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Deep Texture Exemplar Extraction Based on
Trimmed T-CNN

Huisi Wu'”, Wei Yan, Ping Li

Abstract—Texture exemplar has been widely used in
synthesizing 3D movie scenes and appearances of virtual objects.
Unfortunately, conventional texture synthesis methods usually only
emphasized on generating optimal target textures with arbitrary
sizes or diverse effects, and put little attention to automatic texture
exemplar extraction. Obtaining texture exemplars is still a labor
intensive task, which usually requires carefully cropping and
post-processing. In this paper, we present an automatic texture
exemplar extraction based on Trimmed Texture Convolutional
Neural Network (Trimmed T-CNN). Specifically, our Trimmed
T-CNN is filter banks for texture exemplar classification and
recognition. Our Trimmed T-CNN is learned with a standard
ideal exemplar dataset containing thousands of desired texture
exemplars, which were collected and cropped by our invited
artists. To efficiently identify the exemplar candidates from an
input image, we employ a selective search algorithm to extract the
potential texture exemplar patches. We then put all candidates into
our Trimmed T-CNN for learning ideal texture exemplars based on
our filter banks. Finally, optimal texture exemplars are identified
with a scoring and ranking scheme. Our method is evaluated
with various Kinds of textures and user studies. Comparisons
with different feature-based methods and different deep CNN
architectures (AlexNet, VGG-M, Deep-TEN and FV-CNN) are
also conducted to demonstrate its effectiveness.

Index Terms—Deep learning, texture convolutional neural
network, trimmed convolutional neural network, texture exemplar
recognition, texture exemplar extraction.

I. INTRODUCTION

NDER a virtual reality booming era, texture synthesis
U technique is still widely used in generating virtual back-
ground scenes or modeling appearances for virtual objects. As
an efficient tool, example-based texture synthesis [1] can gener-
ate seamless textures with different illumination or deforma-
tion distribution effects. In the last two decades, a series of
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example-based texture synthesis methods were developed to im-
prove the synthesizing effect and efficiency, so we can easily
synthesize desired textures based on the input texture exemplar.
However, extracting high quality texture exemplars from natu-
ral images is still a labor intensive task and heavily relies on the
manually processing of the artists. Obviously, manual texture
exemplar extraction is tedious, which usually requires carefully
photography selection, patiently cropping and post-processing.
Currently, conventional texture synthesis methods usually put
more emphasis on generating optimal target textures with arbi-
trary sizes or diverse effects based on the given exemplar input,
where is still a lack of attention on automatic texture exemplar
extraction. As the quality of the input texture exemplar may
mostly determine the effect of final synthesis results, there has
been great interest in developing automatic systems that can as-
sist artists in the tedious texture exemplar extraction.

Recently, deep learning obtained a great success in the ar-
eas of recognition [2], [3], detection [4], [5], prediction [6], re-
trieval [7], [8], super-resolution [9], video analysis [10], [11]
and so on. In particular, Convolutional Neural Network (CNN)
is widely used as filter banks to extract features and also fre-
quently applied for object recognition. Similarly, we found that
filter bank can also be a powerful tool to extract useful tex-
ture exemplar features, which also can be efficiently applied
in texture exemplar recognition and classification. Compared
with the texture descriptors based on traditional feature detec-
tion, texture analysis and classification, deep texture exemplar
extraction framework can achieve better accuracy and efficiency
performance based on sophisticated neural network parame-
ter settings. Furthermore, deep learning based method can also
achieve automatic texture exemplar extraction without any user
interactions.

In this paper, we present the first deep learning architecture
for automatic texture exemplar extraction, namely Trimmed
T-CNN. Specifically, we can see our Trimmed T-CNN archi-
tecture shown in Fig. 1. It has three convolutional layers, and
two pooling layers to be our filter banks for texture exemplar
classification and recognition. Another contribution of our work
is that we have designed the first Trimmed T-CNN to eval-
uate the quality of the given texture exemplar. To train our
Trimmed T-CNN, we have setup a standard ideal exemplar
dataset for deep texture exemplar extraction, which contains
thousands of desired texture exemplars collected and cropped
by our invited artists. Given a natural image, we first per-
form a selective search algorithm to extract a number of tex-
ture exemplar candidates. All candidates are then put into our
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Framework of our system. Given a natural image, we first perform a selective search algorithm to extract a number of texture exemplar candidates. All

candidates are then put into our Trimmed T-CNN model for learning ideal texture exemplars. Best exemplars are obtained based on the final scoring and ranking

scheme.

Trimmed T-CNN for learning ideal texture exemplars. Finally,
best exemplars are obtained based on the scoring and rank-
ing scheme. Our method is evaluated with a variety of kinds
of textures and compared with different feature-based texture
exemplar methods, including different deep CNN architectures
(AlexNet, VGG-M, Deep-TEN and FV-CNN). In addition, user
studies are also conducted to demonstrate the effectiveness of our
method.

To summarize, the main contributions of this paper are as

follows:

e We propose the first deep learning framework for automatic
texture exemplar extraction, which is based on a trimmed
texture convolutional neural network (Trimmed T-CNN).

e We propose a novel texture exemplar dataset for learn-
ing ideal texture exemplars with different scales and regu-
larities, which contains thousands of well-organized ideal
texture exemplars with various texture objects, scales and
regularities under different conditions.

e Based on the novel strategy of six divisions for the standard
exemplar dataset according to scale and regularity, we can
not only achieve multi-scale and multi-regularity texture
exemplar extraction from a single internet image, but also
provide a more flexible selection of texture exemplars for
the users.

