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Abstract— Training deep models for RGB-D salient object
detection (SOD) often requires a large number of labeled RGB-D
images. However, RGB-D data is not easily acquired, which limits
the development of RGB-D SOD techniques. To alleviate this
issue, we present a Dual-Semi RGB-D Salient Object Detection
Network (DS-Net) to leverage unlabeled RGB images for boosting
RGB-D saliency detection. We first devise a depth decoupling
convolutional neural network (DDCNN), which contains a depth
estimation branch and a saliency detection branch. The depth
estimation branch is trained with RGB-D images and then used
to estimate the pseudo depth maps for all unlabeled RGB images
to form the paired data. The saliency detection branch is used to
fuse the RGB feature and depth feature to predict the RGB-D
saliency. Then, the whole DDCNN is assigned as the backbone in a
teacher-student framework for semi-supervised learning. More-
over, we also introduce a consistency loss on the intermediate
attention and saliency maps for the unlabeled data, as well as a
supervised depth and saliency loss for labeled data. Experimental
results on seven widely-used benchmark datasets demonstrate
that our DDCNN outperforms state-of-the-art methods both
quantitatively and qualitatively. We also demonstrate that our
semi-supervised DS-Net can further improve the performance,
even when using an RGB image with the pseudo depth map.

Index Terms— RGB-D salient object detection, semi-supervised
learning, depth estimation, attention consistency.

I. INTRODUCTION

RGB-D salient object detection (SOD) has attracted a
surge in interest recently [1]–[3]. Early RGB-D detec-

tors [4]–[7] mainly examined the handcrafted priors, which
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degrades the detection performance since the assumptions of
these heuristic priors are not always correct. More recently,
RGB-D SOD detectors [8]–[15] based on convolutional neural
networks (CNNs) have been developed by learning the features
from RGB images and depth maps and exploring the comple-
mentary information between them. Although these models
have achieved impressive performances on the benchmark
datasets, there are still several issues limiting the development
of RGB-D SOD techniques: 1) pixel-level annotation for
supervised learning is expensive and time-consuming, and
2) compared to RGB images, paired RGB-D images are more
difficult to collect. Fortunately, it is easy to collect a large
number of unlabeled RGB images. Thus, how to leverage the
unlabeled RGB images to assist the RGB-D SOD methods is
a desirable direction to explore.

In this paper, we present a novel dual-semi RGB-D
salient object detection network (DS-Net) for boosting the
RGB-D saliency detection by leveraging unlabeled RGB data,
as shown in Fig. 1. Our DS-Net has a two-fold motivation:
semi-supervised learning with unlabeled data and semi-paired
data including RGB images without depth maps. Specif-
ically, we devise a depth decoupling convolutional neural
network (DDCNN) to estimate depth maps of RGB images
and detect RGB-D saliency maps jointly. Our DDCNN dis-
entangles two types of features from the RGB image, i.e.,
depth-aware features and depth-dispelled features. The depth-
aware features are used to estimate the pseudo depth maps for
RGB images, while the depth-dispelled features are extracted
from the input RGB image and then fused with the depth map
features to predict the RGB-D saliency. Finally, we embed
DDCNN as the backbone into a teacher-student framework
to provide semi-supervision for training the whole DS-Net
based on labeled RGB-D data and unlabeled RGB images
with their pseudo depth maps. Moreover, we also introduce a
consistency loss to constrain the attention and saliency maps
on unlabeled data, assisting the supervised loss for saliency
and depth predictions on labeled data. In summary, the main
contributions are:

• A dual-semi RGB-D salient object detection network
(DS-Net) is proposed for leveraging RGB images as
unlabeled data to assist the RGB-D SOD task in a semi-
supervised manner. We show an effective solution to
improve the RGB-D task performance by incorporating
RGB images with the pseudo depth maps.

