not on the edge of the objects. Then,
with the remaining edge pixels, we divide all of them into 6
classes from 0 to 180 degrees and take the quantity of pixels
in each class as the corresponding edge length. Finally, based
on these data, we construct the length-direction histogram Ev

of the given photo and take it as its edge feature.
2) Texture As a feature that does not depend on the

change of color or brightness to reflect the homogeneity of an
image, texture characterizes the distribution of the grayscale
in a certain pixel domain. Taking the LBP feature extraction
algorithm as a reference, we obtain the texture information
of the target pixel by observing the grayscale distribution of
its eight surrounding pixels. Based on the shape formed by
pixels of similar grayscale in the 3*3 domain, we divide the
texture pattern of all pixels into nine classes, including eight
classes of different texture growth directions and one class
of no texture. According to this classification, we take the
texture direction Dt and the proportion of texture area At
(the proportion of pixel amounts in one class) to quantify the
texture of the image. Similar to edge feature extraction, an
area-direction histogram Tv is constructed, and we take this
vector as the texture feature of the given photo.

3) Hue Composition Luo et al. [21] proposed that, for
most professional photographs, the hue composition can be
summarized into several kinds of patterns. To describe these
patterns as quantifiable features, we first construct the hue his-
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Fig. 4: The hue composition of monochromatic and analogous
modes. The monochromatic mode contains one dominant color
region with convergent or divergent hue distribution as in (a)
and (b). The analogous mode contains two dominant color
region with vertical and complementary hue distribution as in
(c) and (d).

togram of the image and search the dominant color intervals.
The dominant color interval is defined as a continuous color-
concentrated region in the histogram. In our model, we defined
the interval covering more than 60% of pixels as the major
interval and another (if it existed) that covers over 20% of
pixels as the subinterval. Based on these intervals, we used
two parameters to show the hue distribution modes: the hue
focus of the dominant color interval (represented as α) and the
spans of the interval (represented as ω). As shown in Fig. 4,
two patterns of hue composition can be concluded.

3) Similarity Matching Features: Similarity matching fea-
tures are used to calculate the composition matching score of
each reference photo with the same scene type as the given
photo. The similarity matching features used in this model
include four parts: illumination conditions, salient regions,
homogeneous regions and dominant lines.

1) Illumination Condition The impression of a scene is
determined to a great extent by the prevailing illumination
conditions [31], and intensity and direction are often regarded
as two significant features of the illumination condition. Di-
rectly calculating the intensity of the current scene is difficult;
therefore, we use brightness instead. The mean brightness Im
can be calculated by the following equation:

Im =

∑N
i=1 max(ir, ig, ib)

N
(1)

where, ir, ig , ib means the RGB value of the pixels. And N is
the the amount of all pixels in the photograph. Furthermore,
we can also calculate the contrast C of the photo using the
following equation:

C =
Ih
Il

s.t. (2)

Ih =
1

Nh

Nh∑
i=1

Ip, Il =
1

Nl

Nl∑
i=1

I
′

p

where, Ip is the mean brightness of the pixels higher than
Im while the I

′

p represents the lower one. To obtain the
illumination direction, we need to know the light source

Fig. 5: Light direction features. In (a), the zenith angle is
the angle between the zenith and the sunlight direction. The
azimuth angle is the angle between the shooting direction and
the projection of sunlight. In (b), we divide ground plane into
4 regions and conclude lights from all directions into 3 classes:
front-light, side-light and back-light.

Fig. 6: Salient region extraction. The left shows the original
photo, the middle shows the combination of segmentation map
and focus coordinate. The right shows the final result.

location. Lalonde et al. [31] proposed a method to estimate the
sun visibility and location with zenith angle and azimuth angle,
which we show in Fig. 5(a). Inspired by their work, we modify
their algorithm to a simplified version, as shown in Fig. 5(b).
We define Id as the symbol of the light direction feature and
divide the ground plane into four regions to summarize lights
from all directions into three classes: front-light, side-light and
back-light. We then take these three labels as the feature values
of Id instead of those two angles. If there is no obvious light
source in the surrounding environment, we take this as the
front-light situation where the light zenith angle is set as 45◦.

