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Abstract— Ultrasound is a widely used technology for
diagnhosing developmental dysplasia of the hip (DDH) be-
cause it does not use radiation. Due to its low cost and
convenience, 2-D ultrasound is still the most common ex-
amination in DDH diagnosis. In clinical usage, the com-
plexity of both ultrasound image standardization and mea-
surement leads to a high error rate for sonographers. The
automatic segmentation results of key structures in the
hip joint can be used to develop a standard plane detec-
tion method that helps sonographers decrease the error
rate. However, current automatic segmentation methods
still face challenges in robustness and accuracy. Thus, we
propose a neonatal hip bone segmentation network (NHBS-
Net) for the first time for the segmentation of seven key
structures. We design three improvements, an enhanced
dual attention module, a two-class feature fusion module,
and a coordinate convolution output head, to help segment
different structures. Compared with current state-of-the-
art networks, NHBS-Net gains outstanding performance
accuracy and generalizability, as shown in the experiments.
Additionally, image standardization is a common need in
ultrasonography. The ability of segmentation-based stan-
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dard plane detection is tested on a 50-image standard
dataset. The experiments show that our method can help
healthcare workers decrease their error rate from 6%-10%
to 2%. In addition, the segmentation performance in another
ultrasound dataset (fetal heart) demonstrates the ability of
our network.

Index Terms— Neonatal hip bone segmentation, self-
attention mechanism, medical image segmentation.

[. INTRODUCTION

EVELOPMENTAL dysplasia of the hip (DDH) is a

common disease that is often found in infants. The
prevalence rate of DDH is as high as 3% [1]. Identifying
DDH in the early stage is essential because treatments such
as the Pavlik harness are available. DDH that is not diagnosed
in time can influence the quality of the patient’s whole
life. Moreover, serious consequences can occur, including
secondary anatomical changes and leg length discrepancies,
sometimes even necessitating replacement of the entire hip
joint. Some researchers claim that DDH accounts for 30% of
hip replacements in patients under 60 years old [2]. Thus,
early and timely diagnosis of DDH is essential to maintain
the quality of life of these patients.

Due to its convenience and the fact that it does not use
radiation, 2-D ultrasound has become a standard test for the
early diagnosis of DDH. However, 2-D ultrasound scans of
the neonatal hip are limited by their technical difficulty; for
example, proficiency in using Graf method [3], which are a
regular and popular measurement for the clinical diagnosis
of DDH, requires much professional training and technical
guidance. Moreover, the examination of DDH is often com-
pleted by healthcare workers without enough experience to
master standardization and measurement techniques. In [4],
the researchers mentioned that incorrect anatomical identifica-
tion and invisible landmarks are the main cause of incorrect
diagnosis.

The ultrasound image used in diagnosis requires standard
detection of key structures, including anatomical identification
and usability check (Fig. 1 A). For anatomical identifica-
tion, all structures mentioned should be visible and identified
(checklist 1). In the usability check, three conditions need to
be met (checklist 2). Fig. 1 B shows some incorrect diagnoses
(a false positive sample and a false negative sample) caused by
substandard images. An automatic standard detection method
based on segmentation results could help healthcare workers
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Fig. 1. DDH measurement of standard plane detection criteria and
errors caused by the substandard plane. A. Anatomical identification
(checklist 1: a) chondro-osseous border (CB), b) femoral head (FH), c)
synovial fold (SF), d) joint capsule & perichondrium (JCP), e) labrum
(La), f) cartilagineous roof (CR), g) bony roof (BR) and bony rim
(concavity-convexity)) and usability check (checklist 2: a) the lower limb
of the os ilium is visible b) the middle of the bony roof (middle plane) is
parallel; c) the labrum is visible) of standard planar detection. B. False
DDH measurements caused by substandard ultrasound images (false
positive cases and false negative cases).

perform anatomical identification and usability check. The
accurate segmentation of key structures provides a foundation
for automatic standard plane detection. Meanwhile, since
manual segmentation of key structures is laborious and time-
consuming, accurate, robust, and effective automatic segmen-
tation of key structures is necessary.

Methods that are currently used in ultrasound image-based
neonatal hip joint structure segmentation are introduced. Spe-
cific feature extraction methods such as confidence-weighted
structured phase symmetry (CSPS) and shadow peak (SP)
features are used in this segmentation process [5]-[7]. Al-
though these methods do provide a result, they still face
challenges in terms of robustness and generalizability to new

Hla
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Fig. 2. Ultrasound images in the neonatal hip joint and relative manual
pixel-level annotations of seven structures, including CB (dark brown),
FH (dark blue), CR (blue), SF (dark red), La (light coral), BR (orange),
and JCP (yellow).

data. Furthermore, they rely on manually extracted features
and can only distinguish the labrum and the surface of the
bony roof. These methods make it even more challenging to
segment all seven key structures because of the difference in
structures.

Many novel learning-based methods, such as convolutional
neural networks (CNNs), obtain outstanding performance [8]-
[12]. In medical image analysis, CNNs also achieve excellent
results, such as in breast tumor detection, fetal ultrasound
segmentation, and prostate segmentation [13]-[16]. In the
segmentation of hip joint structures, some deep learning
attempts are also being used. The self-attention mechanism
is famous for increasing the network ability by focusing
on essential features and suppressing unnecessary features.
Many CNNs in medical image segmentation benefit from
using attention modules [17]-[20]. Furthermore, CNNs can
implicitly learn to encode absolute position information. In
[21], a comprehensive set of experiments showed the validity
of this hypothesis. Although current CNNs have proven to be
able to learn a certain degree of location information implicitly,
explorations of the use of absolute position information to
improve model performance are needed. CoordConv [22] is a
method that attempts to use absolute position information as
much as possible and has achieved outstanding performance.
In medical imaging analysis, there are also some methods that
use CoordConv to improve performance [23].

In our task, an attention-based segmentation network back-
bone can be considered for the construction of pediatric hip
segmentation-specific networks due to the advantages men-
tioned above. In particular, the dual attention model based
on [24], due to its superior correlation position enhancement
capability, can be used as the backbone. Furthermore, since
DDH diagnosis has a high requirement for the recognition
of structural edges, the fusion model based on [25] is also
considered for integrating different feature maps to improve
the accuracy of the edges. Moreover, as shown in Fig. 2, the
seven structures of the hip joint show a position correlation.
Using CoordConv [22] in the output head to encode absolute
position information is a potential way to improve the ability
of the segmentation network.



In our work, we make the following contributions:

1) We propose NHBS-Net, the first framework to segment
the seven key structures of the neonatal hip joint. The
results illustrate that compared with other segmentation
networks, NHBS-Net can effectively improve the seg-
mentation performance of the Dice similarity coefficient
(DSC) and Hausdorff distance (HD).

