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S ¢ Net: Self-Supervised Self-Ensembling Network
for Semi-Supervised RGB-D Salient Object Detection

Lei Zhu"”, Xiaogiang Wang *“, Ping Li

Carola-Bibiane Schonlieb

Abstract—RGB-D salient object detection aims to detect visually
distinctive objects or regions from a pair of the RGB image
and the depth image. State-of-the-art RGB-D saliency detectors
are mainly based on convolutional neural networks but almost
suffer from an intrinsic limitation relying on the labeled data,
thus degrading detection accuracy in complex cases. In this
work, we present a self-supervised self-ensembling network (S
3 Net) for semi-supervised RGB-D salient object detection by
leveraging the unlabeled data and exploring a self-supervised
learning mechanism. To be specific, we first build a self-guided
convolutional neural network (SG-CNN) as a baseline model by
developing a series of three-layer cross-model feature fusion (TCF)
modules to leverage complementary information among depth and
RGB modalities and formulating an auxiliary task that predicts a
self-supervised image rotation angle. After that, to further explore
the knowledge from unlabeled data, we assign SG-CNN to a
student network and a teacher network, and encourage the saliency
predictions and self-supervised rotation predictions from these two
networks to be consistent on the unlabeled data. Experimental
results on seven widely-used benchmark datasets demonstrate that
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our network quantitatively and qualitatively outperforms the state-
of-the-art methods.

Index Terms—RGB-D salient object detection, self-supervised
learning, semi-supervised learning, and cross-model and cross-level
feature aggregation.

I. INTRODUCTION

ALIENT object detection (SOD) aims to distinguish the
most visually distinctive objects from a single input im-
age [1]-[8]. By acting as an effective pre-processing step, RGB-
D SOD benefits diverse image processing and computer vision
tasks e.g., object segmentation [9] and tracking [10], video com-
pression [11] and abstraction [12], image editing [13], and tex-
ture smoothing [14]. Although the existing methods [15], [16]
achieve remarkable results, they usually rely on the individual
RGB/color images or video sequences, but totally ignore the
depth information, which is now easily obtained by using Kinect,
RealSense, and modern smartphones (e.g., iPhone X, Huawei
Matel0, and Samsung Galaxy S10) [17], [18]. Hence, inferring
saliency information from RGB-D inputs (D refers to the depth
image) has attracted many research attention in the SOD area.
Traditional RGB-D detectors [19]-[21] mainly examined the
hand-crafted priors, which degrades the detection performance,
since the assumptions of these heuristic priors are not always
correct. Later, RGB-D SOD detectors [18], [22]-[27] based on
convolutional neural networks (CNNs) have been developed by
learning the features from RGB and depth modalities and explor-
ing the complementary information between them. These meth-
ods can befurther grouped as two main categories: one-stream
detectors and two-stream detectors, according to the number
of network streams for a multi-model fusion. Although achiev-
ing high accuracy on the benchmark datasets, these CNN-based
detectors mainly relied on labeled training data to detect salient
objects from a pair of RGB-D inputs, thereby tending to produce
poor results in some complex situations. The reason behind is
that the labeled data are collected in the limited applications
and thus CNNss trained on only these labeled data suffer from
limited capabilities to handle unseen photos. Compared with
the labeled datasets, we could easily collect abundant unlabeled
RGB-D images from diverse scenarios. Hence, it is highly desir-
able to leverage additional unlabeled data and the limited labeled
data to improve the performance of RGB-D saliency detection.
In this work, we present a self-supervised self-ensembling
network (S 2 Net) for boosting the RGB-D saliency de-
tection by learning from both labeled and unlabeled data.

1520-9210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Specifically, we first devise a self-guided convolutional neu-
ral network (SG-CNN) to integrate the self-supervised learning
mechanism into a multi-task learning framework for detecting
salient objects from RGB-D data. In SG-CNN, we develop a
set of three-layer cross-model feature fusion (TCF) modules to
fuse CNN features from depth and RGB modalities, and pre-
dict both saliency map and an image rotation angle. After that,
we take the developed SG-CNN as both student network and
teacher network, present a self-supervised two-task supervised
loss for labeled data, which is computed as the summation of
the losses on saliency prediction and image rotation angle pre-
diction. Further, we enforce the two tasks’ results of the student
network and teacher network to be consistent, respectively, on
all the unlabeled data. By adding the supervised loss from the
developed SG-CNN and the consistency loss from two tasks to
train the model, our network can more accurately detect salient
objects than the state-of-the-art methods. We summarize our
contributions as follows:

¢ First, we develop a self-supervised self-ensembling net-
work (S 3 Net) for RGB-D saliency detection by simultane-
ously exploring the unlabeled data and the self-supervision
mechanism. As a self-ensembling model, our framework
has the potential to be used for developing semi-supervised
frameworks on other vision tasks, including shadow detec-
tion, boundary detection, and semantic segmentation.

e Second, we design a self-guided convolutional neural net-
work (SG-CNN) with a series of three-level cross-modal
fusion (TCF) modules for a multi-model fusion, as well as
ajoint prediction of a saliency map and an additional image
rotation angle. Our SG-CNN with these two tasks achieves
better results than only predicting the saliency maps even
using only the labeled data.

e Lastly, we show that the developed S ® Net outperforms
state-of-the-art RGB-D saliency detection methods on
seven widely-used benchmark datasets.

II. RELATED WORK

In this section, we present a detail review on RGB-D
saliency detection methods, self-ensembling methods, and self-
supervised learning methods.

Traditional methods: Early attempts [19], [21], [28]-[30]
inferred salient objects by exploring hand-crafted features
or priors, including center-surround difference [29], [31],
contrast [32], background enclosure [19], center/boundary
prior [33]-[35], or a combination of various saliency mea-
sures [20]. Unfortunately, most of them work well only on
high-quality and well-constrained images.

Deep-learning-based methods: Motivated by outstanding per-
formance of convolutional neural networks (CNNs) in diverse
vision tasks, many CNN-based RGB-D saliency detectors have
been proposed by leveraging the complementary information
between them. We can further divide these CNN-based detec-
tors into two main categories: one-stream CNN and two-stream
CNN. One-stream CNNs combined the input RGB and depth
images as a four-channel input, and fed the four-channel in-
put into a CNN for saliency detection. Liu er al. [38] and

Huang et al. [39] passed the four-channel input from RGB-D
images into a single-stream recurrent convolutional neural net-
work and a FCN with short connections, respectively.