2) Salient Region For a given photograph, a salient region
is defined as the region occupied by the focused object to
which the photographer wants viewers to pay attention. In our
method, we use both deep learning and focus point coordinates
to extract the salient region of the photo. First, Pose2Seg [32]
is used to obtain the corresponding segmentation map of the
given photograph. Then, after the user touches the screen to
specify the focus point, we record this touching coordinate
and determine the semantically segmented region in which
the touching coordinate falls to define it as the salient region.
(We also manually define the area where the person stands as
its salient region in our reference photo dataset.) Finally, to
represent the salient region, we use ovals to circle the salient
region and record the oval with central coordinates (Srx, Sry),
major axis length Oa and the angle Oangle between the major
axis and y axis as the salient region feature. We show the
whole process in Fig. 6.

3) Visual Homogenous Regions In a photo, the homoge-
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Fig. 7: Homogenous region merging results. The first row
shows the original photos. The second row shows the direct
segmentations. And the last row shows our merging results.

nous region is defined as the area where each of its subregions
shares similar hue, texture, intensity, etc., usually covering
integral, semantically similar objects. In our method, we first
take a graph-based image segmentation method [33] to directly
divide the hue map of the photo into several superpixels. Then,
we use a graph G(V,E) to record the segmented regions and
their relationship. (The salient region obtained before will not
be processed here.) Node V of the graph is the representation
of a homogeneous region. For each node, we save at most
three main hue values (Hrh1, Hrh2, Hrh3) of the region, their
proportions (Hrr1, Hrr2, Hrr3), the central coordinates of the
whole region (Hrx, Hry) and the size of the region Hrs. Edge
E of the graph records the connected region pairs. With all
these elemental variables defined, we start to construct more
meaningful functions.

Suppose R1 and R2 are the region graph nodes discussed
before. We define SR(R1, R2) as the size ratio of two regions,
which is used to encourage a large region to absorb a smaller
region instead of another large region.

SR(R1, R2) =
max(R1.Hrs, R2.Hrs)

min(R1.Hrs, R2.Hrs)
(3)

We define D(R1, R2) as the distance between two regions,
which is the length of the shortest visited path between them.
D(R1, R2) is used to encourage the merging of adjacent
regions instead of the far-separated pairs.

We also define H(R1, R2) as the hue similarity of two
regions. We use the distribution of hue in the corresponding
region to calculate it. According to our observation, we assume
that the overall hue distribution can be described as a sum of
several Gaussian functions. Thus, we take the hue distribution

Fig. 8: Dominant lines examples. We show three different
dominant line results in (a), (b) and (c). Red lines are dominant
lines and green ones are the long axis of the salient oval. From
top to bottom: the original images, the intermediate region
merging results and dominant line results.

HD as:

HD(x|R) =

3∑
i=1

R.Hrri√
2π

exp(−1

2
(x−R.Hrhi)

2)

s.t. (4)
3∑

i=1

R.Hrri = 1

Therefore, the hue similarity can be calculated as:

H(R1, R2) =

255∑
i=0

min(HD(i|R1), HD(i|R2)) (5)

Finally, we can define the similarity score Ssimi as the
similarity measurement between two regions:

Ssimi(R1, R2) =
SR(R1, R2) · exp(α+H(R1, R2))√

D(R1, R2)
(6)

where, the coefficient α of Eq. (6) is used to control the
weight of hue similarity. In our experiments, we set α = 3.
During the merging process, we merge one region pair that
has the highest similarity score in this calculating circle and
then update the attribute of this merged area as a new region
in the next iteration until only five regions remain.

Our homogeneous region results are shown in Fig. 7. We
can see that the regions close to each other with similar
semantic meaning have been merged into one part. Although
the precision of this segmentation is not perfect, by matching
the homogeneous regions, we can still ensure the rough
composition similarity of two photographs.

4) Dominant Lines A dominant line is defined as the
boundaries between different homogenous regions that are
long enough to influence the composition of the photograph,
such as the skyline. Most of the composition rules are related
to the location of dominant lines, such as the Rule of Thirds
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and the Diagonal Rule. To extract the dominant lines, we
first perform a Randomized Hough Transform [34] on the
intermediate product of the region merging process discussed
before. Then, we use the following formula to identify and
merge the short lines to construct the final theoretical dominant
line:

Lsimi(L1, L2) =
w1

exp(A(L1, L2))
+

w2

exp(D(L1, L2))
(7)

where, L1, L2 are two lines extracted by Hough Trans-
form. A(L1, L2) is the angle between line pair L1, L2 and
D(L1, L2) is the distance between two lines’ centers. w1, w2

are two weight parameters to balance these two factors which
we set w1 = 0.15 and w2 = 0.1 respectively.