2) We design an enhanced dual attention module (EDAM)
using the location attention module (LAM) and en-
hanced channel attention (ECA), which develops an
enhanced channel to learn the weights of different chan-
nels. EDAM can learn global feature correlations and
importantly improve performance.

3) To improve the accuracy of the structure edges, we
develop a two-class feature fusion module (2-class FFM)
containing two fusion parts. First-class feature fusion
module (first-class FFM) can effectively merge the lo-
cation and channel attention maps, and second-class
feature fusion module (second-class FFM) can fuse the
low-level features and high-level attention features.

4) We introduce a location-related output head, the coor-
dinate convolution output head (CCOH), to generate
segmentation results from the extracted features. The
absolute position information can be encoded into the
feature map to reduce the error segmentation caused by
structural similarity.

[1. RELATED WORK
A. Neonatal Hip Bone Structure Segmentation

Many studies have developed methods in ultrasound neona-
tal hip joint segmentation to automatically distinguish different
key structures, such as ilium and acetabulum bone surfaces.
Several manual features have been introduced for segment-
ing acetabulum bone surfaces. Quader et al. [5] illustrate
the confidence-weighted structured phase symmetry (CSPS)
feature, which combines the near-constant acoustic properties
of bone and cartilage structures. This work can reduce soft
tissue false positives in hip bone segmentation. Furthermore,
Pandey et al. [6] introduced the shadow peak (SP) feature. This
simplified feature uses only bone shadowing features to seg-
ment bone. Hasan et al. [7] recently demonstrated a framework
that uses particle swarm optimization (PSO) and the statistical
level set (SLS) method to segment ilium and acetabulum bone
surfaces. PSO is used to determine the locations of the initial
contour and the region of interest (ROI), and the SLS method
is developed for segmenting the essential anatomical structures
from the ROI. The disadvantages of these models are that
they can only segment ilium and acetabulum bone surfaces
with similar features, and the methods have only been tested
on a small dataset. Thus, highly manually crafted features
remain challenges for the robustness and generalizability of
this method to large datasets and new data.

Deep learning methods are proposed for this task due to
their outstanding performance in medical image analysis. In
[26], a method using superpixel classification with a CNN
achieved an HD of 2.1£+0.9 mm between contours. In [27],
a Mask R-CNN [28]-based framework was introduced in

acetabulum bone surface segmentation, and the net gain was
0.386 in the DSC metric. [27] also compared their model with
U-Net [29] and fully convolutional neural network (FCN) [11].
The DSCs of U-Net and FCN in their dataset were 0.049 and
0.223, respectively. The DSC they obtained was very low,
which may have been caused by the smaller segmentation
targets and the image dataset, which was collected for a
small group of patients. El-Hariri et al. [30] compared hand-
engineered feature methods and deep learning methods in
acetabulum bone surface segmentation. In their results, the
grayscale input U-Net gained 0.86 and 0.92 in DSC for the
two datasets they used. However, these studies focused only
on the segmentation of ilium and acetabulum bone surfaces.
Segmenting the seven key structures has not yet been discussed
due to the structural similarity and complexity.

B. Semantic Segmentation and Self-Attention Modules

Pixel-level image segmentation has recently become fast and
precise because of the development of deep learning methods.
In 2014, a FCN was proposed [11] that used a deconvolutional
layer to replace the fully connected layer. Based on the FCN
structure, encoder-decoder frameworks such as Seg-Net [31]
and U-Net [29] are used. The shortcut connection between the
encoder layer and the relative decoder layer helps in the re-
construction of details. In DeepLab networks [12], [32], atrous
convolution and conditional random fields are used to improve
the segmentation performance. The atrous spatial pyramid
pooling (ASPP) module based on atrous convolution replaces
basic pooling and can maintain spatial resolution. Moreover,
the latest version of DeepLab (V3 plus) [32] focuses more on a
decoder that uses the low-level features and high-level features
to recover segmentation labels very well. Additionally, Mask
R-CNN [28] is a two-stage instance segmentation method, and
it can be regarded as a combination of object detection and
semantic segmentation. In Mask R-CNN, a feature pyramid
network [33] is used to extract multiscale features.

The self-attention mechanism has achieved substantial suc-
cess in NLP [34], and recently, many studies [17], [24], [25]
have made attempts to use it in segmentation tasks in computer
vision. Many attention-based models have achieved excellent
results in medical image segmentation [17], [20]. In [17], the
author proposed a novel attention-guided dense-upsampling
network with an asymmetrical encoder-decoder structure and
introduced an attention-guided dense-upsampling block. In
[20], a 3-D self-attention network that can capture a wide range
of spatial information was mentioned. Due to the current use
of 2-D ultrasound for pediatric hip segmentation, the existing
methods face challenges in universality and generalization.
Furthermore, the performance of deep learning methods is
affected by insufficient data.

1. METHOD

The architecture of our NHBS-Net has four parts: a feature
extraction module based on dilated ResNet [35], [36], EDAM
to generate location attention maps and enhanced channel
attention maps, 2-class FFM to fuse location attention and
channel attention features in first-class FFM and integrate
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Fig. 3. Overview of the NHBS-Net. The ultrasound images are passed through a feature extraction module to obtain high-level features (HighL)
and low-level features (Low L). EDAM is used on the high-level features, which generates two-path enhancement features named location attention
features (L) and enhanced channel attention features (Q). The two kinds of attention features use the first-class feature fusion module to obtain
dual attention features (D), which generate the fusion features (F') with low-level features through the second-class fusion module. The CCOH

generates the final segmentation predictions based on the fusion features.

high-level and low-level feature maps in second-class FFM,
and CCOH to decode feature maps and generate predictions.
The structure of the NHBS-Net model is shown in Fig. 3.
EDAM can learn the global feature correlations to reduce
the segmentation errors of different structures. The 2-class
FFM integrates low-level and high-level features, making the
segmentation results at the edge superior. Our CCOH can
reduce the error segmentation of similar features in different
structures.

A. Feature Extraction Module and Enhanced Dual
Attention Module (EDAM)

The feature extraction model is based on a dilated ResNet
architecture. The dilated residual network (DRN) [36] is a
famous CNN structure that uses dilated convolution to reduce
the loss of spatial information caused by downsampling in fea-
ture extraction. In our network, the feature extraction module’s
output is the set of high-level feature maps HighL, and the
output of the 2"¢ stage in dilated ResNet forms the low-level
feature maps LowL.

Understanding global feature correlations in the feature
maps is helpful for distinguishing structures. Two-path atten-
tion modules [24], [25], [37]-[39] are widely used in segmen-
tation tasks and obtain outstanding performance. Dual atten-
tion (DA) [24] can capture long-range contextual information
dependencies to help study the information of different key
structures, especially location information dependency. After
the feature extraction model, an EDAM revised by DA [24] is
adopted to enhance the network’s ability to understand context
information. In the location attention part of our NHBS-Net,

we adopt the same structure as [24]. After passing through the
location path, the location attention maps L are generated.

