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Abstract—Recent transformer-based models, especially patch-
based methods, have shown huge potentiality in vision tasks.
However, the split fixed-size patches divide the input features into
the same size patches, which ignores the fact that vision elements
are often various and thus may destroy the semantic information.
Also, the vanilla patch-based transformer cannot guarantee the
information communication between patches, which will prevent
the extraction of attention information with a global view. To
circumvent those problems, we propose an Efficient Attention
Pyramid Transformer (EAPT). Specifically, we first propose the
Deformable Attention, which learns an offset for each position in
patches. Thus, even with split fixed-size patches, our method can
still obtain non-fixed attention information that can cover various
vision elements. Then, we design the Encode-Decode Communica-
tion module (En-DeC module), which can obtain communication
information among all patches to get more complete global
attention information. Finally, we propose a position encoding
specifically for vision transformers, which can be used for patches
of any dimension and any length. Extensive experiments on the
vision tasks of image classification, object detection, and semantic
segmentation demonstrate the effectiveness of our proposed
model. Furthermore, we also conduct rigorous ablation studies
to evaluate the key components of the proposed structure.

Index Terms—Transformer, attention mechanism, pyramid,
classification, object detection, semantic segmentation.

I. INTRODUCTION

TRANSFORMER-BASED models have become de facto
approaches of Natural Language Processing (NLP) be-

cause of their advantages in processing sequences [1]–[5]. And
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Fig. 1: The shifted window approach in Swin Transformer
(this illustration refers to the original paper) and our proposed
En-DeC module. Swin Transformer (top) shifts the windows
of the i-th layer to obtain the windows of the (i+ 1)-th layer.
Obviously, different windows cover different patches, so the
communication among different patches can be guaranteed to a
certain extent. To consider all the patches at once, our proposed
En-DeC module (bottom) uses an encode-decode architecture
to obtain communication information among all patches to get
more complete global attention information.

in the most recent, transformer has also achieved competitive
performance in many vision tasks, such as image classification
[6], [7], object detection [8], [9], segmentation [10], image
generation [11], person re-identification [12], etc. Compared
with language material, the resolution of visual data is higher,
and thus the global-pixel-level attention calculations will yield
an unbearable cost. To this problem, DEtection TRansformer
(DETR) [13], which is the milestone of the vision transformer,
uses a Convolutional Neural Network (CNN) to reduce the
resolution of the input. Furthermore, ViT [6] abandons the
CNN feature extractor and directly splits the input into fixed-
size patches to build a pure vision transformer architecture.
And many recent works also follow this method of processing
of splitting high-resolution input. Albeit its prosperity, the
above vanilla splitting-based methods still suffer from many
thorny problems.

The one is split fixed-size patches may destroy semantic
information. Unlike language elements, vision elements differ
in size and shape. Thus, it is difficult for the fixed-size patches
to cover various vision elements. To this issue, Deformable
Patch-based Transformer (DPT) [14] splits the patches in
a data-specific way to obtain non-fixed-size patches, i.e., it
gets the learnable positions and scales in an adaptive way
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TABLE I: Properties comparison of different position encod-
ing methods.

Methods Inductive Data-driven Symmetrical Parallel Parameter efficient

Sinusoidal [4] ! # # ! !

Embedding [15] # ! # ! #

Relative [16] # ! # ! !

FLOATER [17] ! ! # # !

MCMD ! ! ! ! !

for each patch. However, considering that the patch-based
vision transformer usually calculates attention information in
each patch, DPT may introduce a lot of extra calculations,
especially when facing data with larger vision elements. In
this paper, we propose Deformable Attention, which can
combat the problem of fixed-size patches destroying semantic
information without introducing additional attention. To be
specific, the Deformable Attention provides a learnable offset
for each position in the patch, and thus the calculation of
attention information is no longer restricted by patches of fixed
size and shape. Therefore, even with fixed-size patches, the
Deformable Attention can still capture semantic information of
various vision elements. In addition, the Deformable Attention
does not change the size of the original patches, so it does not
introduce additional attention calculation costs.

And the another thorny problem is that although the vanilla
splitting-based transformer can avoid expensive global-pixel-
level attention calculations, it also limits the communication
of attention information among different patches. Obviously,
the compromise of local-pixel-level attention calculations on
computational cost affects the performance of the model.
To this problem, Swin Transformer [8] calculates the at-
tention information in the non-overlapping local windows
(each window covers multiple patches) instead of in a single
patch. Meanwhile, Swin Transformer uses the Shifted Window
mechanism to make the window cover different patches in
different attention calculation stages. Although Swin Trans-
former can promote communication among different patches,
it is still local communication. In this work, we propose
a global patch communication module based on the ecode-
decode architecture, dubbed as En-DeC module (Encode-
Decode Communication module). The En-DeC module first
uses a encode model to compress the information of all
patches. Then, the En-DeC module recovers the compressed
information by a decode model and adds the recover results in-
to the attention calculation results. Both our proposed En-DeC
module and Shifted Window mechanism aim to communicate
the information among different patches, but the former is
global-communication and the latter is local-communication,
and we show the difference in Fig. 1.

In addition to the above two thorny problems, current
position encoding approaches in vision transformer either
directly adopt low-dimensional encoding technology in NLP
that cannot capture multi-dimensional location information or
use learn-based encoding method that may increase learning
cost [4], [15]–[17]. These facts motivate our novel position
encoding design tailored for vision transformer. To achieve
this goal, we propose to use Multi-dimensional Continuous

Mixture Descriptor (MCMD) to describe the position infor-
mation. Specifically, we use Gaussian to describe the position
information of each dimension and then mix them. Benefits
from the symmetrical and continuous properties of Gaussian,
our descriptors can be of any length and the changes of the
descriptors are smooth as well as symmetrical. Additionally,
our position encoding method can establish the correlation
between descriptors and parameters to be learned only by
adjusting very few hyperparameters in Gaussian. Based on
the above description, our proposed position encoding method
obviously has the following properties: 1) Inductive. The
ability to handle sequences of any dimension and any length;
2) Data-Driven. The encoding is affected by the data; 3) Sym-
metrical. The encoding of symmetrical position sequences is
also symmetrical; 4) Parallel. Encoding does not affect the
parallelization of the transformer; and 5) Parameter efficient.
Encoding does not introduce too many additional parameters.
We summarized the properties comparison of typical position
encoding methods in Table I. Our work makes the following
three main contributions:
• Deformable Attention: We propose a Deformable Atten-

tion, which starts with a learnable offset to remodel the
rules for obtaining attention information. Compared with
the vanilla fixed-size-patch-based transformer (e.g., ViT),
Deformable Attention can better cover the various vision
elements. And our work introduces less computational
cost than similar deformable-based methods (e.g., DPT).