Two-stream CNNs: usually designed a two-stream network
architecture to learn features from RGB and depth inputs in-
dependently and fused these features from two modalities for
saliency inference. Chen et al. [22] predicted a saliency map by
extracting CNN features from the RGB and depth images respec-
tively and develop a complementarity-aware fusion (CA-Fuse)
module to fuse CNN features from the input two modalities for
predicting a saliency map. Han et al. [40] transferred the struc-
ture of the RGB-based CNN to be applicable for depth view
and fused the deep representations of both views automatically
to obtain the final saliency map. Chen et al. [41] presented a
three-stream multi-model fusion network for RGB-D saliency
detection. Apart from two separate streams to learn features from
the RGB and depth views, a cross-modal distillation stream is
introduced to extract new RGB-D features in each CNN level,
and a channel-wise attention mechanism is presented to adap-
tively select complementary feature maps from each modal-
ity in each CNN level for a cross-level feature fusion. Later,
Chen et al. [42] developed a new multi-scale multi-path fu-
sion network with cross-modal interactions. Zhao et al. [23] en-
hanced the depth information by integrating contrast priors into
a CNN-based architecture and then fused the enhanced depth
cues with RGB features for saliency detection. Piao et al. [24]
proposed a depth distiller to utilize the network prediction and
attention as two bridges to transfer the depth knowledge from
the depth stream to the RGB stream for detecting saliency
information.

In [17], Fan et al. collected a RGB-D dataset and built a
depth-depurator network to judge whether a depth map should
be concatenated with the RGB image to formulate an input
signal. Instead of conducting independent feature extraction
from RGB and depth views, Fu er al. [25] achieved RGB-D
saliency detection by developing a network with two modules:
joint learning (JL) and densely-cooperative fusion (DCF). The
JL module simultaneously learned saliency features from RGB
and depth inputs via a shared Siamese network while DCF
module was introduced for complementary feature discovery.
Zhang et al. [26] selected useful feature representation from the
RGB and depth data, and effectively integrated cross-modal fea-
tures for accurately locating salient objects with fine edge details.
Liu et al. [27] fused the self-attention and the other modality’s
attention in the non-local model for fusing multi-modal informa-
tion for RGB-D saliency detection. Zhang et al. [43] designed an
asymmetric CNN to fuse RGB and depth information by a depth
attention mechanism to locate salient objects. Pang et al. [44]
combined RGB and depth features to generate multi-scale con-
volution kernels to guide the decoding process of RGB stream.
Zhao et al. [45] utilized the depth map to guide feature fusion
of RGB and depth modalities.

Apart from concentrating on cross-module fusion between
depth and RGB modalities, other CNNs have been proposed to
detecting salient objects from RGB-D data from new perspec-
tives. Chen et al. [46] fed RGB and depth features to guided
residual blocks to progressively refine the saliency prediction.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 12,2025 at 11:45:09 UTC from |IEEE Xplore. Restrictions apply.



678

Ji et al. [47] adopted a collaborative learning framework to
leverage edge, depth and saliency results for RGB-D saliency
detection.

Luo et al. [48] modeled the mutual relations of RGB and depth
modalities over a set of cascade graphs.

Although higher accuracy were achieved comparing with the
traditional methods, the existing CNN-based RGB-D saliency
detectors almost suffered from a common limitation that training
their networks requires a large amount of data with pixel-level
annotations. In this paper, we leverage unlabelled data and em-
bed a self-supervised learning into a self-ensembling framework
to boost RGB-D saliency detection. Experimental results on
seven benchmark datasets show that our method outperforms
state-of-the-art RGB-D saliency detectors, as shown in the ex-
periment section.

Self-ensembling methods: As a semi-supervised method, self-
ensembling techniques usually devise a consistency loss on the
unlabeled data, thereby guaranteeing invariant predictions for
perturbations of unlabeled data. For example, II-model [49]
proposed to utilize consistency constraints between the output
of the current network and the temporal average of network
outputs during the network training process. The mean teacher
(MT) framework [36] averaged the network parameters to re-
place the network prediction output average in 1I-model [49]
and has achieved improved performance in the semi-supervised
learning. Motivated by the success of self-ensembling meth-
ods in many vision tasks [37], [50], this work presents the first
semi-supervised RGB-D saliency detection method by taking
the self-ensembling as the basic network to include the unla-
beled data into the training set. More importantly, we seamlessly
integrate the self-supervised learning strategy into a two-task
self-ensembling framework, where an auxiliary image rotation
angle is predicted for enhancing RGB-D saliency detection, but
any other supervision is not required.

Semi-supervised saliency detectors: Apart from labeled data,
several SOD methods leveraged additional unlabeled data to gain
more understanding of salient information in general. Zhao et
al. [51] presented a semi-supervised low-rank optimization to
use label information to construct a graph and then propagate the
label information to unlabeled data for image classification and
saliency inference. Zhou et al. [52] designed a semi-supervised
saliency classifiers to utilize a linear feedback control system for
establishing a relationship between control states and salient ob-
jectdetection. Zhang et al. [53] detected saliency regions without
any human annotation by a synthesized mechanism to gener-
ate supervisory signals. Zhang et al. [54] learned an effective
salient object detection model based on the manual annotation
on a few training images only via an adversarial-paced learn-
ing (APL)-based framework. Apparently, these semi-supervised
learning methods addressed the task of detecting and segment-
ing salient objects from a single input image. However, our
semi-supervised learning network is designed for salient object
detection by integrating paired labeled RGB-D data and unla-
beled RGB-D data.

Self-supervised learning: Self-supervised learning aims to
learn representations that are useful for solving real-world down-
stream tasks by automatically creating self-supervised pretext
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tasks [55], [56]. Gidaris et al. [57] randomly rotated an image
by one of four possible angles and then formulated the pretext
task to predict such rotation angle. Caron et al. [58] utilized
the clustering of the training images to create image labels for
predictions. Another group of the pretext task aims to generate
dense pixel-wise outputs, including image inpainting [59], im-
age colorization [60], motion segmentation prediction [61], and
so on. Motivated by the prediction accuracy gain of these net-
works, we also first integrate the self-supervised mechanism into
a semi-supervised learning framework to boost RGB-D saliency
detection, which has been proved our superior saliency detec-
tion performance on benchmark datasets. Moreover, to reduce
the time consuming of the network training, we take simultane-
ously minimize the loss functions of both the pretext task and the
underlying saliency detection to train our network for RGB-D
saliency detection.

III. METHODOLOGY

To explore the knowledge from both labeled and unlabeled
data, we formulate a self-supervised self-ensembling network
(S 3 Net), as shown in Fig. 1. Specifically, we first develop a
self-guided convolutional neural network (SG-CNN) for RGB-
D saliency detection by taking the RGB-D images as the inputs
and predicting the saliency maps as well as the rotation angle
of the inputs. Note that the supervision of the rotation angle can
be directly obtained from the input images without any man-
ual labels, which is used as the self-supervised learning. After
that, we assign this SG-CNN as the student and teacher net-
works of the overall self-ensembling learning framework. Dur-
ing the training, the labeled data is fed into the student net-
work, which is trained by fusing a saliency detection loss and a
self-supervised (rotation angle) loss. Then, for unlabeled data,
we feed it into the student network and teacher network, respec-
tively. A self-supervised consistency loss is computed on both
saliency prediction and rotation angle prediction. In the testing
stage, we only adopt the student network to predict the saliency
detection maps for the input RGB-D images.