Furthermore, we propose enhanced channel attention (ECA)
based on the channel attention module introduced in [24]. An
enhanced channel introduced in [37] was added to learn the
weights of different channels of the feature maps (the red line
in Fig. 3.). The high-level feature maps HighL € RE>*HxW
are directly reshaped into HighL € RC*N and HighL €
RNXC (N is H x W). After that, matrix multiplication is
performed in HighL € RE*N and HighL € RVN*C. Next,
the multiplication result is fed into a softmax layer to calculate
the channel attention map X € R¢*¢:

L exp(HighL; - HighL;)
9 exp(HighL; - HighL;)

ey
where X;; represents the effect of the it" channel on the j**
channel. Moreover, we perform another matrix multiplication
between the HighL € RV*C and X € R*¢. The multi-
plication output of X and HighL is Ch € RE*H*W which
can be calculated by:

C
Chj =Y (HighL;; X;) )
i=1

In the enhanced channel, HighL € REXHXW s fed into a
global pooling layer to obtain squeeze attention Sq € R *1*¢,
Sq is:

HighLg 3)

M=

1 H
Sq:NZ
s=1

t=1



Then, the squeeze attention Sq is inputted into the excitation
operator, which uses two-layer convolution with ReLU and
a sigmoid activation function respectively to gain excitation
attention Bz € RY1XC, By is:

Ex = o(WaReLu(W1Sq)) 4

where W; and Wy are the weights of the two convolution
layers.

Then, the reshaped multiplication result can be calculated
by Ch and Ez:

c
Q; =B+ (> _ Chy; - Ex;) + HighL; (5)
i=1
where [ is the weight of the learning path and the channel
attention maps () are weighted sums of the features across all
channel and high-level feature maps HighL.

B. Two-Class Feature Fusion Module (2-Class FFM)

In the 2-class FFM, we design to use two FFM structures
[25] to fuse different paths of attention maps and different lev-
els of feature maps. The first-class FFM is used to fuse location
path attention maps and enhanced channel path attention maps.
The first-class FFM replaces the sum fusion module in [24],
which is suitable for dual attention path fusion. Furthermore,
the second-class FFM is applied to integrate high-level and
low-level features. In [25], the same FFM was used to fuse
context paths and spatial paths. The features in the spatial
path represent low-level features, which a different shallow
CNN extracts. In our work, the low-level features fused in
the second-class FFM are the output of the 2"? stage of the
dilated ResNet backbone, which means that we do not need
additional shallow CNNs for low-level feature extraction. The
specific implementation details of the 2-class FFM are given
below.

Due to the difference of the two path attention feature
maps obtained by EDAM, directly concatenating them may not
maintain important information properly. We designed a first-
class FFM used after EDAM to integrate location attention
maps L and enhanced channel attention maps @ to form dual
attention maps D. The dual attention maps D are calculated
by:

C
D; =) DKj;- DM; + DK; (6)
i=1

In Eq. (6), DK = ReLu(Ws(L & Q)), DM =
o(WsReLu(Wi(+ X7 S5V DK ), and Ws, Wy, and
Wy are the weights of the convolutional layers in the first-
class FFM, and & represents the concatenation operator.
Furthermore, it is crucial to use the extracted features’ spa-
tial information to achieve outstanding segmentation predic-
tion. In CNNs, however, consecutive downsampling encoding
high-level semantic information can lead to spatial information
loss. Several research studies have applied spatial information
from previous studies by extracting low-level features [12],
[25]. The DeepLab (V3 plus) model [12] concatenates low-
level features with high-level features, acquiring multiscale

information. BiSe-Net [25] extracts low-level features by using
an additional spatial path composed of convolutional layers
with different kernel sizes. In our work, we develop the
second-class FFM, which uses the FFM to fuse high-level
dual attention maps D and low-level feature maps LowL in
order to generate feature fusion maps F'. In this way, our
network does not require additional spatial paths to extract
low-level features, and NHBS-Net also integrates multiscale
features through the fusion model. The feature fusion maps F'
are shown below.

c

Fj =) FKj;-FM; + FK; (7)

i=1
In Eq. (7), FK = ReLu(Wg(D & LowlL)), FM =
o(WsReLu(Wr(1dg S5t S FK L)), and We, Wy, and
Wy are the weights of the convolutional layers in the second-
class FFM. The 2-class FFM is a combination of the first-class
FFM and second-class FFM.

C. Coordinate Convolution Output Head (CCOH)

After feature extraction by the dilated ResNet module,
feature enhancement by EDAM, and feature fusion by the 2-
class FFM, the CCOH is used to generate the segmentation
result. CNN structures, to some degree, can learn absolute
location information, which is proven by the experiments in
[21]. There are also some works that have attempted to use
absolute position information in CNNs [22], [40]. In [22], the
coordinates of each pixel in the feature maps are added as two
channels. As a simple extension of the standard convolutional
layer, this operation can be easily added to existing models
to improve model performance. All ultrasound images have
seven key structures in our task, and the relationship between
the structures is associated with their locations. The absolute
location information provided by the CCOH could help correct
location-related segmentation errors. Thus, our module uses
the coordinate convolution layer to build the decoder module
to recover the segmentation labels and enhance the location
information to improve performance.

D. Loss Function

For seven key structure segmentation, specific loss function
needs to be used because of the different corresponding
size among these structures. Therefore, in our task, the loss
function is a combination loss of Focal loss [41] and cross-
entropy (CE) loss. For calculating the loss, we defined the p,
as:

p, if y;; =k

i = 8
Phij { 1 — p, otherwise ®)

where k£ € {0,1,2,...,7} is the classes in segmentation,
yi; € {0,1,2,...,7} (O represents the background and 1 to
7 represent seven key structures of hip joint) represents pixel
labels of the segmentation prediction,i € (0, H), j € (0,W),
H and W are the height and W is the width of the prediction
labels respectively, and p is the model’s assessed probability
for the class with pixel label y;; = k.
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The CE loss is:
7 H W
Lep =YY" —log(pkij) ©)
k=0 1 J
Then, the focal loss is:

ZZZ Q% 1710]“]) log(pkm)

k=0 1

(10)

where «y, is the class balanced weight and y is the modulating
factor. In our task parameter ay is 0.5, and ~y is 2. Thus, the
combination loss function to train the model is:

L=Lcg+BLp (1)

where (3 is the weight of focal loss Lp.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Datasets

1) NHU Dataset: The study was approved by the ethics
committee of the Shanghai Jiao Tong University Affiliated
Sixth People’s Hospital. We collected 562 samples from 270
patients to form the Neonatal Hip Ultrasound (NHU) dataset
with seven key structures annotated. Infants aged 0-6 months
who were suspected of having DDH were included in this s-
tudy. A 5/7.5 MHz linear ultrasound multifrequency transducer
was employed to acquire 787 2-D ultrasound coronal images,
with a 40-55 mm depth setting. The images were stored in
DICOM format. All of the ultrasound images were cropped to
avoid revealing sensitive patient data. Image acquisition was
performed by experienced sonographers. The exclusion criteria
were as follows:

1) Substandard ultrasound image slices with the following
problems were excluded: incomplete/unclear display of
the seven main anatomical structures and not satisfying
the middle plane.