In this experiment, we merge only the line pair of which
the Lsimi value exceeds the threshold set as 1.2. After this
process, most short, close lines are merged into several long
straight lines. Finally, we select at most three longest lines
from the remaining ones as dominant lines. We show part of
the results in Fig. 8.

C. Photograph Recommendation

Photograph Recommendation includes two parts: profes-
sional photos batch retrieval (based on a modified random
forest) and similarity matching ranking (based on the com-
position matching score).

1) Modified Random Forest After feature extraction, 4122
labeled photos with learned and global features are used to
train a modified random forest with 300 CARTs. Bootstrap
sampling is used to build up the training set for each tree,
and the attribute space is composed of 365 features (all
365 dimensions of the learned feature vector) extracted from
ResNet. For each node on each tree, we randomly select 30
features as candidates and take one of them with the best
Gini value for splitting. Trained in this way, every tree in
the forest grows freely without pruning until each leaf node
contains only photos of the same class or there are no features
to be split. The minimum examples per end node are manually
set to 20 to restrict the depth of the tree and improve the
efficiency of the whole forest. The learned features extracted
from the network are all local features that are sensitive to
the component parts of an object. However, scene type is an
abstract macroscopic concept, so global features also play an
important role in this task. Thus, we verified each tree to pick
out the leaf nodes in which the proportion of major photo
class accounts for less than 90 percent and further split these
nodes using the 3 global features discussed above. Finally,
after modifying the whole forest, we define the class of each
leaf node as the class where most photos of this node fall.

2) Composition Matching Score In this section, we com-
bine all four similarity matching features to compute the
composition matching score for each reference photo. To be
more specific, we first calculate three subscores according
to each corresponding feature and then add them up with
different weights to make the final score.

a) Illumination Condition To filter photos by this feature,
we first eliminate the photos with different light directions and
then further eliminate the photos in which the brightness or

contrast differs from the given photo by over 20%. After this
process, we finally obtain the primary photo subset for the
matching score calculation.

b) Salient Region To measure the salient region similar-
ity, we first resize two photographs into the same size and
correspondingly transform the salient oval. Then, the salient
matching score can be calculated by the following equation:

Msali = msali(Sr1, Sr2) =
λ1

d
+ λ2cos(θ) (8)

where, d is the distance between two elliptical centers and θ
is the included angle formed by long axis of two ovals. λ1

and λ2 are adjustable parameters to balance the importance
of distance and direction. In this model, we set λ1 and λ2 to
0.05 and 10.

c) Visual Homogenous Regions Similar to the process of
salient region matching, we resize two photographs and corre-
spondingly transform the homogenous regions. The calculation
of each region pair’s matching score is very similar to the
computation of the region merging process. The equation is
shown below:

mhomo(R1, R2) =
JC(R1, R2) · exp(α+H(R1, R2))√

D(R1, R2)

s.t. (9)

JC(R1, R2) =
|R1 ∩R2|
|R1 ∪R2|

where, R1, R2 are two homogeneous regions of different
photographs. H(R1, R2) and D(R1, R2) are hue similarity
and central distance that have already been defined in region
merging section. To be noticed, the H(R1, R2) and D(R1, R2)
here are calculated with two regions from different photos
rather than from the same picture as in the region-merging
process. (The reasonability of this calculation is because we
have resized the photos and thus can put them into the same
coordinate system.) JC(R1, R2) is the Jaccard coefficient,
which is used to calculate the overlapping degree of two sets.
For each homogenous region on the A photo, we compared it
with every region on the B photo to calculate the matching
scores and take the one with the highest score as its matched
region until all regions of the A photo have been paired.
Specifically, if one larger region is matched to a smaller
one, the overlapped region will be subtracted from the larger
region. Then, the remaining part will be regarded as a new
homogenous region to be matched in the next iteration. Finally,
the homogenous region matching score can be calculated as:

Mhomo =

∑N
i=1 mhomo(Ri, R

′

i)

N
(10)

where, N is the number of matched region pairs, (Ri, R
′

i) is
the best matched pair of Ri.

d) Dominant Lines: The matching score of each dominant
line pair can be calculated by the following equation:

mdomi(L1, L2) =
1

exp( s
S )

(11)

where, L1, L2 are two dominant lines of different photographs.
s is the amount of pixels in the quadrangle formed by linking
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Fig. 9: The influence of different parameter values to the
retrieval. In (a), we put more weights on homogeneous regions
while in (b), we put more weights on dominant lines.