A. Self-Guided Convolutional Neural Network (SG-CNN)

Fig. 2 overviews the schematic illustration of the developed
self-guided convolutional neural network (SG-CNN), which ex-
plores the knowledge from RGB image as well as the depth im-
age and adopts the multi-task learning strategy to train the net-
work, i.e., jointly predicting the saliency map and rotation angle.
Given the RGB-D images, our SG-CNN first utilizes a convolu-
tional neural network (CNN) to extract five feature maps (i.e.,
r1 to r5) with different spatial resolutions from the RGB image
and another CNN (i.e., d; to ds) to learn features at five CNN
layers from the depth image. To combine the complementary
information from the depth map, we then develop a three-layer
cross-model feature fusion (TCF) module at each CNN layer to
leverage both RGB and depth views by fusing features at two
adjacent CNN layers, resulting in five integrated features (i.e.,
f1 to f5). As shown in Fig. 3, TCF at the i-th CNN layer takes
three pairs of RGB and depth features (i.e., ;1 and d;_; at
(i — 1)-th CNN layer, r; and d; at i-th CNN layer, and r; 1 and
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Fig. 1. The schematic illustration of our self-supervised self-ensembling framework (S * Net). We first develop a self-guided CNN (SG-CNN; see Fig. 2) to
learn an additional image rotation angle for saliency detection. After that, we compute a supervised loss for labeled data and a consistency loss for unlabeled data.
Finally, we fuse the supervised loss and consistency loss to train our S 3 Net for RGB-D saliency detection. EMA: exponential moving average; see [36], [37].
For unlabeled data, we produce an auxiliary image by employing a color jitter operation (§) (four parameters: brightness=0.1, contrast=0.1, saturation=0.1, and
hue=0.0) on the input unlabeled data to change its brightness, contrast, and saturation.
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Fig. 2. The schematic illustration of the proposed SG-CNN in Fig. 1. SG-CNN takes a pair of RGB and depth images as the input and predicts a saliency map
and an image rotation angle. We first obtain five CNN features (d; to ds; r1 to r5) from the depth image and the RGB image, respectively. Then, we develop a
series of three-layer cross-modal feature integration (TCF) modules to fuse RGB and depth features, and design two branches to predict an image rotation angle
and a saliency map from the output features (f; to f5) of these five TCF modules.
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di41 at (i + 1)-th CNN layer) at three adjacent CNN layers as
the input and outputs an aggregated feature map (f;). we multi-
ple each pair of RGB and depth features, concatenate the result
with the original RGB and depth features, and apply a3 x 3 con-
volutional layer on the concatenated feature map. After that, we
can obtain three new features; see h;_1, h;, and h;; in Fig. 3.
Mathematically, h;_1, h;, and h;, are computed as:

hisy =Wy Cat(ri v, ria @ di1,di1) +b1 (1)
hi = W2 * C’at(r,;,r,; ®d7,d1) + b2 (2)
hipr = Wi s Cat(rigr, ria @ divr, di1) b3 (3)

where Cat() is used to concatenate feature maps. (W1, by), (Wa,
bs), and (W3, b3) are the weights and bias of the three 3 x 3 con-
volutional layers on the concatenated features. Once obtaining
hi—1, h;, and h;y1, we upsample h; to the same spatial reso-
lution of h;_1, element-wisely add it with h,_1, apply a3 x 3
convolutional layer on the addition result, and then downsample
the obtained features into the spatial resolution of h; to produce
new features g;_1:

gi—1 = down(Conv(up(h;) + hi-1)) 4)

where up and down denote the feature upsampling and down-
sampling operations, respectively. Conv represents a 3 x 3 con-
volutional operation. Second, we downsample /;_; and upsam-
ple h;y1 to the same resolution of h;, add these two resized
feature maps with h;, and apply a 3 x 3 convolutional layer on
the addition result to produce a new feature g;:

gi = Conv(up(h;y1) + h; + down(h;_1)) 5)

where up(h;41) and down(h;) denote the upsampled features of
h;+1 and the downsampled features of /;. and both up(h,11) and
down(h;) have the same resolution of h;. Third, we downsample
h; to the resolution of h;, element-wisely add it with h; 1,
apply a3 x 3 convolutional layer on the addition result, and then
upsample the obtained features into the spatial resolution of h;
to produce new features g;41:

git+1 = up(Conv(down(h;) + hit1)) ©)

where down(h;) denotes the downsampled features of h;, and
it has the same resolution of h;.

As shown in Fig. 2, we can obtain five features (f; to fs;
see Fig. 2) by applying TCF modules to integrate RGB and
depth features at each CNN layer, and use them for predicting
the rotation angle and the saliency map. In the first branch, we

The schematic illustration of the proposed three-layer cross-model feature fusion (TCF) module (see Fig. 2).

fifl
— ASPP q
——
- — -0~
—
Fig. 4. The schematic illustration of our feature enhancement (FE) module
(see Fig. 2).

predict a rotation angle of the input RGB-D images from f5. To
be specific, we first apply an average pooling operation on f5 to
obtain a new feature map, which is then passed into two fully
connected layers and a softmax layer for obtaining a vector with
four elements, i.e., Q = {0°,90°, 180, and 270}, to represent
the rotation angle.

Our second branch fuses these integrated features (i.e., fi to
f5) to predict an output saliency map. To achieve this, we for-
mulate a feature enhancement (FE) module to combine features
at two adjacent convolutional layers and iteratively perform the
feature combination from deep to shallow convolutional layers.
Specifically, we pass f5 and f4 to a FE module and obtain a new
feature map (denoted as ﬁ), which is then fused with f3 by using
the second FE module, resulting in a feature map fg Then, the
third FE module is applied to combine fg and f5 for obtaining
fg, and we further pass fg and f; to the fourth FE module. From
the the output features fl of the fourth FE module, we predict a
saliency map by applying a 3 x 3 convolutional layer,a 1 x 1
convolutional layer, and a sigmoid activation function, and take
this saliency map as the final output of our SG-CNN.

Fig. 4 shows the overflow of the FE module at the ¢-th CNN
layer. Given the integrated features f; 1 at (¢ — 1)-th CNN layer
and the output features f; of at the (¢ — 1)-th FE module, the FE
module first upsamples f; ; to the resolution of ﬁ and passes
ﬁ- to an atrous spatial pyramid pooling (ASPP) block [62] (four
dilated rates: 1, 6, 12, and 18). After that, we element-wisely
add the upsampled f; 1 and the resultant features of the ASPP
block and feed the addition result to a 3 x 3 convolutional layer

to obtain the output features (denoted as ﬁ,\l) of the FE module.

B. Supervised Loss on Labeled Data

For labeled data, we have a pair of input RGB and depth
images and the corresponding annotated saliency mask. It is
natural that we take the annotated saliency mask as the ground

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 12,2025 at 11:45:09 UTC from |IEEE Xplore. Restrictions apply.