2) Images with infant hip dysplasia caused by cerebral
palsy, joint contractures, purulent hip arthritis, and other
diseases were excluded.

3) Images of patients with other hip joint diseases and limb
deformities were excluded.

4) Ultrasound images of patients with a severity of hip
dysplasia that was judged to Type IIl and exceeding
Type III by the Graf method were excluded.

According to the exclusion criteria, 225 images were excluded.
The seven anatomical landmarks of the remaining 562 images
were marked and proofread by two sonographers with years
of experience. We randomly split the data into a training set
(204 cases containing 400 images), a validation set (20 cases
containing 53 images), and a testing set (47 cases containing
110 images). In the training, validation, and test sets, 22.00%,
28.30%, and 27.27% of the ultrasound images were affected
by DDH. These sets were used for the subsequent training,
validation, and testing procedures and the accuracy evaluation
and prediction of the DSC [42], HD [43], [44], and average
Hausdorff distance (AHD).

2) SPJ Dataset: The dataset for the standard plane judg-
ment (SPJ dataset) includes a total of 50 cases of DDH images
without the seven key structures annotated, of which 25 cases
are standard and 25 cases are substandard. The inclusion and
scanning of the standard cases were performed in the same
way as for the NHU dataset. The ratio of normal and abnormal
hip joints (or types I and II) is 1:1. The substandard cases
were selected from the clinical practice of the same center
and were divided into the following five categories according
to the possible conditions that occur in clinical practice: a)
nonmiddle plane, b) lack of a chondro-osseous border, c) poor
labrum display, d) incomplete bony roof or poor display of the
lower limb of the os ilium, e) poor display of the joint capsule
and perichondrium synovial plica; there were five images of
each type. The standard plane gold standard judgment for this
dataset was provided by two sonographers with more than five
total years of experience in pediatric hip ultrasound. Addition-
ally, we provide two judgments from two healthcare workers
for comparison with the automatic detection method. The SPJ
dataset is available by accessing: https://github.com/
hidden-ops/NHBS-Net_SPJ_dataset.

3) FHU Dataset: Similar to ultrasound examination of the
hip in infants, the standardization of ultrasound images is
common in many ultrasound examinations. The problem of
finding the standard plane usually affects the diagnostic results
of the examination, and in obstetric examinations, many of
the judgment standards for the ultrasound standard plane
are closely related to the clear visibility of key structures
[45], [46]. To evaluate the adaptability of our NHBS-Net
model to ultrasound standardization issues, we collected a new
dataset called the Fetal Heart Ultrasound (FHU) dataset. The
FHU dataset is composed of 128 four-chamber view standard
planes of the fetal heart from 50 pregnant women with a
fetal gestational age of 16-25 weeks. The fraction of patient
ultrasound images that show fetal heart abnormality is 28.1%.
All subjects received ultrasonic examinations between January
2018 and December 2020 at the Shanghai Jiao Tong University
Affiliated Sixth People’s Hospital. The ultrasound images were
acquired by an experienced sonographer with a low-frequency
convex array probe at 3.5 MHz. In the FHU dataset, 128
samples from 50 patients had five key structures annotated,
including the left atrium, right atrium, left ventricle, right
ventricle, and aorta. To test the model performance, we divided
the FHU dataset into the FHU training dataset (including 76
images of 26 infants), the FHU validation dataset (including
28 images of 11 infants), and the FHU test dataset (including
28 images of 13 infants). The training, validation, and testing
processes were the same as those of the NHU dataset.

B. Implementation Details

In this segmentation task, we used the NHU dataset to train,
validate, and test the models. The ultrasound images in the N-
HU dataset were resized to 256x256. To improve the training
data diversity, we used data augmentation methods to expand
the training data size. We used a gamma transform, a grayscale
linear transformation, and rotations in different directions to
increase the number of pictures to 9 times the original number.
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TABLE |
SEGMENTATION PERFORMANCE COMPARISON BETWEEN OUR NHBS-NET AND OTHER STATE-OF-THE-ART CNNS INCLUDING SEG-NET [31],
U-NET [29], FCN [11], AU-NE T [17], DA-NET [24], SCSE-NET [37], AND BISE-NET [25]. ALL OF THESE MODELS ARE TRAINED ON A
400-IMAGE NHU TRAINING SET AND TESTED ON A 110-IMAGE NHU TESTING SET.

Model name Average Key Structures of Hip Joint
Performance CB [ FH CR [ SF [ La [ BR [ JCP
Dice Similiarity Coefficient (DSC) — %

NHBS-Net 87.851+4.66 | 88.85+4.16 | 92.58 £2.95 | 83.85+549 | 84.50+7.47 | 8437 £597 | 88.08+4.19 | 92.72 +2.37
Seg-Net [31] 85.44+6.24 87.31+£4.93 90.56£2.91 80.67+6.41 79.74+11.73 | 81.82+6.76 87.45+4.53 90.53+£6.42

U-Net [29] 87.224+4.90 88.96+4.10 91.97+3.14 81.55+6.10 82.934+8.48 84.274+6.34 88.231+3.81 92.62+2.33

FCN [11] 86.47+5.01 88.24+4.86 91.99+2.80 82.98+4.81 80.76+9.35 82.29+6.46 88.18+3.90 90.84+2.91
AU-Net [17] 86.80+£5.05 | 89.44 +3.75 | 92.32+2.98 82.69+5.15 82.64+8.15 79.23+£8.22 | 88.91 £3.57 | 92.36+3.50
DA-Net [24] 86.381+5.30 87.714+4.45 92.074+2.92 82.6945.89 80.98+9.14 83.8745.88 87.00+4.74 90.31+4.09
ScSE-Net [37] 87.05+5.13 88.96+4.62 91.72+£3.01 83.33+5.85 81.36+8.61 83.77+5.82 88.20+4.30 92.03+£3.67
BiSe-Net [25] 86.61+4.81 87.93+4.16 92.25+2.85 82.57+5.50 82.58+7.89 82.56+5.81 87.18+4.37 91.19+3.08