• Encode-Decode Communication module (En-DeC
module): Although the vanilla splitting-based trans-
former can significantly reduce the computational cost,
only calculating the attention information in a single
patch also limits the communication among different
patches. Some designs (e.g., Shifted Window in Swin
Transformer) can alleviate this problem, but they are still
local communication. Different from the previous meth-
ods, our proposed En-DeC module uses an encode-decode
architecture to implement all patches communication.

• Multi-dimensional Continuous Mixture Descriptor
(MCMD): We propose the MCMD, a position encoding
tailored for vision transformer, which encodes different
dimensions independently and then mixes them. MCMD
satisfies the properties that an excellent position encoding
should have, i.e., inductive, data-driven, symmetrical,
parallel, parameter efficient.

The rest of this paper is organized as follows: Section II
discusses the related work for transformer, especially Vision
transformer, and the position encoding in it. The design details
of the Efficient Attention Pyramid Transformer (EAPT) are
given in Section III. In Section IV we cover the experimental
results. Finally, Section V concludes this paper.

II. RELATED WORK

A. Vision Transformer

Due to the strong representation ability of transformer,
transformer-based models have been applied to multiple vision
tasks in most recent. From high-level vision tasks object
detection [8], [9] and segmentation [10] to low-level tasks
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Fig. 2: The overall structure of our proposed Efficient Attention Pyramid Transformer (EAPT). EAPT first encodes the split
fixed-size patches with our proposed Multi-dimensional Continuous Mixture Descriptor (MCMD), which is an efficient multi-
dimensional feature position encoding method tailored for vision transformer (the result is the blue box). Then, EAPT uses the
Deformable Attention to learn an offset for each position in the patches. Therefore, split fixed-size patches can still cover the
various vision elements well (the result see red box). EAPT finally uses the En-DeC module to get communication information
among all patches (see green box) and adds it to Deformable Attention above to get the final output.

such as image enhancement [18] and image generation [11]
etc., vision transformer models have achieved competitive
performance. Groundbreaking work DETR [13] introduces
transformer to vision tasks for the first time. It starts with a
convolutional neural network to extract features coupled with
inputting those features to the transformer blocks to obtain the
attention information. However, DETR [13] requires immense
amounts of computational and gains poor performance on
small objects due to its coarse-grained attention information
extraction. Then, ViT [6] splits the input into fixed-size patches
to avoid the unbearable cost of the global-pixel-level attention
calculation. And much current work followed this patch-based
processing mechanism. Although widely used, the patch-based
methods still have many thorny troubles. The one is split
fixed-size patches may destroy semantic information of vision
elements. Deformable Patch-based Transformer (DPT) [14]
splits the patches in a data-specific way to obtain non-fixed-
size patches to combat this trouble. However, non-fixed-size
patches may introduce a lot of additional attention calcula-
tion costs. The another is the patch-based transformers limit
the communication of attention information among different
patches. Although the non-overlapping local windows in Swin
Transformer can promote communication among different
patches, this is still local communication. For these thorny
troubles, we propose Efficient Attention Pyramid Transformer
(EAPT), which consists of Deformable Attention and Encode-
Decode Communication module (En-DeC module). The for-
mer learns an offset for each position in the patch, so it makes
the fixed size patches can better cover the various vision
elements. The latter uses an encode-decode architecture to
make the communications among all patches. Overall, EAPT
is a patch-based transformer, but it can alleviate the thorny

troubles in the vanilla fixed-size-patch-based transformer due
to our proposed Deformable Attention and En-DeC module.

B. Position Encoding in Transformer

Unlike the Recurrent Neural Network (RNN) [19]–[21] the
transformer cannot distinguish the position information of the
tokens and thus requires to perform position encoding for in-
puts [22]. The vanilla transformer [4] adopts Sinusoidal-based
position encoding methods, and its properties of continuous
and unbounded allow it to encode tokens of any length. How-
ever, this method is non-data-driven, i.e., it cannot adaptively
change the position encoding according to the token itself, so
it cannot guarantee the same position guidance for tokens with
different weights. Given the central role of position encoding,
many attempts in the field of language processing improve the
sinusoidal-based encoding method in the original transformer
paper from multiple perspectives, and among these, absolute
encoding [4], relative encoding [16], recursive encoding [17],
learn-based encoding [15], etc. are typical approaches. Rela-
tive encoding [16] hypothesizes that precise relative position
information is not useful beyond a certain distance and thus
can use clipping to encode any amount of sequences. Learn-
based encoding [15] learns position encoding through training,
while recursive encoding [17] adopts Neural ODE. Although
these methods have been effective for transformer model in
NLP, we argue that it is obviously inappropriate to use them
directly in vision transformer because the data in vision tasks
are high-dimensional and these methods are not capable of
capturing multi-dimensional position information, and we will
analyze the limits of current position encoding methods in
detail in Section III. To this issue, we propose a novel position
encoding method specifically for high-dimensional data in this
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paper. We encode different dimensions independently and then
mix them to ensure that the encoding has the same guidance
for the position information of different dimensions.

III. PROPOSED APPROACH

This section presents implementation methods and details of
our proposed. First, we will introduce the deformable attention
mechanism, which can obtain richer attention information
without increasing the computation cost. Then, we propose the
Encode-Decode Communication module (En-DeC module),
which uses an encode-decode architecture to obtain communi-
cation information among all patches. We finally design a nov-
el position encoding specifically for vision transformer named
Multi-dimensional Continuous Mixture Descriptor (MCMD),
which can efficiently model any amount of patches of multi-
dimensional position information. We show the above three
designs respectively in Fig. 2.