II. RELATED WORK

A. Exemplar-Based Texture Synthesis

Unlike procedural synthesis methods [12] which create tex-
tures with a set of mathematics functions, exemplar-based tex-
ture synthesis is the process of generating new texture im-
ages with arbitrary size from an input texture exemplar. Ac-
cording to Raad er al. [1], exemplar-based texture synthesis

methods can be divided into three types: statistics-based meth-
ods [13], [14], patch re-arrangement [15]—[17] methods and hy-
brid methods [18]. Statistics-based methods produce different
texture images with a random sampling strategy based on the
exemplar texture characterized by a statistical signature. Patch
re-arrangement methods stitch together copies of sub-regions
in the exemplar to generate a new texture based on a clever
copy-paste procedure. Hybrid methods combine ideas of the pre-
vious two approaches to create new textures based on a given ex-
emplar. On the other hand, convolutional neural networks [19],
[20] and generative adversarial networks [14], [21] also provide
a new tool and open a new space for exemplar-based texture
synthesis. However, researchers are more focused on texture
applications, such as the texture image style-transfer [22], [23].
Most of existing texture synthesis methods are still more empha-
sized on generating optimal target textures and its applications,
but pay little attention to automatic texture exemplar extraction
from a natural image.

B. Texture Exemplar Extraction

To efficiently extract the texture exemplars from nature im-
ages, several methods were proposed to extract dominant tex-
ture descriptors based on traditional feature detection, texture
analysis and classification. Given a large globally varying tex-
ture, Wei et al. [24] first proposed an inverse texture synthesis
technique by summarizing the input texture into a small tex-
ture exemplar, which requires the input texture should be well
synthesized. Wang et al. [25] also proposed a method to extract
dominant textures with multi-scale hue-saturation-intensity his-
tograms. Dai et al. [26] provided a tool to measure the synthe-
sizability of texture exemplars. On the other hand, Lockerman
et al. [27]-[29] proposed to create texture exemplar by diffu-
sion manifolds [30]. Moritz et al. [31] also suggested to employ
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local histogram matching to extract texels from the input pho-
tographs. More recently, Wu et al. [32] proposed an automatic
texture exemplar extraction method based on global and local
textureness measures. However, most of above approaches are
based on traditional feature detections for texture recognitions,
which also usually require a specific image feature selection for
different types of texture exemplar extractions.

C. CNNs for Texture Recognition

Since AlexNet [33] achieved great success in the ImageNet
LSVRC-2012 contest, many researches have paid attention to
using CNN for texture descriptor extraction and texture classi-
fication. Cimpoi et al. developed a FC-CNN [34] for texture
object recognition based on a set of non-linear filter banks.
They also improved it with a better texture description ability
by developing a FV-CNN [35] for the challenge tasks of texture
classification and scene recognition. Similarly, Lin et al. [36]
proposed another bilinear model to achieve fine-grained tex-
ture recognition. More recently, deep learning techniques also
achieved a remarkable breakthrough in the field of texture object
detection. According to Liu et al. [37], two-stage object detec-
tion framework [38], [39] may potentially be applied to tex-
ture extraction. Andrearczyk and Whelan [40] also developed
an effective network architecture named Texture CNN (T-CNN)
for texture recognition. Unfortunately, above CNN architectures
still cannot directly used for automatic texture exemplar extrac-
tion. To achieve more efficient texture recognition, we develop
a Trimmed T-CNN for automatic texture exemplar extraction.

III. METHOD

The framework of our proposed method is as shown in Fig. 1.
Given an input image, we first use a selective search algorithm
to extract a number of image patches, which may have different
resolutions and usually contain one or several kinds of texture.
To identify the features of the ideal texture patches, we have col-
lected and defined a standard exemplar dataset which contains
more than thousands of desired texture exemplars cropped by
the invited artists. So we can train our trimmed texture CNN
(T-CNN) models with the standard exemplar dataset. The ex-
tracted image patches are then classified based on our T-CNN
models, where each image patch will be classified as one of
the six kinds of desired exemplars with a possibility. Finally,
the optimal texture exemplars are identified with a scoring and
ranking scheme in the refinement step based on the patch size
and classification accuracy.

A. Texture Exemplar Candidates Selection

Given an input image, one may use an exhaustive randomly
search strategy to crop a number of texture exemplar candidates.
Obviously, exhaustive randomly search is time consuming be-
cause it usually includes many redundant searching and crop-
ping. More importantly, it cannot guarantee the randomly search
algorithm covering the whole image. As it also cannot automat-
ically determine the patch size, so exhaustive randomly search
strategy usually requires a pre-defined patch size as input.
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Fig. 2. Texture exemplar candidates extracted by selective search algorithm
with different filtering parameters.

In this paper, we employ a selective search algorithm [41] to
extract the texture exemplar candidates more efficiently. We first
obtain a number initial regions using graph-based super-pixel
image segmentation. Then, we iteratively calculate the color,
texture, size and fill similarity between two neighboring regions
and merge them until the whole region containing a single mean-
ingful object. S(r;,r;) is the similarity between two regions.
Specifically, we use fill similarity to measure how well region r;
and r; fitting into each other. If 7; is contained in r;, we should
merge them in order to avoid any holes. Otherwise, if r; and
r; are incompatible with each other, we should not merge them
as they will likely form a strange region. The overall similarity
S(r, ;) for region merging can be written as following,

S(Tia Tj) = ay Scolor(rh Tj) + a2Stexture(ria Tj)

+ a3Ssize (13, 75) + a4 San(ri, rj) ey

where a1, as, ag and a4 are the proportion of the four similari-
ties. In our experiments, we set a1, as, as, a4 as 0.3,0.4,0.1,0.2,
respectively. Note that, we pay more emphasis to the similarity
of color and texture. Detailed definitions of the four similari-
ties can be referred to the selective search algorithm [41]. After
region merging in the selective search algorithm, we can auto-
matically extract a number of texture exemplar candidates with
different scales, as shown in Fig. 2. Because it can automatically
determine the patch size based on the criteria of S(r;, 7;) during
the region merging, a pre-defined patch size is not required any
more in our selection of texture exemplar candidates.