four endpoints of these two lines and S is the total pixel num-
ber of the photograph. Similar to the process of homogenous
region matching, we determined every best matched line pair
until no pair could be matched between two photos and finally
calculated its average value as the dominant line matching
score:

Mdomi =

∑N
i=1 mdomi(Li, L

′

i)

N
(12)

where, N is the number of matched line pairs, (Li, L
′

i) is the
best matched pair of Li.

e) Composition Matching Score To sum all submatching
scores up with different weight parameters, we finally obtained
the composition matching score Sranking:

Sranking = Msali + λ1

N∑
i

Mhomo + λ2

M∑
j

Mdomi (13)

where, N is the number of homogeneous regions matched
pairs and M is the number of dominant line matched pairs.
λ1 and λ2 are adjustable parameters to balance the proportion
of three sub matching scores. In our model, we empirically
assumed that the dominant line is the most important feature
contributing to the similarity, followed by homogenous regions
and finally salient regions. Therefore, λ1 and λ2 are set to 1.5
and 3, respectively. For comparison, we display a different
retrieval result when the two parameters are reversely set to 3
and 1.5 to show the influence of these parameters in Fig. 9.

Now, with Sranking of all recommended photos in hand, we
can rank photographs according to their similarity with respect
to the current scene.

D. Photographing Guidance

The color composition of the photo is easier to adjust
using other postprocessing applications, such as Photoshop

Fig. 10: Comparison with other region segmentation results.
For rows from top to bottom: the original photographs; seman-
tic segmentation [35] results; region growing and merging [36]
results; superpixel based FCM clustering [37] results and our
results.

and Photo-Paint. Therefore, we concentrated more on spatial
composition guidance instead. Notably, the distribution of the
homogenous regions is a natural element of the current scene,
which is very difficult to change unless the overall background
is replaced. Therefore, only the salient region and dominant
lines are considered in our composition guidance. We use full
lines to mark these two features of the current scene and dotted
lines for those of the reference photo. Given these auxiliary
lines, users can change the shooting direction or focal length
to imitate the spatial composition of the reference photo.

IV. EVALUATION TESTS OF THE MODEL

In this section, we design different evaluation tests targeting
to different parts of our model. For our newly developed
features, we directly show the results of different feature
extraction methods to point out the suitability and superiority
of our algorithms. For the modified random forest, we perform
quantitative comparison experiments to compare it with other
existing classification strategies on two different datasets.
Finally, for photographing guidance, we conduct a user study
and explain the effectiveness of our model based on the results
analysis.

A. Evaluation of New Developed Features

In this part, we will prove the availability and suitability
of our two newly developed features: homogeneous regions
and dominant lines. First, we compare homogeneous regions
with 3 existing image segmentation models [35], [36], [37] in
Fig. 10. As defined in the previous section, a homogeneous
region is the area where its subregions share similar hue,
texture, intensity, etc. with no concern about the component
objects. In this way, there is neither necessity nor appropriate-
ness to use pixel-level semantic segmentation for our model.
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Fig. 11: Comparison with other line detection results. For
columns from left to right: the original photographs; LSD [38]
results; MCMLSD [39] results; CannyLines [40] results and
our results.

As shown in Row 2 of the figure, the algorithm [35] only
segments persons and boats (blue region in Column 3) in the
picture with no regard to the other part of the background.
This is due to the limitation of its training samples and is
far from suitable for our model. In addition, we also show 2
other segmentation results by the region growing and merging
method [36] (Row 3) and the superpixel-based FCM clustering
method [37] (Row 4). From the perspective of segmentation
strategy, these 2 methods are more suitable for our model than
semantic segmentation, with even some similar concepts to
our algorithm. However, both of these methods have some
problems of oversegmentation in the background or in the
objects. In contrast, our results provide more correct but
simpler segmentations in all 4 examples shown.

For dominant lines, we also compare our algorithm with
3 popular line detection models in Fig. 11: LSD [38] (in
Column 2), Markov chain marginal line segment detector [39]
(in Column 3) and CannyLines [40] (in Column 4). According
to the definition of the dominant line, we only choose the 3
longest lines detected in each picture by different algorithms to
be their dominant lines. As shown below, for the straight lines
in the original picture, all 4 algorithms extract them correctly
with little difference in length. However, compared with our
results, other algorithms may provide some unimportant lines
that are neglectable in the original picture (such as in Row 1
Column 3 and Row 2 Column 4) or may fail to observe the
abstract lines formed by some short lines with little differences
in the direction (such as the line formed by the mountain
ridge in Row 2). In contrast, our algorithm gives all important
segmentation lines and shows the spatial composition of the

picture most clearly in all 4 examples.