Hausdoff Distance (HD) — pixel

NHBS-Net 8.42 +6.30 7.88 + 8.50 12.28+£7.41 16.06+£13.82 4.55 +3.00 5.00+£2.24 5.32+3.03 7.85+6.11
Seg-Net [31] 11.48+£10.38 | 11.19+12.76 14.461+6.20 19.05+£13.48 6.81+5.45 7.75+8.10 6.811+9.81 14.28+16.82

U-Net [29] 9.29+7.17 8.56+8.94 13.76+8.30 17.58£15.06 5.94+3.65 4.88+2.41 5.33+4.16 9.01£7.71

FCN [11] 9.00+6.56 8.531+8.58 13.34+7.83 15.96+12.58 4.98+3.05 4.85 +1.94 5.48+4.03 9.88+7.91
AU-Net [17] 8.98+6.33 8.561+8.34 12.68+8.17 16.88+10.46 5.72+5.19 5.65+2.46 4.86+2.88 8.4716.85
DA-Net [24] 9.17£6.90 8.74+8.91 12.37£7.00 16.15£13.31 5.37£3.55 4.97+2.38 5.84+5.35 10.79+7.80
ScSE-Net [37] | 10.86+£10.96 | 13.29421.71 | 15.754+12.68 17.19+13.88 6.26+4.29 5.3242.42 5.84+5.47 12.40+16.27
BiSe-Net [25] 8.76£6.57 8.22+7.94 11.82 £ 6.32 | 15.87 £+ 11.04 5.00£3.26 5.41£2.19 6.41£10.05 8.57+5.18

Average Hausdoff Distance (AHD) — pixel

NHBS-Net 0.32 +0.40 0.31£0.54 0.28+0.27 0.69+0.96 0.31 +0.59 0.28 +0.17 0.17 £ 0.15 0.14 + 0.11
Seg-Net [31] 0.46+0.57 0.44+0.65 0.39+£0.25 0.78+0.68 0.51£0.80 0.4440.44 0.25+0.40 0.43£0.78

U-Net [29] 0.36+0.44 0.30+0.45 0.361+0.36 0.85+1.10 0.37+0.68 0.29+0.21 0.20+0.19 0.15+0.13

FCN [11] 0.354+0.40 0.31£0.51 0.32+0.27 0.6740.80 0.41£0.69 0.3240.19 0.21£0.17 0.21£0.18
AU-Net [17] 0.344+0.38 0.27 + 0.44 0.32+0.37 0.61 £+ 0.55 0.39£0.72 0.4240.27 0.18+0.13 0.1740.20
DA-Net [24] 0.36£0.45 0.33+0.59 0.301+0.26 0.70+0.79 0.4240.66 0.2940.19 0.26+0.38 0.2440.30
ScSE-Net [37] 0.434+0.72 0.64£1.76 0.37£0.34 0.76+0.94 0.42+0.68 0.30£0.18 0.23£0.38 0.31£0.78
BiSe-Net [25] 0.34+0.42 0.30+0.49 0.28 £+ 0.24 0.62+0.56 0.36+0.58 0.33+0.20 0.30+0.78 0.1740.12

All the experiments were implemented on an Intel XeonES5-
2630 v4 @ 2.20 GHz CPU and NVIDIA GeForce RTX 2080
Ti on ArchLinux. All models were implemented in PyTorch
using the root-mean-square prop algorithm with momentum.
The segmentation networks were trained for 11 epochs. When
validation loss (the total average loss in the validation set) did
not decrease for 2 epochs, the learning rate decayed.
Furthermore, we used the grid search algorithm to deter-
mine the hyperparameters, including the batch size and initial
learning rate. We explored batch sizes from 2 to 32 and initial
learning rates in the range of 10~! to 10~7. We saved the
model and regarded it as the final model when the validation
set’s performance (20 cases, 53 images) was the best in the
11 epochs. We tested the final model on a new test set (47
cases, 110 images) to obtain the model performance results.
In addition, we compared our NHBS-Net model with state-
of-the-art segmentation algorithms, including U-Net [29], Seg-
Net [31], FCN [11], AU-Net [17], DA-Net [24], BiSe-Net
[25], and ScSE-Net [37]. These models adopt the same grid
search method as the NHBS-Net mentioned above. The Seg-
Net, FCN, and U-Net models use the same U-shape encoder-
decoder structures, but FCN and U-Net have skip connections
with feature maps. DA-Net uses the same feature extraction
method as our model but applies an original dual attention
module, a simple sum feature fusion method without the FFM
blocks, and a normal output head without the CoordConv layer.
BiSe-Net uses the high-level feature extracted from the ResNet
[35] structure and the low-level feature obtained by another
shallow CNN network. BiSe-Net uses feature fusion modules
similar to those of NHBS-Net but without the dual attention

module proposed for DA-Net or the CoordConv layer. AU-
Net also has high-level and low-level feature pathways and
a channelwise attention mechanism, similar to BiSe-Net, but
introduces an attention-guided dense upsampling block. The
loss function, which is a combination of focal loss and cross-
entropy loss, is the same in all models.

C. Comparison with Other State-of-the-Art CNN Models
on the 400-Image NHU Training Set

To compare the performance of our NHBS-Net and other
state-of-the-art CNNs, we first trained the models (Seg-Net
[31], U-Net [29], FCN [11], AU-Net [17], DA-Net [24], ScSE-
Net [37], BiSe-Net [25], ScSE-Net [37], and our NHBS-Net)
on the NHU training dataset containing 400 images of 204
cases. Then, we validated the models on the validation dataset.
The best performance models were saved as the final model
to represent the models’ ability. Furthermore, the final models
were tested on the testing data, including 110 ultrasound
images from 47 cases. The metrics, including DSC, HD, and
AHD, are shown in Table I. Regarding the seven structures, our
NHBS-Net model gains 88.85 in CB, 92.58% in FH, 83.85%
in CR, 84.50% in SF, 84.37% in La, 88.08% in BR, and
92.72% in JCP in DSC. The average DSC of all the structures
is 87.85%, which is the best segmentation result among all
models.

Additionally, due to the DSC’s insensitivity to the boundary
of structures, we also evaluated all methods on the AHD (the
AHD can represent the similarity of shapes and address the
problem that the HD value is easily affected by an extreme
point). As shown in Table I, the average HD and AHD
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Fig. 4. Prediction diagram of Seg-Net [31], U-Net [29], FCN [11], AU-Net [17], DA-Net [24], ScSE-Net [37], BiSe-Net [25], and NHBS-Net based on
four randomly selected testing set pictures. A. Schematic diagram of segmentation errors in different methods. B. Comparison chart of the actual

annotations and predictions of the seven structures in different methods.

obtained by our NHBS-Net are the best among all test models.
The average HD of NHBS-Net is 8.42, and the average AHD
of our NHBS-Net is 0.32. Among the other novel CNN
models, the best HD is 8.76, and the best AHD is 0.34.
Table I shows that our NHBS-Net obtains the best results in
terms of the five key structures’ DSC metrics. For the HD and
AHD metrics, NHBS-Net achieves the best performance on 4
structures.