A. Deformable Attention
Following recent excellent work Swin Transformer [8],

we also compute self-attention in non-overlapped windows.
Suppose there is a multi-dimensional feature V ∈ Rh×w×c,
which is divided into hp × wp patches and denoted as
Vp ∈ Rhp×wp× h×w

hp×wp
×c. We then further divide it into

hw × ww windows, and the results can be denoted as
Vw ∈ Rhw×ww×

hp×wp
hw×ww

×c. Without loss of generality, we only
discuss the attention calculation of a single window here. For
a single window wm in all windows w = {w1, w2, . . . , wn},
assume that its all position on the original feature is (lxm, lym).
In order to allow the current window to have a larger
view of attention, we add a learnable offset (ox, oy) to
each position of this window, and the overall offset of
(lxm, lym) is (oxm, oym). (oxm, oym) is learned from Wf , specifi-
cally, (oxm, oym) = Dense(Conv(Wf)), where Dense(·) and
Conv(·) are fully connected layer and convolution layer,
respectively. In order to reduce the learning difficulty of offset,
we perform a value constraint on it, that is, |oxm| ≤ hw,
|oym| ≤ ww. We denote the position of window (lxm, lym) added
with the learned offset is (Lx

m, Ly
m), and it can be calculated

as:
(Lx

m, Ly
m) = (lxm, lym) + (oxm, oym) (1)

Considering that (Lx
m, Ly

m) should not exceed the boundary
of features, we need to further restrict its value. Here we define
the multi-dimensional boundary constraint kernel C(·, ·), and

C((x, y), (h,w)) = (max(min(x + h, h), 1),

max(min(y + w,w), 1))
(2)

where (x, y) and (h,w) are the positions to be bounded
and the boundary of features, respectively. We use C(·, ·) to
restrict (Lx

m, Ly
m), and denote its result as (Lx

m,Ly
m). Note

that the offset is learnable and is typically fractional and thus
(Lx

m,Ly
m) corresponds to the virtual position in the feature.

We use Bilinear Interpolation here to calculate the value of
the virtual position. Suppose there is a virtual point (x, y) on
the feature, and its value V(x,y) can be calculated as:

V(x,y) =
∑
q(x,y)

|qx(x,y) − x‖qy(x,y) − y|q(x,y) (3)
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Fig. 3: The illustration of the En-DeC module. The En-DeC
module first compresses the channels of features including all
patches from c to c′. Then, the En-DeC module compresses
and recovers the above results to obtain communication infor-
mation among all patches. Note that the final feature channel
is c′ instead of c. The purpose of this design is to reduce the
calculation cost of the En-DeC module.

where q(x, y) enumerates the four actual positions closest to
this virtual position.

B. En-DeC module

The vanilla splitting-based transformer calculates attention
information within a single patch, which will lead to weak per-
formance. To this problem, we propose the En-DeC module,
which is based on an encode-decode architecture and can allow
information exchange among different patches. Without loss
of generality, for a multi-dimensional inputs V ∈ Rh×w×c, it
is processed by the En-DeC module as follows: The En-DeC
module first uses a encode architecture to extract features from
V , the rules are:

V ′ = ConV (V, c′)
V ′′ = ConV (V ′, c′′)
V ′′i,j = Q

(
W̃enV ′(i′∼i′′,j′∼j′′)

)
,∀i ∈ h,∀j ∈ w

(4)

where ConV (X, c) is the channel compression kernel that us-
es a convolution layer, which means compressing the channel
of X into c dimensions. The channels with larger variances
usually include more feature information, and this has been
observed in many previous works [23]–[25]. V(i′∼i′′,j′∼j′′)
represents a matrix with the same shape as the convolution
kernel weight W̃en. Q enumerates all convolution kernels and
input matrix product operations. c′ and c′′ are the number of
compressed channels and the number of convolution kernels,
respectively. V ′′ ∈ Rh′×w′×c′′ is the output of the encode
architecture, and V ′′i,j is the value of a single position of the
output. Note that, we only show here the convolution process-
ing on the input once. We can perform convolution processing
on it as many times as needed, and the same rules apply to the
decode architecture. Meanwhile, the encode architecture first
compresses the input channel to c′ dimension, and the restore
result of decode architecture is also c′ dimension instead of c
dimension. The purpose of this is to reduce the computational
cost.
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Then, the En-DeC module uses a decode architecture to
restore the shape of V ′′ ∈ Rh′×w′×c′′ to Rh×w×c′ , the rules
are:{

V ′′′ = DeConV (V ′′, c′)
V ′′′i,j = Q

(
W̃deV

′′
(i′∼i′′,j′∼j′′)

)
,∀i ∈ h′,∀j ∈ w′

(5)

where DeConV (X, c) is the Transposed Convolution kernel,
which can expand the input to the target shape. V ′′′ is the
output of the decode architecture, and V ′′′i,j is the value of
a single position of the output. We argue that V ′′′ includes
patches communication information, and we directly add it
to the attention information obtained by the vanilla splitting-
based transformer. We show the details of the En-DeC module
in Fig. 3.

C. Our Proposed Multi-dimensional Position Encoding

1) Limits of Current Position Encoding Methods: Multi-
Head Attention is an important component of the transformer,
For inputs f ∈ RL×d, its result is:

A(f) = soft max[
WQf(WKf)T√

d
]WVf (6)

where WQf , WKf , and WV f are query, keys, and values
respectively.

√
d is the dimension of WQf(WKf)T. However,

such an attention mechanism is not capable of distinguishing
the position information of the input sequence and thus re-
quires position encoding. Current position encoding approach-
es in vision transformer either directly adopt low-dimensional
encoding technology in NLP or use learn-based encoding
method that may increase the difficulty of model learning.
We argue that those methods are obviously inappropriate to
use directly in vision transformer because the data in vision
tasks are high-dimensional and these methods are not capable
of capturing multi-dimensional position information. Suppose
there is a multi-dimensional feature f ∈ Rh×w×c, which is
divided into p × p patches. If a one-dimensional position
encoding is used, we denote the position encoding of the
sequence xp+y+t as t, where x and y are position information
in different dimensions respectively. Then the output of this
sequence through the model reasoning is:

F (xp+y+t) = F (xp)+
∂f

∂p
(y+t)+

∂2f

∂p2
(y+t)+· · ·+Rn(p)

(7)
where Rn(x) is the Taylor remainder, and F (x) represents the
model output of inputs x. We can observe that although the po-
sition information of different dimensions should be the same,
the degree of influence of t on x and y is different. Therefore,
we argue that low-dimensional encoding is not enough to
represent the position information of high-dimensional data.