If the selected patch is a rectangle, we still need to resize it
into a square before input to network because the input of our
Trimmed T-CNN must be a square. Obviously, it may produce
severe distortion or deformation if we linearly resize it into a
square, especially for the thin and long rectangle. As we usually
only obtain rectangles as the output for the original selective
search algorithm, we can optimize it with a square cropping
according the smaller edge of the extracted rectangles to guar-
antee that the output are all square image patches. On the other
hand, we also filter out the redundant exemplar candidates with
non-texture regions or outliers using a histogram matching al-
gorithm. Specifically, we divide the candidate into four equal
sub-regions, and compare the chi-square distance between the
statistical histogram result of each sub-region and the candidate.
As the histogram matching between sub-region and candidate
can reflect statistical invariance, we can further filter out redun-
dant exemplar candidates with image noises based on the aver-
age chi-square distance between sub-region and the candidate.
In our experiments, we set the threshold of average chi-square
distance as 0.6.
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B. Standard Exemplar Dataset

To learn the features of the ideal texture exemplar, it is im-
portant to collect a texture dataset that includes as much as of
distinguish and representative features of the desired texture ex-
emplars. Currently, there exist several open texture datasets col-
lected for texture classification. But most of them are used as tex-
ture recognition benchmarks datasets, such as DTD dataset [42],
UMD dataset [43], and UIUC dataset [44]. On the other hand,
there also have several material datasets for material recogni-
tion benchmarks, including Kylberg dataset [45], KTH-TIPS
dataset [46], KTH-TIPS2 dataset [47], and FMD dataset [48].
However, most of above datasets are designed for texture clas-
sification or recognition, where different texture examples are
grouped according to different texture material, such as grass-
land, sky, building and etc. As the number of different kinds
of material in the world is countless, we cannot collect and la-
bel all of them to setup a standard dataset for learning different
ideal texture exemplars. Moreover, ideal texture exemplars also
should not be limited in a number kinds of material. To learn the
intrinsic features of the texture exemplar, we do not divide the
collected texture examples according to the material. Instead, we
label the standard ideal texture exemplar in our standard dataset
according to the texton scale and regularity in the texture patch.

As there exist too many kinds of material to be exhaustively
collected for learning desired texture exemplars, we can collect
a large number of ideal texture exemplars and divide them into
several classes, each of which contains a desired texton scale
and regularity for the ideal exemplar. In our experiments, we
have invited the artists to manually crop thousands of ideal tex-
ture exemplars from the Internet, and treated them as the stan-
dard texture exemplar dataset in our following classification and
recognition. To learn the intrinsic feature of the texture exemplar,
we did not divide the collected dataset according to the material.
Instead, we divide the standard dataset into six classes based on
the texton scale and regularity in the texture patch. We use S,
S2, and S3 to represent the texture exemplar with small, median
or large scale of objects, respectively. To minimize inconsis-
tency and human subjective feeling factor in the scale labelling,
artists denote the texture scale according to the following steps.
First, they crop the desired texture exemplars from the given
nature images. Second, they are then asked to figure out the
minimal repeated texton (epitome) in the desired texture exem-
plar by drawing a small square box. Finally, by calculating a
ratio ¢ between the minimal texton area and the whole exem-
plar area, we can obtain a consistent scale labelling for the ideal
texture exemplars based on the value of ¢. In our experiments,
if 0 <= ¢ < 0.08, the scale is S;. If the 0.08 <= ¢ < 0.2, the
scale is So. Otherwise, the scale is S3. On the other hand , we
use R; and Ry to denote the texture exemplar with random or
regular distribution. Thus, we have six classes of ideal texture
exemplars with different scales and regularities, including S
R1, S1 Ry, So Ry, So Ro, S3 Ry, and S35 Re. Typical exemplars
are as shown in the Fig. 3. All exemplars are with a resolution
of 256 x 256.

In our standard exemplar dataset, we first selected 1260 best
texture exemplars from the artist cropping, where each class
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Fig.3. Sixdivisions of our standard exemplar dataset. S1, Sg, and S3 represent
the texture exemplar with small, median or large scale of objects, respectively.
R; and Ry denote the texture exemplar with random or regular distribution. All
exemplars are with a resolution of 256 x 256.
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Fig. 4.
on the exemplars.

Data augmentation by generating different illuminations and rotations

contain 210 best texture exemplars. As there may exist differ-
ent illuminations and rotations for the texture patches in the
nature images, so we randomly generated 2 kinds of different
illumination contrasts and 4 different rotations to generate more
exemplars for T-CNN learning in the following steps. Finally,
our standard texture exemplar dataset includes 10080 (1260 x
8) best texture exemplars and each class contain 1680 exemplars
with different illuminations and rotations, as shown in the Fig. 4.

C. Trimmed T-CNN

Recently, CNN layers can be considered as filter banks to ex-
tract features and widely applied for object and material recog-
nition [49], [50]. We found that filter banks can also efficiently
extract useful texture features, which can be used in texture
recognition and classification. Based on the network architec-
ture named Texture CNN (T-CNN) [40], we develop a Trimmed
T-CNN forideal texture exemplar extraction in our system. Com-
pared with the original T-CNN, our Trimmed T-CNN has a better
efficiency performance based on less neural network parame-
ters. As we only trim the redundant components in the original
T-CNN, we can still achieve a similar accuracy performance.
Note that, our Trimmed T-CNN is the first deep learning model
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Our Trimmed T-CNN model. To achieve a more efficient and light-weight network, we trim the original T-CNN in both convolutional layers and fully

connected layers. Compared with the original T-CNN, our convolutional layers is reduced from 5 to 3, where the number of hidden nodes in second fully-connected

layer is also pruned from 4096 to 512.

in automatic texture extraction, as previous methods only em-
phasized on other texture synthesis applications and T-CNN is
also only used for texture classification.

By sharing the weight of the convolution layers, T-CNN
can learn appropriate texture exemplar features (such as edges,
shapes, and et al.) through forward and backward propagation
on the given standard exemplar dataset. So we can combine
these learned texture feature descriptors within the network to
classify new unknown image patches extracted from an input im-
age in Fig. 2. Specifically, T-CNN architecture is derived from
AlexNet [33]. For each feature map of the last convolution layer,
T-CNN pools them by calculating the average of its rectified lin-
ear activation output and obtains a single value per feature map.