B. Evaluation of Classification Performance

For the modified random forest, we also compare it with 4
different classification strategies to evaluate the performance of
our method. Since this part of the model is targeted for photo
classification, except for our own reference photo dataset,
another public scene type classification dataset, Scene-15 [41],
is also used in this evaluation test. A detailed description of
these 2 datasets is as follows:

Scene-15 Dataset: Fifteen scene classes, including bed-
rooms, houses, factories, and supermarkets, are included in this
dataset. Each class has approximately 200-300 photos with no
people in every picture. We randomly select 150 photos in
each class as training samples and use the other 50 photos
as testing samples; thus, in all, we have 2250 photos in the
training set and 550 photos in the testing set.

Our Dataset: Due to the insufficient background scenes in
our reference photos, we summarize 15 representative classes
of scene types for the overall photo collection, including high-
ways, grasslands, snowscapes, and streetscapes. Each class has
approximately 200-300 photos with a person in the foreground
in every picture. We randomly select 150 photos in each class
as training samples and 60 other photos as testing samples;
thus, in all, we have 2250 photos in the training set and 900
photos in the testing set.

In this experiment, we carefully design four other classi-
fication strategies to evaluate the effectiveness of our model
from different aspects and show the results in Table I and
Fig. 12. In detail, our model is composed of a ResNet
pretrained on Places365 and a modified random forest (repre-
sented as LF+RF). The other models are described as follows:
an individual ResNet pretrained on Places365 (represented
as ResNet(Places365)), an individual ResNet pretrained on
ImageNet (represented as ResNet(ImageNet)), an individual
InceptionV3 pretrained on ImageNet (represented as Incep-
tionV3(ImageNet)), and a GIST feature extraction model with
a modified random forest (represented as GF+RF).

As shown in Table I and Fig. 12, first, the 4 models
with deep features all perform much better than the one
with traditional GIST features, which shows the power and
effectiveness of the learned features. Then, for these models
based on deep learning, ResNet(ImageNet) gives a better
result than InceptionV3(ImageNet) and also performs a lower
prediction accuracy than ResNet(Places365). This indicates
that, on the one hand, the ResNet structure is more powerful
than InceptionV3 for this classification task; on the other hand,
the network pretrained on Places365 can produce better results
since it is used for a similar scene type classification task,
which is consistent with the theory of transfer learning to
some extent. Finally, our model outperforms the other four
models on both Scene-15 and our own reference photo dataset,
showing the effectiveness and generalization of our method.

Most of the photos in the Scene-15 dataset are of the
grayscale type, while those in our dataset are of the RGB type.
To explore the effect of this hue difference on the models, we
transform all photos in our dataset into grayscale type and use
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TABLE I: Classification Report of Different Models

Scene-15 Dataset Our Dataset Our Dataset(gray)
Models Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

ResNet(Places365) 0.88 0.85 0.85 0.86 0.90 0.86 0.86 0.84 0.84 0.79 0.82 0.81
ResNet(ImageNet) 0.82 0.81 0.85 0.82 0.87 0.85 0.88 0.87 0.80 0.76 0.79 0.77

InceptionV3(ImageNet) 0.78 0.82 0.78 0.77 0.84 0.86 0.84 0.84 0.77 0.68 0.71 0.70
GF+RF 0.66 0.60 0.62 0.62 0.71 0.62 0.69 0.68 0.62 0.59 0.63 0.62
LF+RF 0.93 0.87 0.87 0.87 0.92 0.86 0.89 0.88 0.88 0.83 0.85 0.84

Fig. 12: Classification performance of different models. We show ROC curves of different models performing on 3 datasets
respectively. On every dataset, our model achieves the highest AUC score.

Fig. 13: Comparison to other similarity metric. We show two scene examples including ’nightscape’ and ’grassland’. For each
testing image, we show the top 5 best-matched images ranked by 2 different image similarity metrics of which each row
corresponds to one. From top to bottom: ranked by our method, by SSIM and by cosine similarity.

the transformed photos as a new dataset to retrain the models.
As expected, since the scene background has few areas and
often includes humans in the portrait picture, color plays a
significant role while the models try to classify the photos
of our dataset. Thus, after removing the hue information by
gray processing, the testing results of all 5 models decrease
(especially when distinguishing ’snowscape’ between ’forest’,
or ’grassland’ between ’wheatland’). However, under this
situation, our model still performs better than the other four
methods. This may indicate that our model has less depen-
dency on hue information when implementing classification,
which shows a stronger robustness than the other models to
some extent.