And if the encoding of position (x, y) is multi-dimensional,
its output by model reasoning is:

F (x + tx, y + ty) = F (x, y) +
∂F

∂x
tx +

∂F

∂y
ty +

1

2

∂2F

∂x2
t2x+

1

2

∂2F

∂y2
t2y +

1

2

∂2F

∂x∂y
txty + · · ·+ Rn(x, y)

(8)

where tx and ty are position information of different dimen-
sions. F (x, y) represents the model output of inputs (x, y),
and Rn(x, y) is the Taylor remainder. We can find that tx and
ty have the same impact on x and y, which is in line with
our expectations of position encoding for high-dimensional
data. Inspired by this, we propose a novel position encoding
method tailored for high-dimensional data named MCMD. It
encodes different dimensions independently and then mixes
them to ensure that the encoding has the same guidance for
the position information of different dimensions.

2) Multi-dimensional Continuous Mixture Descriptor (M-
CMD): Suppose there is a multi-dimensional feature V ∈
Rh×w×c, which is divided into p × p patches and denoted
as Vp ∈ Rp2× hwc

p2 . Obviously, the amount and length position
encoding required for Vp are p2 and hwc2

p2 respectively.
Simple but without loss generality, here we only discuss

the position encoding of one patch. For the patch of posi-
tion (i, j), we first describe it as two binary vectors V(ij,x)
[0, 0, · · · , 1, · · · ] and V(ij,y) [0, 0, · · · , 1, · · · ], where the length
of vector is p, the i-th of V(ij,x) and j-th of V(ij,y) are 1
and others are 0. We use Gaussian Function ae−(x−b)

2/2c2 to
describe V(ij,x) and V(ij,y) respectively and denote them as
G(V(ij,x)) and G(V(ij,y)), where,

G(V(ij,x)) = [G(Vx1

(ij,x)), G(Vx2

(ij,x)), · · ·, G(Vx(hwc /p2)

(ij,x) )]

G(V(ij,y)) = [G(Vy1

(ij,y)), G(Vy2

(ij,y)), · · ·, G(Vy(hwc /p2)

(ij,y) )]
(9)

Among this, xt = (bxij +0.5)×hwc/p3+t, yt = (byij +0.5)×
hwc/p3 + t, t ∈ [1, hwc/p2]. And G(Vx

(ij,x)) and G(Vy
(ij,y))

can be calculated as follow:

G(Vx
(ij,x)) = aije

−(x−bxij)/2c
x2

ij

G(Vy
(ij,y)) = aije

−(y−byij)/2c
y2

ij

(10)

where bxij = i and byij = j, cxij and cyij are adjustable hyperpa-
rameters and cxij 6= cyij , this can guarantee the uniqueness of
position encoding. aij is related to the parameters of V , which
we will describe in detail in the following section. We next
add the Gaussian descriptors corresponding to each dimension
to get the final position encoding, that is, for V(i,j), its position
encoding PV(i,j) can be calculated as:

PV(i,j) = G(V(ij,x)) + G(V(ij,y)) (11)

where G(V(ij,x)) and G(V(ij,y) are the position codes of V(i,j)
in the x and y dimensions, respectively. As a relevant illustrate
case, the feature V we use here is three dimensional. In fact,
our position encoding method can be extended to any dimen-
sion features, that is, each dimension is encoded like PV(i,j) ,
and finally the position encoding results of all dimensions are
added.

3) Design for Data-driven: Feature-agnostic encoding,
such as Sinusoidal in the original Transformer paper, cannot
guarantee that the coding of each patch can perform the
same position guiding. For predefined position encoding, if
the preset value is large, it will affect the semantic information
of the feature itself. While if the preset value is small, it is
difficult to guarantee that effective position information can be
provided. Additionally, the values of different patches are also
different, so it is obviously unreasonable to use value-agnostic
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TABLE II: Detailed architecture of Efficient Attention Pyramid Transformer (EAPT). c, c′, and c′′ are the number of feature
channels, which have been described in detail in Section III. The input of the example shown here is 256× 256, and the patch
size is 4× 4, so initially, we can get 4096 patches.

output size EAPT-S EAPT-M EAPT-L

stage 1 64× 64 (4×) [
dim = 96, head = 3
position encoding : MCMD

En-DeC module : c = 96, c′ = 1, c′′ = 2
]× 3 [

dim = 128, head = 4
position encoding : MCMD

En-DeC module : c = 128, c′ = 2, c′′ = 4

]× 3 [
dim = 192, head = 6
position encoding : MCMD

En-DeC module : c = 192, c′ = 4, c′′ = 8

]× 3

stage 2 32× 32 (8×) [
dim = 192, head = 6
position encoding : MCMD

En-DeC module : c = 192, c′ = 2, c′′ = 4
]× 3 [

dim = 256, head = 8
position encoding : MCMD

En-DeC module : c = 256, c′ = 4, c′′ = 8

]× 3 [
dim = 384, head = 12
position encoding : MCMD

En-DeC module : c = 384, c′ = 8, c′′ = 16

]× 3

stage 3 16× 16 (16×) [
dim = 384, head = 12
position encoding : MCMD

En-DeC module : c = 384, c′ = 4, c′′ = 8
]× 10 [

dim = 512, head = 16
position encoding : MCMD

En-DeC module : c = 512, c′ = 8, c′′ = 16

]× 16 [
dim = 768, head = 24
position encoding : MCMD

En-DeC module : c = 768, c′ = 16, c′′ = 32

]× 16

stage 4 8× 8 (32×) [
dim = 768, head = 24
position encoding : MCMD

En-DeC module : c = 768, c′ = 8, c′′ = 16
]× 3 [

dim = 1024, head = 32
position encoding : MCMD

En-DeC module : c = 1024, c′ = 16, c′′ = 32

]× 3 [
dim = 1536, head = 48
position encoding : MCMD

En-DeC module : c = 1536, c′ = 32, c′′ = 64

]× 3

encoding for them. While the data driven property means that
the encoding and the features are related, so it can guarantee
the same position guidance for features with different values.

Because of
∫ +∞
−∞ ae−(x−b)

2/2c2dx =
√

2a|c|
√

Π, we only
need to change the value of a or c to change the distri-
bution of values. But we have used c as a hyperparameter
to ensure the uniqueness of position encoding. Therefore,
here we proposed to change a based on the value of the
feature to be encoded to achieve data-driven. Following
the definition in section 3.1, for V(i,j), its position encod-

ing is PV(i,j) = [G(Vx1

(ij,x)), G(Vx2

(ij,x)), · · ·, G(Vx(hwc /p2)

(ij,x) )] +

[G(Vy1

(ij,y)), G(Vy2

(ij,y)), · · ·, G(Vy(hwc /p2)

(ij,y) )], where G(Vx
(ij,x)) =

aije
−(x−bxij)/2c

x2

ij and G(Vy
(ij,y)) = aije

−(y−byij)/2c
y2

ij . And we
calculated aij as:

aij =
p2

hwc
Sum(V(i,j)) (12)

where Sum(p) is the sum of value in patch p. Therefore, the
PV(i,j) and the values of V(i,j) are related, so they can provide
equal position guidance for different sequences.