As shown in the Fig. 5, we employed T-CNN to be our fil-
ter banks in our texture exemplar classification and recognition.
Firstly, all image patches were resized to 227 x 227 and put into
the first convolutional layer (C1). As mentioned before, because
our scale labelling is based on the ratio between the minimal
texton area and the whole exemplar area, the linear resizing
operation applied on the input exemplars does not change the
scale labeling. After forward propagation of the former two con-
volutional layers, including activation layer and pooling layer
(C1+P1, C2+P2), we can obtain texture descriptors for the fine
detail (such as edges, key points and et al.). For the last con-
volutional layer (C3), we can capture larger scales of texture
features (such as contours, shapes and et al.) which are more
representative and distinguish for texture exemplar classification
and recognition. So we can simply pool them by calculating the
average value of its rectified linear activation output to obtain
a single value per feature map, which is then cascaded by an
energy layer for the following fully-connected layers. Similar to
the fully connected layer in FCN for semantic segmentation, our
energy layer is the global average pooling on the entire feature
map, which is a convolution operation with exactly the same
kernel size as the feature map. Finally, we gradually project
the feature map of the fully-connected layers into six dimen-
sional vector to identify the six classes ideal texture exemplars.
Through forward propagation of all filter banks, we can also ob-
tain our texture exemplar descriptors indicated with a number
of parameters within the Trimmed T-CNN.

On the other hand, we also applied multi-layered Deconvolu-
tional Network [51], [52] to visualize the feature of each CNN
layer, as shown in the colorized image patches in Fig. 5. From
visualization of the learned texture feature maps, we found many
similar reconstructed images in each layer, indicating the redun-
dancy in the extracted feature map for the convolutional layers.
The major reason for the redundancy is that texture images usu-
ally appear with repeated patterns (textons), which is also named
as the statistical invariance [53]. Especially in the deep convo-
lutional layers, we can clearly observe that the extracted feature
maps are very similar with each other. To achieve a more ef-
ficient and light-weight network, we trim the original T-CNN
in both convolutional layers and fully connected layers, which
also minimizes the interference of redundant feature maps. The
original T-CNN has 5 convolutional layers (C1 to C5). Due the
repeated statistical invariance in the texture patches, the feature
maps in the last two convolutional layers (C4 and C5) are very
hard to distinguish with each other. Therefore, we have trimmed
C4 and CS5 in our Trimmed T-CNN. Without the interference
of redundant feature maps in C4 and C5, our Trimmed T-CNN
extracts more distinguishable feature maps only relied on 3 con-
volutional layers, which also achieves better efficiency without
scarifying accuracy performance of our network. Moreover, we
also try to further trim more convolutional layers in our Trimmed
T-CNN. However, the accuracy of our Trimmed T-CNN cannot
be preserved if we employ less than 3 layers in our network,
indicating that we will damage the feature learning ability of the
network when trimming too many convolutional layers.

Although our experiments have verified that 3 layers are the
minimum convolutional layers in our Trimmed T-CNN to guar-
antee the accuracy performance. We can still observe partially
redundancy in the feature maps of C3 layer, as shown in the
Fig. 5. Therefore, we also employ Han’s method [54] to trim re-
dundant connections in our fully connected layers. Specifically,
our fully connected layer trimming is implemented by removing
redundant hidden nodes from the second hidden layer (as shown
in Fig. 5), where redundant hidden nodes are corresponding to
the redundant connections for the partially redundancy in the
feature maps of C3 layer. In the original T-CNN, hidden nodes in
the two hidden layers are 4096 x 4096. Based on Han’s method,
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Classification Scoring and Ranking

Fig. 6. Texture exemplar classification, scoring and ranking. Red, pink, violet
and grey squares represent the extracted texture exemplars in the classes of Sg
R1, S2 R2, S1 Rg, and S; Ry, respectively.

we can train the network to learn which connections are impor-
tant, so we can trim the redundant and unimportant connections
by removing the hidden nodes in the second hidden layer. After
pruning 3584 redundant connections based on the Han’s method,
our Trimmed T-CNN finally still remains 512 hidden nodes in
the second hidden layer. Therefore, hidden nodes of the two
hidden layers are 4096 x 512 in our Trimmed T-CNN. By grad-
ually reducing the number of feature map in the fully connected
layer, we can reduce the number of feature map in the second
fully connected layer from 4096 to 512, and finally reduce it
from 512 to 6 in the last fully connected layer. Our experiment
results show that our Trimmed T-CNN achieves similar accuracy
performance and has a better efficiency performance.

D. Scoring and Ranking

As the extracted image patches may contain similar region
and with different scales, we need to design a texture exemplar
scoring and ranking algorithm to obtain best texture exemplars
and filter out the bad exemplars, as shown in Fig. 6. Note that, our
scoring and ranking algorithms are not involved in the training
process.

Given a natural image I € R”*W  where H, W are height
and width of image. We can obtain plenty of rectangles R; by
selective search algorithm [41], where x,y,w, h are the top-
left horizontal coordinate, top-left vertical coordinate, width and
height of rectangle R; respectively. We define its ideal texture
exemplar score as following,

SCOT&(RZ') = blpl + bQDl + b3Sz (2)

which takes the probability P;, rectangle distribution D; and
rectangle size S; into consideration. by, bo, b3 are the proportion
of three features, where by 4+ bs + b3 = 1. In our experiments,
we set by, by, bg as 0.6, 0.2, 0.2 respectively. Each of feature is
normalized from O to 1. More specifically, the probability factor
P; is written as,