Furthermore, for the DSCs of the test samples, NHBS-Net
obtained 24 samples in the range of 90% to 95%, which is

much higher than the other CNNs. In Seg-Net, FCN, DA-Net,
U-Net, BiSe-Net, AU-Net, and ScSE-Net, the numbers are 3,
4,7,9, 10, 12, and 13, respectively. In the distribution of the
segmentation performance of each sample, our NHBS-Net has
outstanding performance. Moreover, for the average HD of all
key structures, the NHBS-Net model has the lowest average
HD value, which is 8.42. Seg-Net’s mean HD is 11.48, U-
Net’s is 9.23, FCN’s is 9.00, AU-Net’s is 8.98, DA-Net’s is
9.17, BiSe-Net’s is 8.76, and ScSE-Net’s is 10.86. In Fig. 4,
we show the segmentation results of four randomly chosen
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Fig. 5. The line charts show the average DSC, HD, and AHD distribution on the test set (110 images) with training size decreases of 25% (300
images), 50% (200 images), and 75% (100 images). The left, middle, and right images show the trends of the DSC, HD, and AHD, respectively,

when the training set’s size was reduced from 400 images to 100 images.

TABLE Il
SEGMENTATION PERFORMANCE IN TERMS OF THE AVERAGE DSC (%)
OF ALL KEY STRUCTURES COMPARE FOR OUR NHBS-NET AND OTHER
STATE-OF-THE-ART CNNS, INCLUDING SEG-NET [31], U-NET [29],
FCN [11], AU-NET [17], DA-NET [24], SCSE-NET [37], AND
BISE-NET [25], UNDER A DECREASING TRAINING SIZE OF 300
IMAGES, 200 IMAGES, AND 100 IMAGES.

the generalizability of our model. We randomly cut 25%, 50%
and 75% of the samples from the training set to build 25%,
50%, and 75% training sets, used these training data to train
the models (NHBS-Net, Seg-Net, U-Net, FCN, AU-Net, DA-
Net, ScSE-Net, BiSe-Net, and ScSE-Net), and evaluated these
models on the testing set of 110 unchanged images.

In Table II, the DSCs of NHBS-Net for all sizes of training

Pmt Size of training set

Model name | . " yp) 300 00 100

NHBS-Net 173.4 87.26 +5.00 | 86.64 +6.03 | 86.33 + 5.40
Seg-Net [31] 117.9 83.7149.03 82.97+14.77 79.4049.27

U-Net [29] 240.0 83.93+£15.35 | 83.844+14.15 | 82.09+£14.98

FCN [11] 102.7 85.32+5.07 83.32+16.37 | 79.824+16.19
AU-Net [17] 744.2 85.91+£5.38 85.56+5.34 82.81£6.36
DA-Net [24] 198.3 85.08+5.84 84.58+5.88 83.47+6.17
ScSE-Net [37] 354.0 86.711+5.28 85.4445.08 83.78+£6.66
BiSe-Net [25] 123.2 85.14+£5.16 84.97+5.26 83.87£5.93

are the best. NHBS-Net are 0.55%, 1.08%, and 2.46% higher
than the best-performing CNN models on training sets with
300, 200, and 100 images, respectively. The performances of
the NHBS-Net model with decreasing training size are the
most stable. When the training set sizes are decreased by
25%, 50%, and 75%, the NHBS-Net model’s performances
drop by 0.59%, 1.21%, and 1.52% in terms of average DSCs,

samples. Both the error areas and contour lines show the
superiority of our NHBS-Net.

D. Comparison with Other CNN Models for Decreasing
Training Data Size

The size of the training dataset is closely linked with the
performance of deep learning models. However, enlarging the
dataset will bring cumbersome labeling work. Labeling in our
task is time consuming and laborious to achieve pixel-level
labeling of the seven structures. Our NHBS-Net proposes an
ECAM that can learn the global feature correlation to reduce
the segmentation errors of different structures. The ECA in the
ECAM combines an SE-block [38] with the channel attention
module proposed in [24], focusing attention on meaningful
feature maps. The 2-class FFM integrates low-level and high-
level features, preserving more detailed information. The
CCOH using the absolute position information can reduce
the erroneous segmentation of similar features in different
structures. Therefore, we conduct experiments to explore the
impact of data reduction on the model performance, validating

respectively. Fig. 5 shows that the drops in the other CNNs’
performance under the training set reduction are noticeable.
Moreover, we analyze the sizes of the weight matrix in all
methods. The matrix size are 117.9M in Seg-Net, 240.0M in
U-Net, 102.7M in FCN, 744.2M in AU-Net, 198.3M in DA-
Net, 354.0M in ScSE-Net, and 123.2M in BiSe-Net, respec-
tively. Thus, our NHBS-Net, which has a matrix size of 173.4
M, has an intermediate weight matrix size and gains the best
segmentation result. AU-Net, which has approximately 4 times
as many parameters as NHBS-Net, has the best performance
of the other CNNS.

E. Ablation Experiments

In Table III, we implement segmentation models that con-
tain different parts of the modules mentioned in our NHBS-
Net in the 400-image and 100-image trainings, and the results
show the average performance for the seven key structures
based on three metrics (DSC, HD, and AHD). Table III shows
that our NHBS-Net, which contains all modules, has the best
performance for both 100-image and 400-image training. The
CCOH brings an average DSC improvement of 0.767% for the
400-image model and 1.110% for the 100-image model. The
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TABLE IlI
SEGMENTATION PERFORMANCE SHOWN IN THE ABLATION STUDY OF THE MODELS UNDER 400-IMAGE AND 100-IMAGE TRAINING. THE BASELINE
IN OUR NHBS-NET IS THE DILATED RESNET [36] BACKBONE WITH AN OUTPUT HEAD. WE DESIGNED THREE MODULES TO IMPROVE THE
SEGMENTATION PERFORMANCE: EDAM WITH ENHANGED CHANNEL ATTENTION(ECA) AND LOCATION ATTENTION MODULE (LAM) WHICH IS
INVOLVED IN THE DUAL ATTENTION (DA) MODULE [24], 2-CLASS FFM WITH FIRST-CLASS FFM AND SECOND-CLASS FFM, AND THE CCOH.