4) Properties of Multi-dimensional Continuous Mixture De-
scriptor: Inductive. Inductive refers to the ability to handle
sequences of any length, position encoding technology with
this property can process inputs with any shapes. Obviously,
our proposed MCMD satisfies this property. Following the
illustrated case in Section 3.1, here we change the number of
patches, (p, p) → (p′, p′). Therefore, the number and length
of position encoding become p′

2 and hwc2

p′2
, respectively. We

only need to replace p in Equation 1 with p′ to get a Gaussian
descriptor of length hwc2

p′2
. Our method is works for p (p ∈ N+)

patches. For the V ∈ Rh×w×c, in extreme cases, the number
of patches can be h × w. Similarly, we only need to replace
hwc2

p2 in Equation 1 with h × w to get the relative position
encoding.

Inductive in MCMD not only allows position encoding for
sequences of any length but also includes relative position
between sequences. For V(i,j) and V(i+t′,j), without consid-
ering aij 6= aji, it is obviously G(V(ij,y)) = G(V((i+t′)j,y)).

Meanwhile, G(V(ij,x)) = [G(Vx1

(ij,x)), · · ·, G(Vx(hwc /p2)

(ij,x) )],

G(V((i+t′)j,x)) = [G(Vx1+t′

((i+t′)j,x)), · · ·, G(Vx(hwc /p2+t′)

((i+t′)j,x) )], the

latter can be regarded as the result of translation of the former
on the Gaussian function. Therefore, we can get G(V((i+t′)j,x))
based on G(V(ij,x)), that is, our encoding method including
relative position information, which is very useful for sequence
processing but some other methods (e.g., learning-based meth-
ods) cannot benefit from it.

Symmetrical. Symmetrical refers to the position encoding
of the symmetrical patch is also symmetrical. Symmetrical
allows encoding to benefit from the relative positions in-
formation of the patches. Our proposed position encoding
is approximately symmetrical, that is, for PV(i,j) ≈

←−−−
PV(j,i) ,

where
←−−−
PV(j,i) is symmetric descriptor of PV(j,i) . For simplicity,

we only prove that G(V(ij,x))t ≈
←−−−−−−
G(V(ji,x))t, where G(V(ij,x))t

is t-th value of of G(V(ij,x)).

Because G(Vx
(ij,x)) is symmetrical,

←−−−−−−
G(V(ji,x))t =

←−−−−−−−−−−
G(V(ji,x))p−t−1 = ajie

−
[(p−t−1)−bx

ji]
2

2cx
ij
2 . Further translate

←−−−−−−
G(V(ji,x))p−t−1 to get

←−−−−−−
G(V(ji,x))p+t+2j+1, and

←−−−−−−−−−−−−
G(V(ji,x))p+t+2j+1 = ajie

−
[(−p+t+2j+1)−bx

ji]
2

2cx
ij
2 = ajie

−
(t−bx

ij)
2

2cx
ji
2

. cxji and cxij are just hyperparameters used to ensure the
uniqueness of position encoding, so we can set cxji = cxij .
But note that aij and aji are related to the value of
patch, so aij 6= aji and thus the only difference between
G(V(ij,x))t and

←−−−−−−
G(V(ji,x))t is aij and aji. therefore, under our

proposed position encoding method, G(V(ij,x))t ≈
←−−−−−−
G(V(ji,x))t.

Similarly, G(V(ij,y))t ≈
←−−−−−−
G(V(ji,y))t. Because our proposed

position encoding method is data-driven, it is approximately
symmetrical rather than absolutely symmetrical. However,
we argue that this is sufficient to provide relative position
information. Additionally, due to different values of patches,
absolutely symmetrical encoding is unreasonable.

Parallel. The main difference between Transformer and
RNNs is that the former is parallel while the latter is not. Our
position encoding method can be integrated into the parallel
of Transformer at a very low cost, while some of the other
encoding methods require very high time and memory costs,
such as recursive-based approaches. Following formula 1, our
method can be directly integrated into Transformer block, that
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is:

A(f) = softmax{W
Q(f + Pf )[W

K(f + Pf )]
T

√
d

}WV(f + Pf )

(13)
where Pf is the position encoding of the input f . WQ(f +
Pf ), WK(f + Pf ), and WV(f + Pf ) are respectively query,
keys, and values with position codes Pf .

√
d is the dimension

of WQ(f + Pf )[WK(f + Pf )]T.

IV. EXPERIMENTS

We evaluate our proposed model on three vision tasks, i.e.,
classification, object detection, and semantic segmentation.
First, we introduce the details of the experiments, including
network architecture, compared tasks and dataset, and training
settings. Then, we compare our architecture with traditional
methods including convolution-based models and transformer-
based models. We lastly conduct rigorous ablation studies to e-
valuate the key components of the proposed structure including
Deformable Attention, En-DeC module, Multi-dimensional
Continuous Mixture Descriptor (MCMD).

A. Experiments details

Network architecture. Follow Swin Transformer [8], our
network structure also consists of multiple stages, and each
includes multiple transformer blocks. The transformer blocks
within a stage will not change the shape of the feature map,
and we perform downsampling between stages, which makes
our network easy to apply to the existing vision framework. In
order to fit the different computational requirements, we design
three network architectures with different complexity, dubbed
as EAPT-S, EAPT-M, and EAPT-L respectively. The main
difference between these three architectures is the amount of
feature map channels and transformer blocks. Generally speak-
ing, the more transformer blocks and channels, the higher the
complexity of the network. Meanwhile, each transformer block
includes En-DeC modules with different settings, which can
ensure the communication of information among all patches.
We report the detailed network architectures in Table II. As
a relevant use case, the input size we show in Table II is
256 × 256, and we have also verified multiple input sizes in
the following experiment.