P, =max{P, ;},k=1,2,...,6 3)

which indicates the best probability for the k-th class in our
Trimmed T-CNN output layer (0 < P; < 1.0). Secondly, our
rectangle distribution factor D; is written as,

o d{C(x,y), Cl(mvy)}

dmax

“)

where C(x, y) is the mean central point coordinate of each rect-
angle in the same category. d,,x is the max Euclidean distance
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between C'(x,y) and the central point of each rectangle in the
same category. d{C'(z,y), Ci(z,y)} is the Euclidean distance
of C(z,y) and central point of R;. Obviously, 0 < D, < 1.0.
When the distance between rectangle R; and the central point
of each category is larger, the value of D; will get smaller. Fi-
nally, we define the relative rectangle size factor S; as following,
w; X hz

S = Size(I) )
where w; and h; are the width and height of R;. Size(I) denotes
the area of the image I. Obviously, Size(I) = W x H,and 0 <
S; < 1.0. As texture exemplar with larger size may contain more
complex texture features, such as more complex illumination
distribution or deformation distribution, so we rank the larger
exemplars in front of smaller ones. At the meantime, we can
also easily filter out the exemplar with too small image size
based on S;.

On the other hand, we should note that the weight of b; is
larger than by and bs, so the output probability P; in our Trimmed
T-CNN is still the determining factor to obtain best texture exem-
plar. Therefore, we can still obtain a set of best texture exemplars
with multiple different kinds of dominate texture contents based
on above scoring and ranking scheme.

IV. RESULTS AND DISCUSSIONS

In our experiments, we implemented our method using Caffe
on asingle NVIDIA RTX 2080ti (11 GB RAM) in Ubuntu 16.04
LTS. For the network learning from scratch, we set the initial
learning rate to be 0.001. In the fine-tuning stage after a rough
convergence, we set learning rate to be 0.0001, where the fol-
lowing weight decay rate is 0.0005. For a faster convergence,
we also employed the SGD optimizer in our training process.
As our training set is relative small, which is not as huge as Im-
ageNet, we set the batch size to be 32. Usually, our model can
converge after 500 epochs in most of our training experiments.

A. Texture Exemplar Extraction

In our experiments, our Trimmed T-CNN is first trained with
our collected standard exemplar dataset, which includes 10080
best texture exemplars and six classes exemplars with different
scales, illuminations and rotations. For deep texture exemplar
extraction, we have used hundreds of natural images to evalu-
ate our exemplar extraction accuracy and efficiency. Note that,
an ideal texture exemplar in each of the six classes can con-
tain various material or colors, so our model does not discrimi-
nate textures with different kinds of material and colors. To test
our Trimmed T-CNN framework in handling different kinds of
nature images with different difficulties, we have divided our
collect test cases into three levels.

The first difficult level is the simple cases that with purely flat
cases, which do not include any other image noise or perspective
contents. Typical examples for the level of cases are as shown in
Fig. 7. From the results, we can see that our method successfully
extracted multiple classes of flat texture exemplars, even where
has only one kind of texture in the original natural images. For
example, one may only crop one kind of texture exemplar for the
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Fig. 8. Deep texture exemplar extraction for images with nearly flat cases,
which contain slight perspective and non-texture regions.

carpet and pill cases. Our Trimmed T-CNN based deep learning
method can extract 3 kinds texture exemplar for the carpet (S;
Rg, Sg Rg, Sg RQ) and plll cases (Sl Rl, SQ Rl, Sg Rl), with hlgh
score values, indicating the excellent quality of the exemplars.
From the extracted exemplars, we also found that both random
and regular cases with different scale exemplars can be handled
well with our Trimmed T-CNN based deep learning framework.
For the convenience of typography, we resize all the texture
exemplars to the same size.

The second difficult level is the nearly flat cases, which have
slight perspective and contain non-texture contents. Typical ex-
amples cases are as shown in Fig. 8. From the results, we can
see that our method successfully extracted multiple classes of
nearly flat exemplars too, even where has slight perspective and
containing non-texture contents in the giraffe and fish cases. The
exemplars extracted for the giraffe(S; Ry, S Ry, S3 Ry) show
that our method can handle the images with multiple types of
textures (turf texture and giraffe texture). On the other hand, the
case of fish (§1 Ra, So Ry, Sg Ry) also demonstrates that our
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Fig. 9. Deep texture exemplar extraction for images with challenging cases,
which have serious perspective and deformations. For the building example, the
first row is Ry because the color variation in the window is more random due to
the perspective reflection. On the contrary, the color distribution is more uniform
in the second row, so the exemplars are Ro.

Trimmed T-CNN based deep learning framework can process
well the images with random texture and various illumination
distributions.

The third difficult level is the challenging cases, which have
serious perspective and deformations, such as the cases shown in
Fig. 9. From the results, we also clearly see that our method can
still extract multiple classes of excellent exemplars with high
scores, even where has serious perspective and deformations in
the building and the terraced field. The exemplars extracted for
the building (S Ry, S2 Re, S3 Ry) and terraced field (S; Ry,
S2 R1, S3 Ry) show that our method can output both random
and regular types of exemplars with different scales for a single
natural image. Note that, the artists may only crop one type of
texture exemplar, and other types of excellent exemplars may be
easily ignored.

B. Comparisons on Texture Exemplar Extraction

On the other hand, we also compare our method with three
state-of-the-art methods, including Wu et al. [32], Dai et al. [26]
and Lockerman et al. [28]. Typical results for comparisons of
Wu’s method, Dai’s method and ours are as shown in Fig. 10.
We can easily see that all three methods can extract the desired
texture exemplars consisting to the dominative textures in the in-
put images. From the three group results, Dai’s method selects
a number of image patches and measures its synthesizability,
which can be treated as a descriptor and mostly reflect the qual-
ity of the extracted texture patches. Based on the global and lo-
cal textureness descriptor, Wu’s method can also obtain several
desired texture exemplars. For a more clear scoring compari-
son, we normalized Wu’s and Dai’s method values into [0, 1].
Without a training process, both Wu’s method and Dai’s method
require a specific texture descriptor for texture exemplar extrac-
tion. Instead, our method can extract multiple types of texture
exemplars, without requiring any specific feature detection and
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Fig. 10.  Comparisons of Dai et al. [26], Wu et al. [32], and our method.

descriptors. From the comparison for the same texture exemplar,
our method can achieve better performance by extracting better
exemplars with much more uniform structure, illumination and
deformation distributions, such as the desert (S3 Ry, S1 Ro, S3
Rg), zebra (Sl Rl, Sg Rl, Sg RQ) and palace (SQ Rl, Sl RQ, Sg
Rs) exemplars.