ZHU et al.: S  NET: SELF-SUPERVISED SELF-ENSEMBLING NETWORK FOR SEMI-SUPERVISED RGB-D SALIENT OBJECT DETECTION 681

truth (G) for RGB-D saliency detection. On the other hand,
we randomly select an angle from the set {0°,90°, 180°, and
270°,} for each image of the training set (including labeled data
and unlabeled data), rotate it accordingly, and feed it into our
SG-CNN (see Fig. 2). Then, we take the selected rotation angle
as the ground truth (G,) of the rotation angle classification task.

With these two ground truths ((Gs) & (G)), the supervised
loss (denoted as L£°) for a labeled image (x) is computed as
the summation of the saliency detection loss and rotation angle
prediction loss, i.e.,

L (z) = Ppor (Ps, Gs) + a ®op (P, Ga) (7

where P, and P, denote the predicted saliency map and rotation
angle, respectively. ® o g and @ g are the binary cross-entropy
loss and cross-entropy loss functions, respectively. We empiri-
cally set the weight o = 0.1 during the network training.

C. Unsupervised Loss on Unlabeled Data

For the unlabeled data, we pass it into the student network
and teacher network to obtain two groups of prediction results,
where each prediction consists of a saliency prediction map and
a rotation angle. We then enforce the predictions of the student
network and teacher network to be consistent, resulting in an
unsupervised loss (£*) on unlabeled data. Mathematically, £*
for an unlabeled image (denoted as y) is defined as

£u(y) = q)MSE (SsaTs) + @ <I)KL (SaaTa) (8)

where S, and T denote the saliency predictions from student
network and teacher network, respectively; S, and T, are the ro-
tation angle predictions from the student network and the teacher
network. ® ;s and @ i 7, are the MSE loss and KL divergence
loss, respectively. We empirically set the balancing weight o = 1.

D. Training Strategies

We apply the self-guided multi-task learning with the self-
ensembling model for RGB-D saliency detection. The total loss
of our network is computed as:

Ny Ny
Liotar =S L@ +2 > £2(y) ©)
i=1 j=1

where N; and N, are the numbers of labeled images and un-
labeled images in our training set. £°(x;) denotes the super-
vised loss (Eq. (7)) for the i-th labeled image while £(y;) is
the unsupervised loss (Eq. (8)) for the j-th unlabeled image.
The weight 2 is to balance £°(z;) and £*(y; ). Following [36],
[37], we use a time dependent Gaussian warming up function
to update A: A(t) = AmaceP(—t/tna)®) where t denotes the
current epoch number and ty,, is the maximum epoch number
in the training process. In our experiments, we empirically set
Amax = 1.

Exponential moving average (EMA): Following existing self-
ensembling frameworks [36], [37], we minimize the total loss
Liotar of Eq. (9) to train the student network, and the parame-
ters of the teacher network is computed as the exponential mov-
ing average (EMA) of the parameters of the student network

to ensemble the information in different training steps. The pa-
rameters of the teacher network at the ¢ training iteration are
defined as:

0y = pb_y + (1 — ) (10)

where 6; denotes the student network parameter at the ¢-th train-
ing iteration while 0, ; denotes the teacher network parameter
at the (¢ — 1)-th training iteration. The EMA decay p = 0.99 as
indicated in [36].

Our unlabeled data: Note that Song et al. [63] collected a
SUN-RGBD benchmark dataset for RGB-D scene understand-
ing. The training set in SUN-RGBD contains 5,285 pairs of
RGB and depth images. In this regard, we empirically use all
these 5,285 pairs of SUN-RGBD as the unlabeled data in our
work. Apparently, all these unlabeled data do not contain any
annotations of saliency maps.

E. Difference Between Our Method and MTMT [37]

MTMT [37] and our work are different in three aspects. (1)
We first admit that both two works exploited the multi-task learn-
ing and semi-supervised learning with unlabeled data, but our
work is designed for saliency detection from RGB-D paired data
while MTMT [37] is to detect shadows from single image. (2)
The multi-task learning is different in two works. MTMT [37]
jointly detected shadow regions, shadow edges, and the num-
ber of shadow regions, but our work simultaneously identified
saliency regions and predicted an image rotation angle. (3) The
auxiliary tasks in MTMT [37] are with a supervised learning
mechanism while the additional image rotation angle prediction
is learning in a self-supervised learning manner.

IV. EXPERIMENTAL RESULTS

In this section, we will introduce benchmark datasets and
evaluation metrics, as well as present experiments to verify
our S3-Net. Our code, the trained models, and the predicted
saliency maps on all seven benchmark datasets are released at:
https://github.com/Robert-xiaoqiang/S3Net.

Training Patameters: We adopt ResNet50 [68] (pre-trained
on ImageNet [69]) as the feature extraction backbone of our
network. Training data is resized to 256 x 256 and augmented
by a random rotation and horizontal flipping for training. Color
jittering is employed as the perturbation noise of unlabeled data
(see Noise ¢ of Fig. 2). We use a stochastic gradient descent
(SGD) optimizer with the batch size 8 (i.e., 4 labeled data and
4 unlabeled data). The epoch number, momentum, and decay
rate are empirically set as 50, 0.9, and 0.0005, respectively. The
learning rate is adjusted by a poly strategy with an initial learning
rate of 0.001 and the power of 0.9.

A. Datasets and Evaluation Metrics

Benchmark Datasets: We conducted comparisons on seven
widely-used benchmark datasets in our experiments. They are
(1) NJU2K [31] (2,000 images), (ii) NLPR [32] (1,000 images),
(iii) STERE [28] (1,000 images), (iv) RGBD135 [33] (135 im-
ages), (v) LFSD [70] (100 images), (vi) SIP [17] (929 images),
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and (vii) DUT-RGBD [24] (1,200 images captured by Lytro
camera in real life scenes). We followed the same settings of ex-
isting works [24] to use 800 images for the network training and
remaining 400 images were utilized for testing different meth-
ods to obtain their results of DUT-RGBD. Moreover, following
recent works [17], [23], [25], we utilized a same training set
consisting of 700 images from NLPR and 1,500 images from
NJU2K to train our network and competitors for obtaining re-
sults of other six benchmark datasets for fair comparisons.

Evaluation metrics: We adopt four widely-used metrics to
quantitatively compare RGB-D saliency detection performance
of different approaches. They are S-measure (denoted as S,),
F-measure (denoted as Fg“‘x) [71],[72], and E-measure (denoted
as E'j]a"), and mean absolute error (denoted as M AFE). Overall,
a better RGB-D saliency detector shall have a larger .S,,, a larger
Fg‘a", a larger Eg‘a", and a smaller M AFE.

S-measure [73] (S,,) computes the similarity of D and G by
considering its object-aware and region-aware structural simi-
larities:

Sm :pSo(Dvg)+(1_p) Sr(Dvg) (11)

where S,(D,G) and S,.(D,G) denote the object-aware and
region-aware structural similarities; respectively. Please refer
to [73] for their definitions. p = 0.5, as suggested in [73].

F-measure (F/g“a") [71], [72] is to balance the average preci-
sion and average recall over saliency maps of all images in the
dataset for evaluation. Its definition is given by:

max _ (1 + B?) x Precision x Recall
B 7 B2 x Precision + Recall

where 52 = 0.3; see [74], [75]. Instead of plotting the whole
F-measure, we follow existing RGB-D saliency detectors [72],
[75], [76] to directly use the maximal Fg“‘" for comparisons.