400-image training set 100-image training set
Models DSC drop DSC HD AHD DSC drop DSC HD AHD
(%) (%) (pixel) (pixel) (%) (%) (pixel) (pixel)
baseline 1 3.155 84.704£5.95 | 9.92 £7.57 | 0.430 £0.456 1 3.479 82.854+6.37 10.48 £8.30 | 0.501 £0.512
baseline+EDAM+
2-class FFM+CCOH - 87.854+4.66 | 8.42+6.30 | 0.316 £0.400 - 86.331+5.40 9.63 +7.18 0.38140.464
(NHBS-Net)
baseline+CCOH 12.140 85.20£5.25 | 8.96 £7.14 | 0.386 £0.467 12.503 83.8316.32 11.15 £8.86 | 0.504 £0.655
baseline+EDAM 1 2.651 85.71£5.39 | 9.20 £6.82 | 0.363 £0.384 1 2.364 83.97+£6.10 10.15 £8.27 | 0.477 £0.691
Coordinate Convolution Output Head (CCOH)
basze_lc“lff;?wwr 10767 | 87.0845.03 | 9.09 £6.65 | 0.361 £0.448 | | 1.110 | 85224571 | 10.72 +8.86 | 0.405 +0.443
2-class FFM
baseline+EDAM+CCOH 1 1.950 85.90+5.24 | 9.36 £6.45 | 0.376 £0.406 1 1.497 84.834+5.72 | 12.43 £12.31 | 0.477 +0.608
baseline+EDAM+
first-class FFM+CCOH 10.903 86.64+5.08 | 9.05 £7.50 | 0.363£0.514 1 0.886 85.4445.48 10.9249.56 0.41340.435
baseline+EDAM+
second-class FEM+CCOH 1 1.207 86.954+4.85 | 9.06+£7.03 | 0.357 £0.458 } 1.168 85.1645.74 10.8448.50 0.44640.541
Enhanced Dual Attention Module (EDAM)
baseline+DA [24]+
2-class FEM+CCOH 1 0.698 87.15+4.77 | 8.8747.29 0.33840.433 10917 85.4145.39 11.3949.27 0.44240.487
baseline+LAM [24]+
second-class FEM+CCOH 1 1.172 86.68+5.11 | 9.4447.58 0.36740.455 1 1.194 85.1445.71 10.2148.56 0.43340.557
baseline+ECA+
second-class FEM+CCOH 1 0.563 87.2945.01 9.58+8.10 | 0.362 +0.454 1 0.791 85.544+5.54 | 11.38 £11.95 | 0.461 £0.761
baseline+
second-class FEM+CCOH 1 1.531 86.3245.23 | 9.25+6.48 0.369+0.409 J 1435 84.89+6.31 10.27 4£9.39 | 0.429 4+0.525

Error detection from
method based on
NHBS-Net results

Error detection from junior sonographer

Substandard Reason: Substandard Reason:

Substandard Reason:
the middle of the bony roof the middle of the bony roof

Substandard Reason:

labrum is not clear labrum is not clear

is not parallel is not parallel

Fig. 6. Some incorrect detection image samples were detected by our
method based on NHBS-Net and two healthcare workers. A. Incorrect
detection using our method in the SPJ dataset. B. Incorrect detections
by the sonographer in the SPJ dataset.

2-class FFM brings an average DSC increase of 1.950% for
the 400-image model and 1.497% for the 100-image model.
Furthermore, we explore how the first-class and second-class
FFM influence the model performance. In the 400-image
model, the first-class FFM brings a 1.207% increase in DSC,
and the second-class FFM obtains a 0.903% increase. The

100-image model gains 1.688% and 0.886% increases with
the first-class FFM and second-class FFM, respectively.

Additionally, EDAM brings improvements of 1.531% in
the 400-image dataset and 1.435% in the 100-image dataset.
When the enhanced channel attention part of the dual-channel
attention is removed, the performance drops by 1.172% in the
400-image dataset and 1.194% in the 100-image dataset, and
removing the location channel results in performance drops
of 0.563% in the 400-image dataset and 0.791% in the 100-
image dataset. Additionally, we compare the enhanced channel
attention module and the channel attention module proposed
in [24]. The enhanced channel attention module gains an
improvement in DSC, which is 0.698% in the 400-image
dataset and 0.917% in the 100-image dataset. For 100-image
training, the best DSC performance among the other CNNs
is 83.87% obtained by BiSe-Net. In the ablation study, the
baseline model using Dilated ResNet obtained an 82.85% in
DSC, which is lower than BiSe-Net for 100 training images.
The baseline model, with the addition of any of the modules
proposed in NHBS-Net, obtained segmentation results equal
to or better than those of BiSe-Net. The model performs much
better than the other CNNs after adding a combination of
modules.

F. Standard Plane Detection Based on NHBS-Net

The key structure segmentation and detection method based
on segmentation could help standard plane detection of DDH.
In this section, a 50-image quality dataset (the SPJ dataset)
is used to test the ability of the detection method based
on NHBS-Net. A preliminary user study was conducted on
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Fig. 7. Some standard and substandard image samples detected by our method based on NHBS-Net.

the SPJ dataset with two healthcare workers using/not using
algorithmic aid. The error rate for healthcare worker 1 was
6% (3 images in the 50-image SPJ dataset), while the error
rate for healthcare worker 2 was 10% (5 images in the SPJ
dataset). Using our automated detection aid, both healthcare
worker 1 and 2 achieved error rates of 2% (only one image in
the 50-image SPJ dataset). Due to the fact that the reduction in
error rate is very preliminary results, only observed in a pilot
study of healthcare workers (N=2), we will take more efforts
on validating the effectiveness of the proposed techniques in
the clinical practice in our future work. In Fig. 6, the error
detections of healthcare workers and our method are shown.
From the results of our method, the incorrect judgments
come from structure clarity errors (Fig. 6 A). The errors of
the healthcare worker (junior sonographer) include structure
clarity errors and angle deviation in parallelism detection (Fig.
6 B). Some standard and substandard images and visual results
of standard plane detection are shown in Fig. 7.

G. Comparisons on the FHU Dataset with the
State-of-the-Art CNN Models

Due to the close relationship between ultrasound standard-
ization and clear structure segmentation, incorporating our
NHBS-Net into other obstetric ultrasound examinations is
helpful. To verify the segmentation ability of our NHBS-Net,
we applied the NHBS-Net structure to the FHU dataset, which

is a fetal heart ultrasound dataset collected at the Shanghai
Jiao Tong University Affiliated Sixth People’s Hospital. We
trained the models (Seg-Net [31], U-Net [29], FCN [11], AU-
Net [17], DA-Net [24], BiSe-Net [25], ScSE-Net [37], and our
NHBS-Net) on the FHU training set (76 images, 26 cases)
and validated the models’ performance on the validation set
(28 images, 11 cases). Furthermore, we performed the same
operations as on the NHU dataset. The final models, which
were the best-performing models on the validation set, were
tested on the testing data, including 28 images from 13 cases.
The model performance, including the DSC, HD, and AHD
of the methods mentioned above, is shown in Table IV. For
5 structures (left atrium, right atrium, left ventricle, right
ventricle, and aorta), our NHBS-Net model gained 71.63%
in the left ventricle, 71.15% in the right ventricle, 77.66% in
the right atrium, 78.96% in the left atrium, and 74.38% in the
aorta in terms of DSC. The average DSC for all the structures
is 74.75%, which is the best segmentation result among all
models.