Lockerman’s method is also capable to extract texture pat-
terns in multiple scales and levels, but their method usually
requires multiple user input to specify the initial location and
scale of the desired texture. They mainly employ a fast iteration
method using diffusion manifolds to locate texture exemplars.
In our comparisons, we first selected typical images from Lock-
erman’s webpage, run Wu’s method and our method on them
for comparison with Lockerman’s method. To guarantee a fair
comparison, all of competitors were implemented and run on
the same computing environments. Moreover, all other methods
were also fine-tuned on our dataset to demonstrate their best per-
formances when compared with our Trimmed T-CNN. Typical
comparison results are as shown in Fig. 11. From the results, we
also observe that our method can extract multiple ideal texture
exemplars, which have better qualities than Wu’s method and
Lockerman’s method. The dagstuhl (S; Ry, So Ro) and tower
(S1 Re, So Ry, S3 Ry) extracted exemplars demonstrate that
our method successfully extracts several best meaningful ex-
emplars with different scales, regularities and texture contents.
Lockerman’s method only focus on extracting small texels of the
dominant texture, so exemplars with small sizes were always ex-
tracted, which usually cannot cover a meaningful exemplar for
texture synthesis. More importantly, our method is an automatic
exemplar extraction method, without requiring any user input to
specify the initial location and scale of the desired texture.

Wu et al.

SR, mizf'u 1|

Fl
et .'{’ i 1 Af:c}u
NN

Wu et al.

Fig. 11.  Comparisons of Lockerman et al. [28], Wu et al. [32], and our method.

C. Comparisons on Texture Exemplar Metrics

As we all know, it is very difficult to use a formula or sen-
tence to define what a good exemplar is. In this paper, what is a
good exemplar is defined by the standard ideal texture exemplar
dataset collected by our invited artists. Our standard dataset also
does not assume a high score for the exemplar with a better syn-
thesizability in future texture synthesis, as we need to achieve
multi-scale and multi-regularity texture exemplar extractions. If
we over emphasize the synthesizability of the extracted exem-
plars, we may easily lose the ideal exemplars with larger scales,
complex structures or image variations. To investigate the advan-
tage of our method on texture exemplar extraction, we randomly
selected a number of ideal cases from our dataset and compared
the scores obtained with different texture exemplar methods, in-
cluding Wu et al. [32], Dai et al. [26] and ours. For a fair scoring
comparison, we normalized Wu’s and Dai’s metric values into
[0,1]. So all three methods can be compared under the same
range. Typical results are as shown in Fig. 12. From the scores
among different ideal cases, we can see that Dai’s synthesizabil-
ity scores is unstable. It usually obtained higher scores on the
cases with fewer scale changes or better regularity distributions.
Dai’s synthesizability metric would drop sharply when the tex-
ture scale changing growing or the regularity going down, such
as the cases shown in the 4-6 cases on each row of Fig. 12. This
also explains well why Dai’s metric would skip several kinds of
texture exemplars in the texture exemplar extraction, which may
have excellent quality but with scale changing or low regularity
for the texture content. Compared with Dai’s synthesizability
scores, Wu’s metric obtained a better consistent performance by
combining global and local textureness in the design of the tex-
ture exemplar metric. However, we also found that Wu’s metric
still cannot handle well the changing of scale and regularity for
the texture exemplars, such as the low score obtained for an ex-
cellent texture exemplar of pineapple in the 3" row. Instead,
our Trimmed T-CNN method can always obtain good scores
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Dai et al. 0.9118 0.8515 0.7637
Wu et al. 0.9618 0.8851 0.7510 0.7951 0.7928
Ours 0.9820 0.9680 0.9427 0.9491 0.9474
Daietal. 0.9040 0.9012 0.8401 0.7800 0.7900
Wuetal. 0.8256 0.7293 0.6912 0.6815 0.6396
Ours  0.9504 0.9570 0.9461 0.9201 0.9101
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Wuetal. 0.8588 0.6513 0.8179 0.6108 0.5172
Ours  0.9270 0.9101 0.9080 0.9004 0.8987
Fig. 12.  Comparisons of texture exemplar method on different ideal examples

for Dai et al. [26], Wu et al. [32], and our method.

Daietal. 0.9070 0.8503 0.8255 0.7504 0.7073
Wuetal. 0.9317 0.8669 0.8583 0.7792 0.6582
Ours 0.9571 0.8460 0.7692 0.6557 0.5493

0.7200

Dai et al. 0.8187
Wu et al. 0.7974 0.7928 0.7304
Ours 0.8100 0.7072 0.6048

Daietal. 0.8291 0.8113 0.8044 0.7519 0.6147
Wuetal. 0.8216 0.7286 0.6923 0.6757 0.5819
Ours 0.9371 0.8040 0.6913 0.5898 0.4935

Fig. 13.  Comparisons of texture exemplar method on the cases with different

qualities for Dai et al. [26], Wu et al. [32], and our method.

for ideal texture exemplars with different scales or regularities,
which also explains well why our method usually does not skip
the excellent cases in the texture exemplar extraction.