Compared tasks and dataset. We use ImageNet [34],
COCO 2017 [35], and ADE20K [36] to verify our work on
the vision tasks classification, object detection, and semantic
segmentation, respectively. ImageNet is a very large dataset,
and its commonly used subset ILSVRC2012 (ImageNet2012)
still has more than one million training images. We use
ImageNet-1K here, it has 1.28M training images and 50K
validation images. COCO 2017 is a challenging dataset with
80 categories, and including 118k training images, 5k vali-
dation images, and 20k test images. ADE20K is a semantic
segmentation dataset, which contains 20k training images, 2k
validation images and, 3k test images.

Training settings. We follow most of the training tech-
niques and tricks in Swin Transformer [8] and [7], the detailed
settings are as follows. Training settings for classification:
the optimizer is AdamW [37], initial learning rate=0.001, the

TABLE III: Classification results on ImageNet-1K. The base-
lines we compared here include convolutional neural network
based architecture (RegNetY [26] and EfficientNet [27]) and
transformer-based architecture (ViT [6], Swin Transformer
[8], and DeiT [7]). Follow Swin Transformer, throughput is
measured on a V100 GPU.

method inputs #param FLOPs throughput top-1 acc.
RegNetY-4G [26] 2242 21M 4.0G 1156.7 80.0
RegNetY-8G [26] 2242 39M 8.0G 591.6 81.7
RegNetY-16G [26] 2242 84M 16.0G 334.7 82.9

EffNet-B3 [27] 3002 12M 1.8G 732.1 81.6
EffNet-B4 [27] 3802 19M 4.2G 349.4 82.9
EffNet-B5 [27] 4562 30M 9.9G 169.1 83.6
EffNet-B6 [27] 5282 43M 19.0G 96.9 84.0
EffNet-B7 [27] 6002 66M 377.0G 55.11 84.3
ViT-B/16 [6] 3842 86M 55.4G 85.9 77.9
ViT-L/16 [6] 3842 307M 170.7G 27.3 76.5
DeiT-S [7] 2242 22M 4.6G 940.4 79.8
DeiT-B [7] 2242 86M 17.5G 292.3 81.8
DeiT-B [7] 3842 86M 55.4G 85.9 83.1
Swin-T [8] 2242 29M 4.5G 755.2 81.3
Swin-S [8] 2242 50M 8.7G 436.9 83.0
Swin-B [8] 2242 88M 15.4G 278.1 83.3
Swin-B [8] 3842 88M 40.7G 84.7 84.2

EAPT-S 2242 39M 6.5G 695.2 82.9
EAPT-M 2242 107M 18.3G 242.6 84.6
EAPT-M 3842 116M 53.6G 75.3 86.1

TABLE IV: Frameworks-level comparison results on the task
of object detection on COCO 2017. The baselines of detection
frameworks we compared here include Cascade Mask R-CNN
[28], [29], ATSS [30], RepPoints v2 [31], and Sparse R-CNN
[32]. And the compared network architectures include ResNet
[33] and Swin Transformer [8].

Method Backbone AP box AP box
50 AP box

75 #param FLOPs FPS

Cascade R-50 46.3 64.3 50.5 82M 739G 18.0
Mask Swin-T 50.5 69.3 54.9 86M 745G 15.3
R-CNN EAPT-S 51.8 70.4 56.2 93M 771G 13.7

R-50 43.5 61.9 47.0 32M 205G 28.3
ATSS Swin-T 47.2 66.5 51.3 36M 215G 22.3

EAPT-S 48.3 67.9 52.6 42M 236G 19.7
R-50 46.5 64.6 50.3 42M 274G 13.6

RepPoints- Swin-T 50.0 68.5 54.2 45M 283G 12.0
V2 EAPT-S 51.3 59.9 55.7 53M 301G 10.1

R-50 44.5 63.4 48.2 106M 166G 21.0
Sparse Swin-T 47.9 67.3 52.3 110M 172G 18.4
R-CNN EAPT-S 48.9 68.6 54.1 129M 201G 15.9

warmup learning rate is 0.05 and, warmup steps is 20 epochs,
batchsize = 1024. Most of the augmentation and regularization
strategies in Swin Transformer [8] and [7] are used in exper-
iments. Training settings for object detection: We follow the
four object detectors used in Swin Transformer, i.e., Cascade
Mask R-CNN [28], [29], ATSS [30], RepPoints v2 [31], and
Sparse RCNN [32]. The optimizer is AdamW, initial learning
rate=0.0001, the warmup learning rate is 0.05, batchsize =
16. Training settings for semantic segmentation: we adopt
UperNet in mmsegmentation as the evaluation framework.
The optimizer is AdamW, initial learning rate=0.00006, the
warmup learning rate is 0.01, and warmup step is 1500 iter-
ations. We also adopt the training techniques and tricks used
in Swin Transformer, such as data augmentation, stochastic
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Fig. 4: The performance of EAPT-S in different broaden sizes. The experiment follows the settings in Table III, Table IV, and
Table VI. 8(|oxm| = |oym| = 0) means that the Deformable Attention is not used, and 8 (|oxm| = |oym| = 4) is the used broaden
size in this paper.

TABLE V: System-level comparison results on the task of
object detection on COCO 2017. The baselines we compared
here include convolutional neural network based architecture
and transformer-based architecture. HTC++ is the ingenious
design improved from HTC in Swin Transformer, and we
follow and improve this design and denote it HTC+++. *
indicates multi-scale testing.

Method mini-val test-dev
#param FLOPs

AP box APmask AP box APmask

RepPointsV2* [31] - - 52.1 - - -
GCNet* [38] 51.8 44.7 52.3 45.4 - 1041G
RelationNet++* [39] - - 52.7 - - -
SpineNet-190 [40] 52.6 - 52.8 - 164M 1885G
ResNeSt-200* [41] 52.5 - 53.3 47.1 - -
EfficientDet-D7 [42] 54.4 - 55.1 - 77M 410G
DetectoRS* [43] - - 55.7 48.5 - -
YOLOv4 P7* [44] - - 55.8 - - -
Copy-paste [45] 55.9 47.2 56.0 47.4 185M 1440G
X101-64 (HTC++) 52.3 46.0 - - 155M 1033G
Swin-B (HTC++) [8] 56.4 49.1 - - 160M 1043G
Swin-L (HTC++) [8] 57.1 49.5 57.7 50.2 284M 1470G
Swin-L (HTC++)* [8] 58.0 50.4 58.7 51.1 284M -
EAPT-M (HTC+++) 57.8 50.3 58.0 50.6 182M 1183G
EAPT-L (HTC+++) 58.2 50.6 59.0 51.6 319M 1630G
EAPT-L (HTC+++)* 59.1 51.8 59.7 52.2 309M -

depth, etc.