V. CONCLUSION AND FUTURE WORK

Automatic hip joint structure segmentation based on ul-
trasound images is essential in clinical practice because it
can provide visual hints to help sonographers diagnose DDH.
Furthermore, it is more helpful for sonographers to obtain seg-
mentation results for seven key structures, which can help in
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TABLE IV
SEGMENTATION PERFORMANCE COMPARISON OF OUR NHBS-NET AND OTHER NOVEL CNNS, INCLUDING SEG-NET [31], U-NET [29], FCN [11],
AU-NET [17], DA-NET [24], SCSE-NET [37], BISE-NET [25], DEMONSTRATED IN 28-IMAGES FHU TESTING SET UNDER 76-IMAGE TRAINING.

Model name Average Performance Five key structures of Heart .
left ventricle | right ventricle [ right atrium [ Teft atrium | aorta
Dice Similiarity Coefficient (DSC) — %

NHBS-Net 74.75 £ 25.88 71.63 +29.10 71.15 £+ 27.41 77.66 +27.05 | 78.96 + 17.87 74.38 + 27.99
Seg-Net [31] 56.91£27.95 56.77+£27.64 56.52+£29.23 60.08+£22.01 49.59428.70 61.62+£32.16

U-Net [29] 67.61£29.76 69.05+28.21 63.26£30.64 64.92+£36.85 73.74£24.10 67.11£29.01

FCN [11] 69.73£29.24 70.46+27.88 69.79+27.87 70.55+33.61 69.87+£26.34 67.99+30.52
AU-Net [17] 63.79+£29.87 64.15+29.46 65.64£27.03 69.25+£27.79 62.31£30.81 57.62+£34.27
DA-Net [24] 66.68+£29.01 65.26+£31.80 70.25+£25.61 65.97+£31.58 71.46£24.25 60.49+31.82
ScSE-Net [37] 63.441+27.91 67.71+27.55 63.16+30.29 71.83+25.63 70.80£20.98 43.72435.12
BiSe-Net [25] 69.42+27.14 70.174+28.22 64.17£32.70 71.31£29.57 73.97+£17.98 67.46£27.20

Hausdoff Distance (HD) — pixel

NHBS-Net 17.13 £ 16.44 24.72 +25.28 18.18 £ 12.07 17.12 £17.54 | 18.71 + 18.90 6.90 +£8.42
Seg-Net [31] 40.57 £23.49 59.44 +27.34 44.18 £27.14 50.17 £12.66 | 25.01 £16.29 24.05 +34.05

U-Net [29] 29.70 +£30.03 38.71 £33.03 42.84 £39.75 17.38 £16.35 19.39 +16.19 30.15 +44.82

FCN [11] 18.13 +£19.06 2275 +£21.94 26.39 +31.82 14.91 £ 15.31 19.06 +17.55 7.55 £8.69
AU-Net [17] 24.91 +20.05 40.27 £28.89 26.65 +21.63 26.76 +£23.32 | 23.16 +18.39 7.73 £8.03
DA-Net [24] 22.80 £21.45 26.00 £27.60 24.02 £17.51 23.07 £19.69 | 24.97 £20.84 1591 +21.61
ScSE-Net [37] 33.18 +£22.52 55.63 +26.18 34.39 +32.76 26.16 +17.85 25.63 +£19.48 24.10 +£16.36
BiSe-Net [25] 19.34 +16.92 28.84 +26.22 21.85 +£19.95 21.97 £19.36 18.97 +£16.60 507 +247

Average Hausdoff Distance (AHD) — pixel

NHBS-Net 2.063 + 5.154 3.575 £10.593 1.929 £ 3.033 1.828 +4.982 | 2.288 +5.692 0.695 £+1.468
Seg-Net [31] 6.547 +8.763 8.873 £9.597 5.569 +6.619 6.896 +6.667 | 4.411 £5.897 | 6.985 £15.035

U-Net [29] 4.148 £9.089 4.485 £7.941 5.682 +14.151 2.502 +£6.636 | 1.387 £1.795 | 6.685 +£14.921

FCN [11] 2.322 £5.660 3.190 £ 7.608 3.081 £7.171 2.695 £8.946 | 2.170 £4.084 0.475 £ 0.492
AU-Net [17] 3.203 +5.058 6.944 +10.063 2.141 £2.554 3.998 +8.442 | 2.336 £3.648 0.598 +0.580
DA-Net [24] 3.201 +£6.099 4.585 £9.493 2.010 +2.486 4.410 +9.023 2.152 +£2.739 2.845 +6.756
ScSE-Net [37] 11.303 +21.015 8.967 £18.174 | 13.544 £31.317 | 4.534 £10.027 | 2.912 £4.203 | 26.557 +41.353
BiSe-Net [25] 2.375 +4.734 3.867 +7.763 2.146 +3.175 3.366 49.066 1.966 +3.176 0.528 +0.490

screening standard ultrasound images. Standard plane images
need to meet anatomical identification and usability check,
which can be helpful in clearly identifying the seven structures
and making visibility and parallelism judgments based on
structure segmentation. However, due to the limitations of
the scale of data collection and labeling complexity, robust
segmentation models that can segment the seven hip joint
structures are still being explored. Our work illustrates NHBS-
Net, the first model for segmenting the seven key neonatal hip
joint structures. The experimental results show that NHBS-
Net, using a 400-image training set for development, has
excellent segmentation performance on our test dataset. Due to
the time-consuming and laborious work of collecting a large
dataset with annotations, we compared the model performance
impact as the training set size decreased. Stable segmentation
performance is achieved by our NHBS-Net model with a de-
creasing size in the training dataset. Due to the generalization
of ultrasound image standardization, our NHBS-Net can also
be applied in other ultrasound segmentation work to clarify
structures, ensuring standard image acquisition. We develop
a standard plane detection method based on segmentation of
the seven structures and implement the method on a standard
plane judgment dataset (the SPJ dataset). We also implement
our NHBS-Net in another ultrasound dataset, the FHU dataset,
and NHBS-Net obtains excellent results on the FHU dataset;
the performance exceeds that of the other CNNs by 5%.

Although a very preliminary user study was conducted to
compare the detection error rate of two healthcare workers
by using/not using our method, the randomized controlled
trial (RCT) is necessary to be conducted for further validating

effectiveness and efficiency of the proposed technique. In the
future, we will focus on the development of a segmentation-
based standard plane detection model and its applications. Fur-
thermore, we will explore segmentation-based classification
methods for DDH severity measurement and classification.
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