On the other hand, we also measured the sensitivity on dif-
ferent degrees of occlusions or noises in the texture exemplars
for the three competitors. As shown in Fig. 13, we synthesized
different degrees of occlusions of the texture exemplars on the
same case, and performed Wu et al. [32], Dai et al. [26] and our
method to evaluate the quality of the texture exemplars. From
the results, we can see that both Dai’s synthesizability method
and Wu’s textureness method are not very sensitive with the
occlusion or noise in the texture exemplars. Their scores drop

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 23, 2021

TABLE I
ACCURACY COMPARISON AMONG DIFFERENT DEEP CNN ARCHITECTURES ON
OUR STANDARD EXEMPLAR DATASET

CNNmodel AlexNet VGG-M Deep-TEN FV-CNN T-CNN TT“(“:‘;‘;"

Accuracy (%)  92.60  93.82 94.41 9435 9432  94.44

Weights (MB)  238.14  310.12  244.81 31049 76.62  19.16
TABLE II

ACCURACY COMPARISON AMONG DIFFERENT DEEP CNN ARCHITECTURES ON
SIMPLE EXEMPLAR DATASET ONLY INCLUDING PURELY FLAT CASES, WHERE
Do NoT HAVE ANY OTHER NOISE OR PERSPECTIVE REGIONS

CNNmodel  AlexNet VGG-M Deep-TEN FV-CNN T-CNN Timmed

Accuracy (%) 93.81 9493 9541 9533 9532 9583

Weights (MB)  238.14  310.12 24481 31049 76.62  19.16
TABLE III

ACCURACY COMPARISON AMONG DIFFERENT DEEP CNN ARCHITECTURES ON
MEDIUM DIFFICULTY EXEMPLAR DATASET, WHICH INCLUDES SLIGHT
PERSPECTIVE AND CONTAIN NON-TEXTURE REGIONS

CNNmodel AlexNet VGG-M Deep-TEN FV-CNN T-CNN TT“?I'\]“;‘*
Accuracy (%)  92.51 93.77 94.44 94.10 94.12 94.53
Weights (MB)  238.14 310.12 24481  310.49 76.62  19.16

slowly with the increasing of the occlusions or noises in the tex-
ture exemplars. In contrast, our Trimmed T-CNN method is very
sensitive with the degrees of occlusions in the texture exemplars.
From the three groups of texture exemplars in Fig. 13, we can
see that our method always obtained a proportional dropping
score with the increasing of the occlusions or noises. Exactly,
one may suggest to simply adapt a threshold to filter out the ex-
emplars with heavy noises or occlusions, but we still require a
better algorithm which is more sensitive to the image noises and
occlusions, especially for the small occlusions and slight noises.
The high sensitivity on occlusions or noises for our method im-
proves the ability in filtering out the interference of defective
cases, which also improves our ability in identifying multiple
kinds of ideal texture exemplars in the texture exemplar extrac-
tion.

D. Comparisons With Different Deep CNN Architectures

In addition, we also implemented different deep CNN archi-
tectures for exemplar classification evaluations on our standard
exemplar dataset, including AlexNet [33], VGG-M [55],Deep-
TEN [56], FV-CNN [35] and T-CNN [40]. In our experiments,
80% exemplars in our dataset are used for the training set, and
20% are used for the test set. We run three hundred ideal exem-
plars with known classification ground truth to evaluate them
in our standard exemplar dataset and calculate an average accu-
racy for all competitors. The accuracy and number of weights
(in MB) for different architectures are as shown in Table I-IV.
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Fig. 14. Comparison between our method and the artists.
TABLE IV A
ACCURACY COMPARISON AMONG DIFFERENT DEEP CNN ARCHITECTURES ON
CHALLENGING EXEMPLAR DATASET, WHICH HAVE SERIOUS PERSPECTIVE 100 Ours
AND DEFORMATIONS —— Wuetal. [32]
—e— Daietal. [26]
- ] sok ———— Lockerman et al. [28]
CNNmodel AlexNet VGG-M Deep-TEN FV-CNN T-CNN Lrimmed =
T-CNN =
Accuracy (%) 9222 93.21 93.47 93.41 9311  93.42 g
= 60
Weights (MB)  238.14  310.12  244.81 31049 76.62  19.16 =
Z
S 40
b
From the statistical results, we can see that our CNN archi- ]
tecture generally outperforms all competitors in terms of accu- 2 0l
racy in texture exemplar classification. As both Deep-TEN and
FV-CNN are designed for texture classification, they are more . . . 1 1
focused on discrimination for hundreds kinds of texture recog- 0 20 40 60 80 100

nitions, such as grassland, building and etc. In contrast, we do
not emphasize hundreds kinds of texture recognitions in our
Trimmed T-CNN, and only focus on the extraction of the six
kinds of ideal texture exemplars with different scales and regu-
larities. Therefore, Deep-TEN and FV-CNN usually have much
more complex and deeper architectures which are unnecessary
for our experiments. As they are not designed for automatic tex-
ture exemplar extractions, their performances are not as good
as ours. More importantly, our Trimmed T-CNN has only 24%
parameters of the original T-CNN [40], and no more than 10%
weights in parameters compared with the other state-of-the-art
architectures.

E. User Study and Applications

Furthermore, we also compared our method with the manually
texture exemplar extraction by the artists. In our experiments,
we first invited three artists to manually label texture exemplars.
To minimize the bias, the best texture exemplar is voted out from
the three labeled texture patches by the three artists, as shown in
Fig. 14. So the manually cropped exemplars can be considered
as the ground-truth for exemplar extraction. We can compare
them with our Trimmed T-CNN learning method. From the cases
shown in Fig. 14, our results are very close to the ground-truth
of artists for the same kind of texture exemplar. Also, our method
can provide much more diverse exemplars with different scales,

Number of test images

Fig. 15. Statistical comparison of user study among different methods on
simple exemplar dataset only including purely flat cases, where do not have any
other noise or perspective regions.
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Fig. 16. Statistical comparison of user study among different methods on
medium difficulty exemplar dataset, which includes slight perspective and con-
tain non-texture regions.
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Fig. 18. Statistical comparison of user study among different methods on
challenging exemplar dataset, which have serious perspective and deformations.

regularities, illumination and deformation distributions for us to
choose in future applications, as shown in the lavender (S; Ry,
SQ RQ, Sg RQ), cylinder bulldlng (Sg Rl, S2 RQ, Sg RQ) and tiger
(S1 Ry, S2 Ry, S3 Ry).