E-measure (£3™) [77] quantitatively compares D and G by
simultaneously considering the global means of the image and
the local pixel matching:

) 12)

1 Wp Hp
max — E § A
E¢ WD X HD » (p7 q>

=1 q:l

13)

where Wp and Hp are the width and height of D. A denotes
the enhanced alignment matrix, which represents the correlation
between D and G; please see [77] for the details of computing
A.

MAE [78] averages the pixel-wise absolute difference be-
tween D and G:

Wp Hp

1
MAB = g > > IPp.a) = G(p.a)l

p=1g=1

(14)

where D(p, q) and G(p, q) denote the value at the pixel (p, q)
of the predicted saliency map D and the ground truth G; respec-
tively.

B. Comparison With the State-of-The-Arts

We evaluate the effectiveness of our network by comparing it
against 20 state-of-the-art RGB-D salient object detectors. They
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are LBE [19], DF [64], CTMF [40], PCF [22], TANet [41],
CPFP [23], DMRA [24], D 2 Net [17], SSF [26], UCNet [18],
JLDCF [25], HDF-Net [44], ATSA [43], PGA-Net [46],
DANet [45], caMS [65], Cas-Gnn [48], CMWNet [66],
CoNet [47], and BBS-Net [67]. Among them, LBE [19] fo-
cused on hand-crafted features, while other 19 methods relied
on convolutional neural networks (CNNs) to learn deep features
for RGB-D saliency detection. To make the comparisons fair,
we obtained the saliency maps of all 20 competitors either from
the authors or by using their implementations with the released
training models and parameters.

Quantitative comparisons: Table 1 reports the S,,, F g‘ax,
Eg“‘x, and MAE scores of our method and all competitors on
seven benchmark datasets. From these quantitative results, we
can find that our S3-Net produces a superior metric performance
over other saliency detectors on almost all seven datasets. It in-
dicates that our network can more accurately detect salient ob-
jects from RGB-D data than compared methods. Specifically,
our method has largest .S,,, Fg‘a", and Eg‘""‘ scores and smallest
MAE scores on STERE, LFSD, and DUT-RGBD. Moreover,
we has the best F/5** and MAE results and the the second best
results of S,,, and Egm for NJU2K. For NLPR, our method
takes the first places of Fg‘a", Eg‘ax, and MAE scores, as well
as second place of S, scores. Regarding the remaining two
datasets (RGBD135 and SIP), our Eg‘ax and MAE results rank
first, while S,,, Fg‘a" results of our method are top five; see
Table 1.

Visual comparisons: Fig. 5 visually compares saliency maps
produced by our network and state-of-the-art RGB-D saliency
detectors. Apparently, other methods in Fig. 5(e)-(m) tend to
include non-salient backgrounds or lose salient details in their
predicted saliency maps, while our S3-Net produces more ac-
curate saliency maps (d), which are more consistent with the
ground truths (c). It indicates that exploring unlabeled data and
self-supervised multi-task learning in our network is capable
to suppress non-salient objects and detect more salient pixels
than the compared RGB-D saliency detectors, which are mainly
trained in a supervised learning manner.

C. Ablation Analysis

Baseline network design: We perform ablation study exper-
iments to evaluate the effectiveness of different components in
our S3Net, s.t., TCF module, image rotation angle prediction,
and self-supervised learning on unlabeled data. Here, we con-
sider six baseline networks and evaluate them on seven bench-
mark datasets.

The first three baseline networks are constructed by removing
the teacher model and the unlabeled data. It means that only
supervised loss on labeled data is used to train SG-CNN, and
we directly use the SG-CNN with labeled data use to predict the
RGB-D saliency map. Specifically, we first construct a baseline
network (denoted as “basic”) that removes the rotation angle
classification branch from SG-CNN. The second (denoted as
“basic-TCF”) network replaces the TCF module of “basic” with
a simple element-wise addition on all six input features of the
TCF module for integrating CNN features from the RGB image
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TABLE I
QUANTITATIVE COMPARISONS BETWEEN OUR NETWORK AND STATE-OF-THE-ART DETECTORS ON SEVEN BENCHMARK DATASETS. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD

Dataset | Meuic | LBE| DF CTMF PCF TANet CPFP DMRA D°Net| SSF UCNet JLDCF|HDF-Net PGA-Net DANet cmMS Cas-Gnn CMWNet ATSA BBS-Net CoNet| Our

[19]] [64] [40] [22] [41] [23] [24] (171 [26] [I18] [25] | [44] [46]  [45] [65]  [48] [66] [43] [67]  [47] |method

S T]0.695(0.763 0.849 0.877 0.878 0.879 0.886 0.895 |0.899 0.897 0903 | 0.908 _ 0906 0901 0904 0011 _ 0903 0.899 0.921 0.894 | 0.913

NIUaK | FAeT 1]0.748|0.804 0.845 0.872 0.874 0877 0.886 0.889 |0.886 0.886 0.903 | 0.922 0883 0893 0914 0903 0902 0910 0920 0872 0.928

BT 410.803|0.864 0913 0924 0925 0926 0927 0932| - 0930 0944 | 0932 0914 0921 - 0936 0933 0922 0.949 0912 0.944

MAE [[0.153]0.141 0.085 0059 0.060 0.053 0051 0051 ]0.043 0.043 0.043 | 0038 0045 0040 0044 0035 0046 0045 0035 0.047 | 0.034

S, 1]0.762|0.802 0.860 0.874 0.886 0.888 0.899 0905 0914 0920 0925 | 0923 _ 09i8 0907 0900 0919 0917 0915 0930 0907 0.927

NLPR | FET 1]0.745(0.778 0.825 0.841 0.863 0.867 0.879 0.885|0.875 0.891 0916 | 0927 0871 0876 0914 0904 0903 0916 0918 0848 0.923

E79v 1]0.855|0.880 0929 0925 0.941 0932 0947 0946| - 0951 0962 | 0957 0948 0945 - 0952 0951 0949 0961 0.936 | 0.962

MAE [[0.081]0.085 0.056 0.044 0.041 0.036 0031 00340026 0025 0023 | 0023 0028 0028 0273 0025 0029 0028 0023 0031 0.021

S, 1]0.660(0.757 0.848 0.875 0.871 0.879 0.886 0.891 |0.893 0903 0905 | 0900  0.897 ~ 0889 0899 0905 0903 0908 0908 0.913

STERE | 4@ 1/0.633(0.757 0.831 0860 0.861 0874 0.886 0.881|0.880 0.884 0.901 | 0.910  0.884 - 0908 0901 0901 0872 0903 0885 0.918

B9 4/0.787|0.847 0912 0925 0923 0.925 0937 0930 - 0935 0936 | 0931 0921 - - 0930 0934 0914 0932 0923 0.945

MAE [[0.250[0.141 0.086 0.064 0.060 0.051 0.047 0.054 |0.044 0039 0.042 | 0041  0.039 - 0042 0039 0043 0044 0041 0.041 | 0.038