C. Evaluation of Photo Matching

As the main purpose of our model, since it is used to
provide some spatial composition guidance for novices, the
professional photos recommended by our method are supposed
to show more composition similarity to the testing photo rather
than its color aspects. To validate these results, we use another
2 popular image similarity metrics, SSIM and cosine similar-
ity, to rank the same group of recommended photos in different
orders and compare their best matched photos with each other.
As shown in Fig. 13, photos ranked by our method obtain
more similar elements, such as spatial perspective and region
composition, than those ranked by the other 2 methods. This
indicates that the composition matching score developed by
our method can indeed maintain more composition similarity
between photos than the common metrics, which lays a solid
foundation for the following composition guidance of our
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TABLE II: Rating results of 5 photographing modes

Grassland Highway
average standard average standard
score deviation score deviation

No-Guidance 6.2 2.59 6.8 2.62
Only-Photo 8.3 1.37 7.9 1.32

Only-SR 8.2 2.01 8.1 1.95
Only-DL 8.7 1.23 8.8 1.58

Full-Guidance 9.2 0.92 9.5 1.17

model.

D. User Study of Aesthetic Quality

We conduct a user study to evaluate the aesthetic quality of a
photo that is taken after the guidance given by our application.
The goal of this experiment is to determine whether our
method is helpful to people lacking photography skills and
to gather suggestions from users to improve our system.

Participants: Thirty volunteers without professional skills
participate in the experiment. All of them are undergraduates.
Before they start the experiments, we help them become
familiar with our application to avoid interruptions.

Tasks: We design a comparison experiment with five differ-
ent shooting modes: No-Guidance mode, Only-Photo mode,
Only-SR mode, Only-DL mode and Full-Guidance mode.
In No-Guidance mode, users take photos without any help
from our application. In Only-Photo mode, users are only
provided with recommended photos with no guidance on them.
In the Only-SR mode and Only-DL mode, users can obtain
recommended photos with only salient region suggestions or
dominant line suggestions. Finally, users can obtain reference
photos with all suggestions in Full-Guidance mode. Grasslands
and highways are chosen to be shooting locations because
photos taken from those places always have simple spatial
compositions, which makes it easier and more precise to
grade these photos from aesthetic degrees by our judges.
Each volunteer is asked to take photos of 3 different scenes
(randomly chosen by themselves) at one place, and for each
scene, the volunteer should take 5 pictures in the 5 different
shooting modes mentioned above. To eliminate the influence
of the suggestions on volunteers, the sequence of shooting in
each mode is No-Guidance mode, Only-Photo mode, Only-SR
mode, Only-DL mode and Full-Guidance mode.

Scoring: We invite other 30 online and 30 offline judges to
grade the photographs taken by the volunteers. All 450 photos
are divided into 90 groups, and each group includes 5 photos
taken in 5 different modes at the same scene by the same
volunteer. Judges are provided with photos of one group after
another, and each photo is graded according to their aesthetic
degree from 0 to 10. Notably, sequences of groups given and
photos in each group are both randomly shuffled to eliminate
preference bias.

Scoring Results: With all grading results in hand, we
summarize all photos taken in the same shooting modes
to calculate the average score and standard deviation of
each mode. As we can see in Table II and Fig. 14, Full-
Guidance gets the highest score, while No-guidance gets

Fig. 14: Histogram of average rating scores.

the lowest score, demonstrating that our method can indeed
improve users’ photographing skills, such as view-choosing
or shooting. Only-Photo and Only-SR receive almost the same
scores, obviously higher than No-Guidance and slightly lower
than Only-DL. This situation may imply two points. First,
after being given reference photos, photographers imitate their
composition naturally, which makes their new photographs
better than their original ones. Second, during imitation, the
salient region (the location of the person) can be copied simply,
while the dominant lines in the picture are relatively harder
to imitate or even notice, which explains why Only-Photo
performed almost the same as Only-SR, but both ranked lower
than Only-DL.

For the standard deviation, we find that shooting with more
effective suggestions may produce lower standard deviations,
which implies that without guidance, photographers choose
view and composition randomly, neglecting aesthetic rules.
These kinds of photos may meet the demands of certain
judges but generally would be regarded as mediocre, which
leads to high standard deviations with low average scores. In
contrast, photos taken with guidance usually accord with some
artistic regulations, thus pleasing the criteria of the general
public, resulting in low standard deviations with relatively
high average scores. In conclusion, our system can indeed help
users create appealing photos of which the aesthetic quality is
significantly higher than average level of the general public.