B. Comparison to state-of-the-art

Evaluate on classification. For the task of classification,
we compare our model with both convolutional neural net-
work based architectures and transformer-based architectures,
and we report comparison results in Table III. Compared
with recent similar works, i.e., ViT [6], DeiT [7], and Swin
Transformer [8], our results are significantly more optimized.
With the same level of structural complexity, our model has
higher accuracy (e.g., +1.6% for EAPT-S (82.9%) over Swin-T
(81.3%)). At the same level of accuracy, the structure of our
model is simpler (e.g., ×3 throughput for EPAT-M (242.6)
over DeiT-B (85.9)). Compared with convolutional neural
networks based models, our proposed and recent transformer-
based works have no other obvious advantages except for
a slightly better speed-accuracy trade-off. We argue that the
main reasons are as follows: 1) The model is mainly used
for Natural Language Processing (NLP). Although we and
recent vision transformers have made adaptive improvements

TABLE VI: Semantic segmentation results on ADE20K. The
baselines we compared here include convolutional neural
network based architecture and transformer-based architecture.
The used backbone include ResNet [33], HRNet [46], ResNeSt
[41], Swin Transformer [8].

ADE20K val test #param FLOPs FPSMethod Backbone mIoU score
DANet [47] ResNet-101 45.2 - 69M 1119G 15.2
DLab.v3+ [48] ResNet-101 44.1 - 63M 1021G 16.0
ACNet [49] ResNet-101 45.9 38.5 - - -
DNL [50] ResNet-101 46.0 56.2 69M 1249G 14.8
OCRNet [51] ResNet-101 45.3 56.0 56M 923G 19.3
UperNet [52] ResNet-101 44.9 - 86M 1029G 20.1
OCRNet [51] HRNet-w48 45.7 - 71M 664G 12.5
DLab.v3+ [48] ResNeSt-101 46.9 55.1 66M 1051G 11.9
DLab.v3+ [48] ResNeSt-200 48.4 - 88M 1381G 8.1
UperNet [52] DeiT-S 44.0 - 52M 1099G 16.2
UperNet [52] Swin-T 46.1 - 60M 945G 18.5
UperNet [52] Swin-S 49.3 - 81M 1038G 15.2
UperNet [52] EAPT-S 47.7 - 76M 1123G 16.8
UperNet [52] EAPT-M 51.5 - 119M 1362G 13.6

to make it more suitable for vision tasks, considering the
differences between vision elements and language elements,
We believe that the existing improvements are not enough to
establish the attention relationship between vision elements. 2)
The compared CNN models in Table III have been optimized
(e.g., RegNet [26] and EfficientNet [27] are based on Neural
Architecture Search (NAS)), and our proposed and compared
recent vision transformers follow the vanilla transformer de-
sign. Therefore, we have reason to believe that the use of
advanced technology to optimize the vision transformer can
further improve its performance.

Evaluate on object detection. Under typical object detec-
tion frameworks, we compare our proposed network architec-
tures with convolutional-based networks and recent advanced
transformer models. We report the framework-level compar-
ison results in Table IV. From Table IV, we have several
observations: 1) EAPT demonstrates the clear advantages over
the convolutional-based networks. Under different framework-
s, EAPT is increased by +5.5% AP box at most (EAPT-S over
R-50 under the method of Cascade Mask R-CNN), and at least
by +1.0% (EAPT-S over Swin-T under the method of Sparse
Mask R-CNN). 2) EAPT we proposed outperforms existing
advanced transformer models Swin Transformer with accept-
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TABLE VII: Experiment results under different component
combinations on the task of classification, object detection, and
semantic segmentation.!and - stand for using and discarding
this component, respectively. Comp.1, Comp.2, and Comp.3
stand for the Deformable Attention, the En-DeC module, and
MCMD. The experiment follows the settings in Table III,
Table IV, and Table VI.

Method / task backbone Comp.1 Comp.2 Comp.3
top-1 acc.
AP box

mIoU
! ! ! 82.9
! ! - 81.9
! - ! 81.7

EAPT-S - ! ! 81.8
classification ! - - 81.2

- ! - 81.6
- - ! 81.0
- - - 80.6
! ! ! 48.9
! ! - 48.5
! - ! 47.6

Sparse R-CNN EAPT-S - ! ! 48.1
detection ! - - 47.4

- ! - 47.9
- - ! 47.3
- - - 46.8
! ! ! 47.7
! ! - 47.3
! - ! 46.6
- ! ! 47.9

UperNet EAPT-S ! - - 45.9
segmentation - ! - 47.5

- - ! 46.0
- - - 45.7

able increased costs of parameters and FLOPs. 3) Compared
with loose evaluation metric (AP box

50 ), we have a more obvious
advantage in strict one (AP box

75 ). We argue that this benefits
from non-fixed size attention information that our network can
obtain and thus can better establish the attention relationship
between vision elements of different sizes. We will further
discuss these benefits in more detail in the ablation study.

Additionally, we also report the results of comparison
with previous state-of-the-art methods in Table V. Our de-
tection framework refers to the ingenious design of the Swin
Transformer, i.e., HTC++ [8] improved from HTC [53], and
pretrained on ImageNet-22K. We follow the most of improve-
ment tricks in HTC++, and named it HTC+++. Although the
complexity of our model is slightly higher than these methods,
the performance of our model is promising and competitive
(e.g., +1.3% AP box and 1.4% APmask for EAPT-L (HTC+++)
(59.0% AP box and 51.6% APmask) over Swin-L (HTC++)
(57.7% AP box and 50.2% APmask)).

Evaluate on semantic segmentation. We also adopt U-
perNet as the base framework for a fair comparison, and we
report the comparison results in Table VI. From Table VI, our
network architectures outperform both convolutional neural
network based architectures and transformer-based architec-
tures (e.g., +1.6% for EAPT-S (47.7%) over Swin-T (46.1%),
+3.1% for EAPT-M (51.5%) over ResNeSt-200 (48.4%)).