S, T]0.703]0.752 0.863 0.842 0.858 0.872 0900 00904 |0.905 0.934 0920 | 0926 0894 0907 - 0905 0934 0924 0933 0910 0932

RGBDI3S |4 T|0.788{0.766 0.844 0.804 0827 0.846 0.888 0885 0.876 0.919 0919 | 0932 0870 0885 - 0906 0930 0928 0927 0861 | 0.925

E79v 1]0.890|0.870 0.932 0.893 0910 0.923 0943 0946| - 0967 0968 | 0.971 0935 0952 - 0947 0969 0968 0966 0.945| 0.971

MAE [[0.208]0.093 0.055 0.049 0.041 0.038 0.030 00300025 0019 0022 | 0021 0032 0024 - 0028 0022 0023 0021 0027 0.018

S, 1]0.729]0.783 0.788 0.786 0.794 0.820 0.839 0.824 [0.859 0854 0854 | 0854 0855 T 0860 0849 0856 0833 0854 0862 0.874

Lpsp | FEee 1]0722|0813 0.787 0775 0.792 0.821 0852 08150867 0.855 0862 | 0.883 0862 - 0883 0864 0883 0830 0858 0.848| 0.892

B9 410.797|0.857 0.857 0827 0.840 0.864 0.893 0.856| - 0901 0.893 | 0891  0.900 - - 0877 0902 0869 0901 0897 | 0.902

MAE [[0.214]0.146 0.127 0.119 0.118 0.095 0.083 0.106 |0.086 0.086 0.078 | 0.076  0.086 - 0082 0083 0086 0093 0072 0071 0.066

S, 1]0.727]0.653 0.716 0.842 0.835 0.850 0.806 0864 | - 0875 0879 | 0.886 0875 0875 - B 0867 - 0879 0858 0875

sip | FFT 10.751/0657 0.694 0838 0.830 0851 0.821 0862| - 0867 0885 | 0.901 0892 0848 - - 0874 - 0883 0842 0.891

Eav 110.853|0.759 0.829 0901 0.895 0.903 0875 0910| - 0914 0923 | 0922 0915 0908 - - 0913 - 0922 0909 | 0.933

MAE 1[0.200[0.185 0.139 0.071 0.075 0.064 0085 0063| - 0.051 0.051| 0057 0054 0059 - - 0062 - 0055 0063] 0.051

S T| - |0.695 0499 - 0526 0.736 0.702 0.831]0.791 0.801 0.808 | 0.8I8 B 0899 0903 - 0889 - 0898 | 0912

DUTRGBD| FA T| = |0692 0411 - 0458 0740 0.659 0823|0767 0.71 0.790 | 0.898 - 0918 0901 - - 0795 - 0903 0922

Epes | - |0.800 0.654 - 0709 0.823 0796 0.899 |0.859 0.856 0.861 | 0.859 - 0937 0937 - - 0933 - 09310939

MAE || - [0220 0243 - 0201 0.144 0.122 0.097 |0.113 0.100 0.093 | 0.076 - 0.043 0043 - - 0048 - 0045 0.035
TABLE II

QUANTITATIVE RESULTS OF OUR METHOD AND BASELINE NETWORKS OF THE ABLATION STUDY EXPERIMENTS ON NJU2K [31], NLPR [32], AND STERE [28].
THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

NJU2K [31] NLPR [32] STERE [28]

Name Networks ‘TCF Sod|Rot|Sod-MT Rot-MT‘Sm TFg“II + E;}”‘” 1+ MAE |S TFEME TEZ/IWZ + MAE ||Sm TF[?“” TE(Z“” T+ MAE |
My basic-TCF v 0.835 0.862 0.857 0.094 |0.786 0.807 0.815 0.070 |0.795 0.829 0.814 0.111
Mo basic VARVA 0.896 0.905 0904 0.042 |0.894 0.889 0.944 0.037 |0.889 0.895 0.910 0.060
M3 basic + Rot NARVARYA 0.903 0.904 0915 0.040 |0.901 0.895 0.948 0.031 |0.892 0907 0.932 0.052
Ms |basic + Rot + Sod-MT| +/ |/ |V N 0910 0.922 0938 0.035 [0.926 0915 0.958 0.023 [0.911 0915 0942 0.044
Mg |basic + Rot + Rot-MT| / |/ |/ v/ 10906 0913 0928 0.038 [0.904 0.905 0.953 0.027 [0.901 0.910 0.937 0.048

Our method VvV VIV VA v, ]0.913 0.928 0.943  0.034 [0.927 0.923 0.961 0.021 [0.913 0.918 0.945 0.038
My | Sod-MT VIV T V] [0.909 0915 0933 0.036 [0.925 0912 0951 0.025 [0.903 0912 0.942 0.048
TABLE III

QUANTITATIVE RESULTS OF OUR METHOD AND BASELINE NETWORKS OF THE ABLATION STUDY EXPERIMENTS ON RGBD135 [33], LFESD [70], SIP [17], AND
DUT-RGBD [24]. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

RGBD135 [33] LFSD [70] SIP [17] DUT-RGBD [24]

Name Networks ‘TCF Sod|Rot{Sod-MT|Rot-MT S 1 Fpar 4 E;"” +MAE 1|Sm 1 anaz T Eg““” 1+ MAE §|Sm 1 Fae 4 E;"“’” T+ MAE |Sp, 1 ngaz T Egmz 1+ MAE |
My basic-TCF VA 0.749 0.833  0.741  0.074 |0.696 0.751  0.706  0.180 [0.711 0.726  0.720  0.146 |0.744 0.777  0.753  0.093
Mo basic ARV 0.906 0.898 0.939 0.039 |0.830 0.865 0.880 0.087 [0.853 0.863 0.906 0.071 |0.778 0.798  0.805  0.082
M3 basic+Rot NaRARY 0.912 0.903 0.958 0.037 |0.845 0.872 0.893  0.079 [0.855 0.881 0912  0.068 [0.786 0.800  0.821 0.071
M5 |basic + Rot + Sod-MT| v/ |/ |V Vv 0.927 0.905 0.969 0.020 [0.872 0.889 0.900 0.071 [0.871 0.888 0.928 0.059 [0.881 0.889 0.904  0.057
Mg |basic + Rot + Rot-MT| / | v/ |/ v/ 10917 0903 0959 0.033 |0.851 0.882 0.896 0.078 |0.860 0.871 0.925 0.065 |0.871 0.878 0.893  0.063

Our method NN N v/ 10932 0915 0971 0.018 |0.874 0.892 0.903 0.066 [0.875 0.891 0.933 0.051 [0.912 0.922 0.939 0.035
My | Sod-MT VIV T V] [0.921 0912 0962  0.029 [0.854 0.868 0.899 0.077 [0.862 0.867 0918 0.063 [0.875 0.885 0.901  0.059

and the depth image, while the third (denoted as “basic+Rot”)
is to add the rotation angle branch to “basic,” which means that
we directly apply SG-CNN with only labeled data to predict
RGB-D saliency maps.