E. Subjective Evaluation of Aesthetic Quality

In addition to subjective user study, we further implement
an objective assessment for the photos improved by our pho-
tographing guidance. The experimental details are as follows:
First, we use two different photo optimization algorithms
(RAG [22] and CAW [24]) on the 90 photos to produce their
corresponding better versions by composition rearrangement
(each photo is taken by the volunteers from the user study
without our photographing guidance). Then, together with
photos taken by volunteers after our photographing guidance,
for each original photo, we obtain three improved versions.
After that, we use two other image assessment models (DMA-
Net [42] and A-Lamp [43]) to grade all photos (from 1 to
10) and calculate the average increased scores for the photos
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Fig. 15: Two examples of our method. For each row, we show a whole process of photographing guidance. For the columns,
we show (a) original photo, (b) selected reference photo, (c) Unselected reference photo, (d) composition guidance and (e)
photo after guidance respectively.

TABLE III: Increase of Rating Scores by 3 Models

DMA-Net A-Lamp User Voting
RAG 1.01 0.57 0.20
CAW 0.83 0.33 0.21

Our Model 1.69 1.89 2.77

TABLE IV: Time Performance of Each Processing Step

Learned
Learned Features 0.1623s

3.9958s

Feature
Global Edge 3.7061s

Feature Feature Texture 1.2257s
Extraction Hue Composition 0.0563s

Composition- Illumination 3.9958s
Matching Salient Region 1.0527s
Feature Homo Regions 3.9465s

Dominant Lines 0.2916s
Photograph Recommend 0.7661s

Guidance Generate 0.0097s

Total 4.7716s

improved by the different methods. Thus, together with the
voting from the user study, we ultimately obtain 9 average
increased rating scores by 3 different photo improving methods
with 3 different assessment standards. The results are shown
in Table III. As seen from the results, whether based on
subjective user voting or objective assessment model grading,
photos taken with our photographing guidance always show
significant progress in aesthetic quality compared with the
original photos, which soundly proves the practical value of
our model. Moreover, although other traditional optimization
models do have some positive effects on the photo composi-
tion, our model still obtains the highest scores among all the
methods, thus proving the superiority of our model over other
existing works.

F. Evaluation of Time Consumption

Our experiments are mainly implemented in a MATLAB
platform and run on a single Intel(R) Core(TM) i7-6700K
CPU without GPU acceleration. As shown in Table IV, the
extraction of different features is parallel. Thus, we take the

TABLE V: Average User Spending Time

Full-Guidance Mode No-Guidance Mode
Before Focus 2.69s 5.73s
Wait Photo 6.33s -
Select Ref 1.79s -

Wait Guidance 0.12s -
Manually Adjust 3.30s -

After Focus 1.77s 3.80 -

Total 14.23s 9.53s

time consumed in the visual illumination section, the longest
one, as the overall time spent in feature extraction. We can
see that the total time is approximately 5 s, which is slightly
long for users to wait for guidance when photographing. Thus,
we leave the optimization of our method and deploying the
program on a GPU as our future work. We also record the
time consumption of different steps in different modes and
show the results in Table V. We divide the time spent taking
photographs into six sections: ’Before Focus’, the period from
turning on the camera to specifying the focus region; ’Wait
Photo’, the period from specifying the focus to getting the
recommended photos; ’Select Ref’, the time spent on selecting
reference photograph; ’Wait Guidance’, the time spent on
waiting composition guidance; ’Manually Adjust’, the time
spent on adjusting the current scene according to the guidance;
and ’After Focus’, the period from focusing (again) to taking
a new picture. We can see that ’Wait Photo’ and ’Manually
Adjust’ in Full-Guidance mode account for nearly 67% of
the whole time, approximately 6 s and 3 s, respectively. This
emphasizes our priorities for future work: first, optimizing
the photo recommendation algorithm to reduce the waiting
time; and second, making the guidance simpler and clearer to
understand and learning to reduce the adjustment time.