(a) inputs (b) Swin Transformer [8] (c) EAPT

Fig. 5: The feature visualization of various vision elements.
The object in the first-row image is a bird, and the showed
vision elements include head (orange boxes), beak (yellow
boxes), and paw (red boxes). The object in the second-row
image are two sheep, and the showed vision elements include
head (yellow boxes) and feet (red boxes). The object in the
third-row image is a person, and the showed vision elements
include head (yellow boxes) and hand (red boxes).

C. Ablation Study

As described in section III, our work is mainly composed
of three components, including Deformable Attention, En-
DeC module, and MCMD. To further prove the effective-
ness of those components, we do ablation study here. Three
components can produce eight combinations, we reported the
detect results of those combinations in Table VII, and we
can conclude from the results that each component can help
improve the performance of the EPAT. In the following, we
will further prove the effectiveness of those components and
explore their functionality.

Effectiveness of Deformable Attention. Different from the
vanilla transformer, we introduce the Deformable Attention in
this paper, which learns an offset for each position in patches
and thus can better cover the various vision elements. And
from Table VII, Deformable Attention can indeed improve
the performance of our proposed. In order to make better use
of the Deformable Attention, we will continue to explore its
parameters here, in particular, the broaden size of the attention
field in Deformable Attention. We have set the broaden size
in the third section, that is |oxm| ≤ hw, |oym| ≤ ww, where
|oxm| and |oym| represent the broaden size, and hw ×ww is the
shape of the non-overlapping local windows. We argue that
the broaden size will affect the performance of Deformable
Attention. To prove this, we report the performance of EAPT
in different broaden sizes in Fig. 4. Meanwhile, we also show
training costs in Fig. 4. From Fig. 4, we can find that the per-
formance of EAPT is improving as the broaden size increases.
Additionally, when the broaden size increases to a certain
value, the improvement of model performance begins to slow
down. The parameter used in this paper is |oxm| = |oym| = 4,
which is obviously not the optimal performance. This is mainly
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(a) inputs (b) Swin Transformer [8] (c) EAPT

Fig. 6: The heat map of the features (lines 1 and 2) and the
difference and coherence of edge information among different
patches (lines 3-6). The edge information comparisons in lines
3-6 correspond to the patch position in the input image. For
example, the first column of the third row corresponds to the
patch in the upper left corner of the image.

because we have considered the tradeoff of model performance
and training cost, i.e., the training cost of the model learning
increases when the broaden size is large. And this also shows
that if the training cost is increased, the performance of EAPT
will further increase.

In addition, we also demonstrate the advantages of our
proposed framework in terms of covering the various vision
elements by feature visualization in Fig. 5. From Fig. 5, we can
see that our proposed method obviously can better cover the
vision elements in objects to be classified/detect/segment. We
argue that this mainly benefits from the Deformable Attention,
which can obtain non-fixed attention information through the
learnable offsets.

Effectiveness of the En-DeC module. Although the vanilla
splitting-based transformer can avoid expensive global-pixel-
level attention calculations, it also limits the communication
of attention information among different patches. To this prob-
lem, we propose Encode-Decode Communication module (En-
DeC module), which uses an encode to compress features and
uses a decode to restore, and thus its results contain commu-
nication information among all patches. To further observe the
feature extraction ability of the different network architectures,

TABLE VIII: Performance under different position encoding
methods on the task of classification, object detection, and seg-
mentation. The used backbone is EAPT-S, and the experiment
follows the settings in Table III, Table IV, and Table VI.

ImageNet COCO ADE20k
Method top-1 acc. AP box val mIoU

Sinusoidal [4] 81.6 47.8 46.4
Embedding [15] 81.6 48.0 46.5

Relative [16] 81.8 48.2 46.7
FLOATER [17] 81.9 48.2 46.8

MCMD 82.9 48.9 47.7

we show the heat map of the features in Fig. 6 (lines 1 and 2).
Meanwhile, we also show the difference and coherence of edge
information among different patches. We argue that the smaller
the difference and the stronger the coherence, the better the
ability of the network to extract attention information across
patches. To be specific, we directly calculate the difference
between the edge feature values of adjacent patches (each edge
gets ten values based on Bilinear Interpolation) and finally
report the average of the four edges (two edges for peripheral
patches) of each patch (see lines 3-6 in Fig. 6). From heat
maps in Fig. 6, we can clearly see that our method can better
cover the features of the object to be classified/detect/segment,
while the features of the baseline method obviously include a
lot of useless information. In addition, from lines 3-6 in Fig. 6,
we can also see that our method can obtain more continuous
attention information. We argue that this is mainly beneficial
from the En-DeC module we proposed, which guarantees
the information communication among all patches through an
encode-decode architecture.

Effectiveness of Multi-dimensional Continuous Mixture
Descriptor (MCMD). Transformer does not have the ability
to distinguish the position information of the input sequence
like Recurrent Neural Networks (RNNs) and thus requires
to perform position encoding for inputs. However, current
position encoding approaches in vision transformer either
directly adopt low-dimensional encoding technology in NLP
or use learn-based encoding method that may increase the
difficulty of model training. To this problem, we propose
MCMD in this paper, which can encode the patches with
any dimension and any length. We can see from Table VII
that MCMD indeed contributes to our proposed method. Here
we will further compare it with other position encoding
methods to show its advantages, and we report the comparison
results in Table VIII. From Table VIII we can see that our
method outperforms the compared position encoding methods,
including Sinusoidal [4], Embedding [15], Relative [16], and
FLOATER [17]. Additionally, Sinusoidal performs the worst.
We argue that this is mainly because it has no data-driven
mechanism, that is, it cannot adaptively adjust the encoding
according to the patches weights and thus cannot guarantee
the same position guidance for all patches.

V. CONCLUSION

This paper presented a new vision transformer architecture
called Efficient Attention Pyramid Transformer (EAPT). Our
rigorous evaluation demonstrates that EAPT outperforms the
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state-of-the-art methods on the task of classification, object
detection, and semantic segmentation. We argue that the
superior performance of EAPT is attributed to our novel
designs, including Deformable Attention, En-DeC module, and
Multi-dimensional Continuous Mixture Descriptor (MCMD).
Deformable Attention can broaden the attention field without
increasing too much computational cost, and En-DeC module
uses an encode-decode architecture to obtain communication
information among all patches. MCMD can encode patches
with any dimensions and lengths and thus more fit the vision
features than other methods. We argue that combining some
existing technologies can further reduce the complexity of
the transformer, i.e., Neural Architecture Search, Knowledge
Distillation, and Network Pruning, and this is what we plan
to do in immediate future.
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