Apart from the supervised loss on labeled data in the SG-
CNN, another two baseline networks are built to train the net-
work by fusing additional consistency loss from unlabeled data.
The first one (denoted as “basic+Rot+Sod-MT”) is to add the
consistency loss from the only saliency detection while an-
other (denoted as “basic+Rot+Rot-MT”) is to add the consis-
tency loss from the only angle rotation prediction. Lastly, we
build a baseline network (denoted as “Sod-MT”) by remov-
ing the angle rotation prediction from our network. It means

that “Sod-MT” follows the mechanism of the original mean
teacher framework [36] to use the supervised loss on saliency
detection and the consistency loss on saliency detection to
train a network.

Quantitative comparisons: Table II summaries metric val-
ues of our network and baseline networks on NJUD [31],
NLPR [32], and STERE [28], while Table III compares met-
ric values on other four benchmarks, i.e., RGBD135 [33],
LESD [70], SIP [17], and DUT-RGBD [24]. From the re-
sults, we have the following observations: (i) “basic” has su-
perior metric performance over “basic-TCF” which means
that our TCF module can produce a more accurate feature
map than a simple element-wisely addition when combing six
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Visual comparison of saliency map results produced by different methods. (a) Input RGB image with different complex scenarios; (b) Input depth image;

(c) Ground truth (denoted as ‘GT’); (d)-(h) Saliency maps predicted by our method and compared RGB-D saliency detectors. Apparently, our network produces

more accurate saliency maps than compared methods.

feature maps, which are from three adjacent CNN layers from
the RGB images and the depth maps. (ii) “basic+Rot” has
higher scores in terms of four metrics than “basic,” which
indicates that the self-supervised prediction on an angle ro-
tation helps our method to produce more accurately identify
saliency maps from RGB-D images. (iii) “basic+Rot+Sod-MT”
and “basic+Rot+Rot-MT” produce smaller MAE results and
larger S,,, FT' 3 ¥, and EJ™ than “basic+Rot,” demonstrating
that additional consistency loss from unlabeled data is capa-
ble to enhance the RGB-D saliency detection performance with
only labeled data. (iv) Moreover, “basic+Rot+Sod-MT” has
better results than “basic+Rot+Rot-MT” on seven benchmark
datasets. It shows that the saliency detection has a more contri-
bution than the image rotation angle prediction to the success
of our method when exploring the consistency loss from un-
labeled data. (v) By combining two consistency losses from
the saliency detection and the rotation angle prediction, our
method has the best metric performance on all seven benchmark
datasets. (vi) Our method can more accurately detect saliency
regions than “Sod-MT”. It indicates that the rotation angle

prediction benefits the mean teacher model for RGB-D saliency
detection.

Visual comparisons: We further visually compare the saliency
maps produced by our method and six baseline networks; see
Fig. (6). Although there are one or more salient objects in dif-
ferent input images, our method consistently produce more ac-
curate saliency map than all six baseline methods (i.e., M; to
Ms). It further proves the effectiveness of our RGB-D saliency
detection network and its major components.

Model size and inference time: Given an input RGB image
and an input depth image, we pass them into the student net-
work (SG-Net) to predict a saliency detection map, which is
then taken as the final result of our semi-supervised RGB-D
saliency detection network. The model size of our network is
239.1 MB, and our method takes about 0.024 seconds (42 FPS)
to process a pair of 256 x 256 RGB-D images on a single
NVIDIA 2080Ti GPU card.

Table VI reports the model size and inference time of our net-
work and state-of-the-art methods. Apparently, as a lightweight
CNN model, PGA-Net has the best performance of the model
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Visual comparison of saliency map results produced by different methods. (a) Input RGB image from benchmark datasets; (b) Input depth image; (c)

Ground truths (denoted as ‘GT’); (d)-(j) Saliency maps predicted by our method and six constructed baseline networks (i.e., M7 to Mg); please refer to Table 11
and Table III for the explanation of M7 to Meg. Apparently, our network produces more accurate saliency maps than six baseline networks.

TABLE IV
QUANTITATIVE RESULTS OF OUR METHOD WITH DIFFERENT PRETEXT TASKS ON NJU2K [31], NLPR [32], AND STERE [28]. THE BEST RESULTS ARE
HIGHLIGHTED IN BOLD

Name NJU2K [31] NLPR [32] STERE [28]
S 1 F9% 4 792 + MAE || St FJ9% 4 B9 + MAE ||Sp, 1 FJ9% 1 %% + MAE |
our-cmMS 0.896 0.913 0929 0.040 |0.903 0906 0941 0.044 [0.895 0.898 0.916 0.060
out-HDF 0.899 0913 0933 0037 |0.907 0910 0.943 0.043 [0.898 0.900 0919  0.060
our-jigsaw 0.903 0909 0922 0.042 [0.902 0002 0944 0.039 |0.884 0.895 0927 0.058
our-inpainting 0904 0912 0926 0.039 [0.904 00903 0949 0.037 [0.898 0.897 0.933 0.054
Our method 0.913 0.928 0.943 0.034 |0.927 0.923 0.961 0.021 [0.913 0.918 0.945 0.038
our-decoupling ___[0.907 0015 0936 0.042 [0.914 00911 0957 0.035 [0.903 0909 038  0.049
our-supervised-unlabeled|0.906 0.916  0.932  0.038 |0.016 0912 0.950 0.035 |0.899 0.902 0034  0.053
teacher-network _ [0.909 0.924  0.940  0.035 |0.922 0922 0961 0.027 |[0.911 0014 0043 0.040
TABLE V

QUANTITATIVE RESULTS OF OUR METHOD WITH DIFFERENT PRETEXT TASKS ON RGBD135 [33], LFSD [70], SIP [17], AND DUT-RGBD [24]. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD

RGBD135 [33]

LFSD [70]

SIP [17] DUT-RGBD [24]

Name S 1 Fa® 4 B9 + MAE ||Sm 1 FJ?9% £ ET'9% £ MAE ||Spn 1 FJ*%% 4 EP9% £ MAE ||Sp, 1 F9% £ E'*® + MAE |
our-cmMS 0.897 0.883 0948 0032 [0.848 0.842 0.883 0078 [0.859 0.862 0904 0076 [0.872 0877 0892  0.065
ours-HDF 0.897 0.886 0951 0.030 [0.852 0.844 0.884 0.075 |0.864 0.862 0906 0.072 |0.875 0.877 0.894  0.060
our-jigsaw 0902 0879 0951 0035 [0.846 0.851 0.885 0.083 [0.854 0.866 0911 0.067 [0.866 0.875 0.888 0.67
our-inpainting _ |0.904 0.890 0956 0.033 [0.851 0.852 0.889 0.079 [0.860 0.869 0913  0.074 |0.871 0.875 0.891  0.064
Our method __[0.932 0915 0971 0.018 [0.874 0.892 0.903 _ 0.066 [0.875 0.891 0933 0.051 [0.912 0922 0.939 _ 0.035