G. Resulting Examples of the Overall Model

Our final results are shown in Fig. 15 (only the salient oval
with its long axis and dominant lines are shown on the real
screen; the arrows are used here to show the composition
adjustment more clearly). In Fig. 15, we can see that the
resulting photos (taken after guidance) are much more similar
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to the selected reference photos than to the original photos. We
can feel that the resulting photos indeed look better, indicating
the practicality and effectiveness of our method. Notably, the
details of the resulting photographs may be different from
those of the reference photographs, such as the subject’s
pose or some dominant lines. This is due to the different
photography preferences of different users. We do not consider
these differences to be an important issue for our results.

V. CONCLUSION

In this paper, we present a one-stop portrait photographing
assistant to help novices improve their photographing skills. It
is designed in a feature-based manner and is mainly composed
of two steps: reference photo retrieval and photographing guid-
ance generation. In our model, we not only utilize existing fea-
ture extraction methods but also develop new features and their
extraction means. We develop a modified random forest and
composition matching score to generate similar photograph
batches and practical photographing guidance. Thus, users
can conveniently follow the given guidance to significantly
improve the aesthetic quality of their photos. However, our
work still has some limitations, such as restrictions on portrait
photos and the long time requirement for composition. In the
future, we will continue to optimize our algorithms and test
our model on high-performance GPUs.
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[42] X. Lu, Z. Lin, X. Shen, R. Měch, and J. Z. Wang, “Deep multi-patch
aggregation network for image style, aesthetics, and quality estimation,”
in IEEE International Conference on Computer Vision, 2015, pp. 990–
998.

[43] S. Ma, J. Liu, and C. W. Chen, “A-Lamp: Adaptive layout-aware multi-
patch deep convolutional neural network for photo aesthetic assessment,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 722–731.

Nan Jiang received the B.Sc. degree in material
science from the Fudan University, Shanghai, China,
in 2016, and the M.Sc. degree in applied mathe-
matics and data science from the Macau Univer-
sity of Science and Technology, Taipa, Macau, in
2021. He is currently pursuing the Ph.D. degree
in computer science with the Shanghai Jiao Tong
University, Shanghai, China. His current research
interests include photographing assistant, computer
vision, machine learning, and pattern recognition.

Bin Sheng (Member, IEEE) received the B.A. de-
gree in English and the B.Eng. degree in computer
science from the Huazhong University of Science
and Technology, Wuhan, China, in 2004, and the
M.Sc. degree in software engineering from the Uni-
versity of Macau, Taipa, Macau, in 2007, and the
Ph.D. degree in computer science and engineering
from The Chinese University of Hong Kong, Shatin,
Hong Kong, in 2011. He is currently a Full Professor
with the Department of Computer Science and En-
gineering, Shanghai Jiao Tong University, Shanghai,

China. He is an Associate Editor of the IEEE Transactions on Circuits and
Systems for Video Technology. His current research interests include virtual
reality and computer graphics.

Ping Li (Member, IEEE) received the Ph.D. de-
gree in computer science and engineering from The
Chinese University of Hong Kong, Shatin, Hong
Kong, in 2013. He is currently a Research Assistant
Professor with The Hong Kong Polytechnic Uni-
versity, Kowloon, Hong Kong. He has published
many top-tier scholarly research papers and has
excellent research project reported worldwide by
ACM TechNews. His current research interests in-
clude image/video stylization, colorization, artistic
rendering and synthesis, and creative media.

Tong-Yee Lee (Senior Member, IEEE) received
the Ph.D. degree in computer engineering from
Washington State University, Pullman, in May 1995.
He is currently a Chair Professor in the De-
partment of Computer Science and Information
Engineering, National Cheng-Kung University. He
leads the Computer Graphics Group, Visual Sys-
tem Laboratory, National Cheng-Kung University
(http://graphics.csie.ncku.edu.tw). His current re-
search interests include computer graphics, non-
photorealistic rendering, medical visualization, vir-

tual reality, and media resizing. He is a Senior Member of the IEEE and a
Member of the ACM.


	Introduction
	Related Work
	Photograph Aesthetic Assessment
	Photographing Assistant Tools

	Model Construction
	Data Preparation
	Feature Extraction
	Learned Features
	Global Features
	Similarity Matching Features

	Photograph Recommendation
	Photographing Guidance

	Evaluation Tests of the Model
	Evaluation of New Developed Features
	Evaluation of Classification Performance
	Evaluation of Photo Matching
	User Study of Aesthetic Quality
	Subjective Evaluation of Aesthetic Quality
	Evaluation of Time Consumption
	Resulting Examples of the Overall Model

	Conclusion
	References
	Biographies
	Nan Jiang
	Bin Sheng
	Ping Li
	Tong-Yee Lee