Similarly, we also perform the user study on the different tex-
ture exemplar extraction methods. For the user study compar-
ison, we also choose three state-of-the-art methods, including
Wu et al. [32], Dai et al. [26] and Lockerman et al. [28]. We
randomly select three groups natural images with three different
difficulty levels, each group including 100 images for texture
exemplar extraction. We run our method, Wu et al.’s method,
Dai et al.’s method and Lockerman et al.’s method on the three
groups images and got the extracted texture exemplar results
for each competitor. We then asked the artists to choose the
satisfactory exemplars, and collected the statistical results. The
number of satisfactory exemplars are plotted as a function of
the total number of test images, as shown in Fig. 15, Fig. 16 and
Fig. 18. From the statistical results, we found that the satisfactory
performances for each competitor declining with the difficulty
increasing for the three different datasets. Also, we still can see

Applications of texture synthesis and replacements using our extracted texture exemplars.

TABLE V
TIMING STATISTICS FOR OUR TRIMMED T-CNN METHOD ON THE
INPUT IMAGE WITH DIFFERENT RESOLUTIONS

Time in Second

Resolution
SS Classification SR Total
S512X512 1.1632 3.3247 0.0001 4.4880
1024X1024 1.8171 3.7702 0.0001 5.5874
2048X2048 2.5066 4.4442 0.0002 6.9510

that our Trimmed T-CNN architecture generally outperforms
all competitors, with more satisfy exemplars selected for the
users. More importantly, the three state-of-the-art methods are
feature-based methods, which require extracting specific image
features or pre-defining the initial texture location before texture
exemplar extraction. Instead, our Trimmed T-CNN methods are
learning-based methods and fully automatic, which do not re-
quire any user input to specify the initial image feature, location
and scale of the desired texture.

To further evaluate the synthesizability of the extracted tex-
ture exemplars, we generated graph-cut textures with exten-
sive resolutions for the applications of texture synthesis and
texture replacements, as shown in Fig. 17. From the synthesis
and replacement results, we can see that both the two kinds of
applications (texture synthesis and texture replacements) were
well done based on the texture exemplars extracted using our
Trimmed T-CNN method.

Finally, we also performed a time statistics to evaluate the
speed of our method in extracting texture exemplars. We col-
lected a number of natural images with different resolutions as
the input for time statistics. They were resized into three differ-
ent sizes, including 512 x 512, 1024 x 1024 and 2048 x 2048.
All resized images were put into our Trimmed T-CNN learning
system, the time cost in all steps for extracting texture exem-
plars were collected. To minimize the error for a single test, we
repeated ten times for the timing collection and calculated the
average timing for each step. The results are as shown in the
Table V. From the results, we can see that our timing statistics
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Fig. 19.  Failure cases. Our method still has limitations when the images have
irregular shape and color distribution, or too complex scale, deformation, and
lighting variations. Red, pink, yellow and grey squares represent the extracted
poor texture exemplars in the classes of S3 Ry, So Ra, S3 Rg, and S; Ry,
respectively.

mainly includes three steps for automatic texture exemplar ex-
traction, including selective search(SS), classification, scoring
and ranking(SR). More specifically, most of the time is cost on
the selective searching step and classification step. It generally
cost4-6 seconds to extract the final exemplar results for an image
with about tens of millions of pixels. Note that, there is without
any GPU acceleration for our current implementation.

F. Discussion and Limitations

Moreover, we also have tested our method on the Dai et al.’s
dataset, as well as DTD and UIUC datasets. Because above
datasets are labelled based on different kinds of material, which
usually contain tens of classes, our Trimmed T-CNN cannot ob-
tain high accuracy for material recognition when compared with
the complex network, such as the work recently published for
material recognition [49], [50]. However, above complex net-
work will be overfitting on our collected dataset, which only
includes six classes according to different scales and regular-
ities. As our Trimmed T-CNN is a relative shallow and light
weight network, our experiments have verified that the trained
Trimmed T-CNN is not overfitting on our collected dataset, as
shown in Table I-IV.

On the other hand, our method still has some limitations. If
the input images have very irregular shape and color distribu-
tion, or too complex scale, deformation, and lighting variations,
our method will be failed, as shown in Fig. 19. In addition,
our method also cannot be directly applied for dynamic texture
exemplar extraction, where the dynamic texture sample often
contains a sequence of images. Based on the previous dynamic
texture framework [57], we may develop a deeper CNN net-
work to learn the synthesizability of dynamic texture samples
from videos in the future work.

V. CONCLUSION

In this paper, we presented an automatic texture exemplar
extraction based on Trimmed T-CNN. To the best of our
knowledge, our Trimmed T-CNN is the first deep learning
framework for automatic texture extraction. To learn excellent
texture exemplar descriptors, we also have designed the first
standard ideal exemplar dataset for deep texture exemplar ex-
traction, which contains thousands of desired texture exemplars.
Specifically, Trimmed T-CNN were implemented to be our
filter banks for texture exemplar classification and recognition.
By training our Trimmed T-CNN with our standard ideal
exemplar dataset, we can achieve texture exemplar extraction
based on classification and recognition. We also implemented
an improved selective search algorithm to extract the potential
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texture exemplar patches, where all candidates can be efficiently
put into our Trimmed T-CNN for learning ideal texture exem-
plars. Finally, we can obtain optimal texture exemplars with a
scoring and ranking scheme. Our texture exemplar extraction
system is evaluated with numerous kinds of textures. We also
compared our Trimmed T-CNN with state-of-the-art deep CNN
architectures (AlexNet, VGG-M, Deep-TEN and FV-CNN).
User study and texture replacement applications based on
the extracted exemplars were also conducted and convincing
results demonstrated its effectiveness. For further study, it will
be interesting to extend our method to extract dynamic texture
exemplars [57] from videos.
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