ourdecoupling__[0923 0902 0.950 _ 0.023 [0.86] 0.881 _0.890 _0.073 |0.861 0.878 0.925 _0.066 [0.901 0916 0931 _ 0.046
our-supervised-unlabeled|0.905_0.892 _ 0.958 _ 0.020 [0.864 0.863 _0.890 _0.074 |0.863 0.873 0915 0.065 [0.880 0.882 0901 _ 0.061
teacher-network  [0.931 0.909 0966  0.018 [0.871 0.889 0.897 0.069 [0.872 0.889 0930 0.054 [0.908 0918 0934 0.036

size (63.9 M) and the inference time (72 FPS), but their quan-
titative results on seven benchmark results is not comparable to
more recent RGB-D saliency detectors (i.e., HDF-Net, Cas-Gnn,
CMWNet, BBS-Net); see Table I. Apart from BBS-Net, our net-
work achieves comparable results or even smaller results than
model or even smaller than these recent RGB-D saliency de-
tectors. However, our method (42 FPS) has a faster inference
time than BBS-Net (26 FPS). Although there are still some
works (e.g., 45 FPS of cmMS, 46 FPS of ATSA, 50 FPS of
CTMEF, 52 FPS of HDF-Net) with a faster inference time, our

method is capable to infer saliency maps form RGB-D data in
a real-time manner, since it takes about 0.024 (42 FPS) to pro-
cess a pair of RGB-D images (256 x 256). In summary, al-
though our method does not perform best in the model size
and inference time, our method better identifies salient objects
than state-of-the-art RGB-D saliency detectors in almost all
seven benchmark datasets, as shown in Table I of the revised
manuscript. Moreover, we take a task of reducing the model
size and speeding up our inference process as a future direction
of our work.
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TABLE VI
MODEL SIZE AND INFERENCE TIME OF DIFFERENT RGB-D SALIENCY
DETECTION METHODS. FPS: FRAMES PER SECOND

Method  |Model size (MB)| |Inference time (FPS) 1]
PCA [22] 533.6 15
TANet [41] 951.9 14
MMCI [42] 929.7 19
PDNet [79] 192 19
CPFP [23] 278 6
CTMF [40] 826 50
DMRA [24] 238.8 22
D3Net [17] 439.7 18
SSF [26] 329 13
UCNet [18] 308 20
JLDCF [25] 520 9
HDF-Net [44] 170 52
DANet [45] 106.7 32
Cas-GNN [48] 219.1 40
CMWNet [66] 156 30
ATSA [43] 128.9 46
CoNet [47] 167.6 34
Ours 239.1 42

(a) RGB

(b) depth (c) GT (d) ours

Fig. 7. Failure cases of our RGB-D saliency detection method. (a) Input RGB
image from benchmark datasets; (b) Input depth image; (c) Ground truths (de-
noted as ‘GT’); and (d) Our results.

D. Discussion

Self-supervised rotation angle prediction loss on unlabeled
data: Note that the rotation angle prediction is conducted in
a self-supervised learning manner. Hence, it is natural to ex-
plore the corresponding result when we remove the consistency
loss on the rotation angle prediction and add the self-supervised
rotation angle prediction on unlabeled data. In this regard, we
have conducted an experiment to construct a baseline network
(denoted as “our-supervised-unlabeled”) by employing a super-
vised loss on unlabeled data to replace the consistency loss on
rotation predictions of unlabeled data. Table IV and Table V

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 25, 2023

report the quantitative results on seven RGB-D saliency detec-
tion benchmark datasets of our method and “our-supervised-
unlabeled”. Apparently, we can find that our method consis-
tently outperforms “our-supervised-unlabeled” in terms of all
four metrics on seven benchmark datasets. It indicates that the
consistency loss on rotation predictions enables us to better iden-
tify saliency objects when compared to a supervised loss on
unlabeled data.

Rotation feature decoupling: Note that [56] decoupled the im-
agerotation features to rotation related and unrelated parts. Then,
we conduct an experiment to construct a network (denoted as
“our-decoupling”) to modify our network by using the rotation
feature disentangling in [56] for the image rotation angle predic-
tion in our work. Table IV and Table V compares the quantitative
results of our network and “our-decoupling” on seven RGB-D
saliency detection benchmark datasets. It shows that our net-
work has a superior metric performance over “our-decoupling”
in terms of all seven benchmark datasets. The reason behind is
that the rotation angle prediction mechanism in [56] increases
the number of network parameters and the network training dif-
ficulties, thereby degrading the RGB-D saliency detection per-
formance.

Results of the teacher network: Table IV and Table V summa-
rize the results of the student network and the teacher network in
our semi-supervised RGB-D saliency detection method, show-
ing that the final results of the student network and the teacher
network are close for all seven benchmark datasets. Following
all research works based on the mean-teacher framework, we
also utilized the student network to do the saliency inference
from the input paired RGB-D images.

The choice of pretext tasks: Note that the salient objects
can be with arbitrary angles. Hence, our work takes the rota-
tion prediction as the auxiliary task to enable our method to
better understand the angle information of the target salient
objects, thereby making the RGB-D salient object detection
more accurate. Moreover, we have conducted an experiment
to construct two baseline networks (denoted as “our-jigsaw”
and “our-inpainting”) by replacing the rotation angle prediction
with the jigsaw puzzle and the image inpainting as the auxiliary
task of our RGB-D saliency detection. Table IV and Table V
summaries the quantitative results on seven RGB-D saliency
detection benchmark datasets, showing that our method outper-
forms “our- jigsaw” and “our-inpainting” in terms of four met-
rics on all seven benchmark datasets. It indicates that taking the
self-supervised rotation angle prediction as the auxiliary task
can better identify salient objects from paired RGB-D data than
that with the jigsaw puzzle and image inpainting.

Failure cases: Although our method has obtained superior
RGB-D saliency detection performance on the seven benchmark
datasets, it also has the failure cases, which are also challeng-
ing for existing state-of-the-art RGB-D saliency detectors. For
example, our method may fail for (i) salient objects with com-
plex salient object boundaries (see the first row of Fig. 7); (ii)
salient regions with only partial human objects (see the second
and third rows of Fig. 7); and (iii) salient objects with a close
intensity distribution with non-salient backgrounds (see the last
row of Fig. 7). We take the task of addressing those failure cases
as a future direction of our work.
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V. CONCLUSION

This paper presents a self-supervised self-ensembling
network for RGB-D saliency detection by learning from both
labeled and unlabeled data. We first develop a self-guided multi-
task convolutional neural network for simultaneously predict-
ing a saliency map and classifying a rotation angle of the im-
age without any additional supervision signal. Then we employ
the self-ensembling framework to leverage additional unlabeled
data to further improve the performance of RGB-D saliency de-
tection. Experimental results on seven benchmark datasets show
that our network consistently outperforms the state-of-the-art
methods both quantitatively and visually. Considering diverse
pretext tasks and more unlabeled data into our network is taken
as one of the future directions of our work.
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