• A depth decoupling convolutional neural network
(DDCNN) is designed to jointly estimate depth maps
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Fig. 1. Illustration of our DS-Net, which is trained in three main stages. 1) Training depth estimation branch based on labeled RGB-D data. 2) Estimating the
pseudo depth maps for all unlabeled RGB images. 3) Learning the whole network in a semi-supervised manner based on labeled RGB-D data and unlabeled
RGB images with pseudo depth maps.

for RGB images and predict saliency maps for RGB-D
images. Two types of features are disentangled from RGB
image, i.e., depth-aware features and depth-dispelled fea-
tures, enabling the network to identify the latent features
specific to each modality and task.

• For enhancing the semi-supervised consistency, a consis-
tency loss is introduced in the teacher-student network
to constrain the intermediate attention and saliency maps
on the unlabeled data, assisting with the supervised depth
and saliency loss on labeled data.

• Last but not least, experimental results on seven widely-
used RGB-D SOD datasets show that our DDCNN out-
performs state-of-the-art methods. We also demonstrate
that the semi-supervised DS-Net can further improve the
performance, even when using an RGB image with the
pseudo depth map.

Our code, the trained models, and the predicted saliency
maps on all seven benchmark datasets are released at:
https://github.com/Robert-xiaoqiang/DS-Net.

II. RELATED WORK

A. RGB-D Salient Object Detection

RGB-D SOD methods based on deep learning can be
roughly grouped into three categories: early fusion, mid-
dle fusion, and later fusion. Early fusion concatenates the
RGB and depth images as a four-channel input and then
passes this into CNNs for saliency detection. Liu et al. [16],
and Huang et al. [17] developed a single-stream convolutional
neural network and a fully convolutional network (FCN)
with short connections to detect salient regions from the
concatenated four-channel input, respectively. Late fusion
employs two separate backbone networks for RGB and depth
to generate individual features which are fused together
for final prediction. Han et al. [18] transferred the structure
of the RGB-based CNN to be applicable for the depth
view and fused the deep representations of both views
automatically to obtain the final saliency map. Wang and
Gong [19] designed a two-streamed CNN to predict a
saliency map from each modality separately and fuse the
predicted saliency maps adaptively by learning a switch
map.

As the most popular CNN framework for RGB-D saliency
detection, middle fusion typically integrates multi-scale
intermediate features from input RGB and depth modal-
ities in different manners. Chen and Li [8] developed
complementarity-aware fusion (CA-Fuse) modules to pro-
gressively integrate RGB features and depth features.
Piao et al. [10] devised depth refinement blocks to extract
and fuse multi-level paired complementary RGB and depth
cues. Fan et al. [3] built a depth-depurator network to filter
out noise in the depth map for better fusing cross-modal
features. Fu et al. [11] utilized a shared backbone to extract
hierarchical features from RGB and depth inputs simultane-
ously for a multi-scale cross-module fusion. Zhang et al. [12]
presented a probabilistic RGB-D saliency detection network
via conditional variational autoencoders to approximate human
annotation uncertainty and produce multiple saliency maps
for each input image. Zhang et al. [13] included complemen-
tary interaction models, consisting of a cross-modal attention
unit and a boundary supplement unit, to select useful RGB
and depth features for salient object location and boundary
detail refinement. Li et al. [20] adopted a three-level Siamese
encoder-decoder structure to develop three modules to fuse
low-level, middle-level, and high-level RGB and depth fea-
tures, respectively, for cross-modal and cross-scale RGB-depth
interactions.

Although existing CNN-based methods have achieved more
accurate results than traditional RGB-D saliency detectors,
their network training requires a large amount of data with
pixel-level saliency annotations. Moreover, annotated training
data are collected from limited scenarios, causing the net-
works to suffer from degraded performance on unseen photos.
As such, this work presents a semi-supervised network to
fuse unlabeled data with the labeled data for boosting RGB-D
saliency detection. More importantly, rather than relying on
unlabeled RGB-D paired images, our unlabeled data consists
of only RGB images, which are much easier to collect in our
daily life.

B. Semi-Supervised Learning

By integrating labeled and unlabeled data for network train-
ing, semi-supervised learning (SSL) has achieved remarkable
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Fig. 2. Illustration of the proposed DDCNN, which includes a depth estimation branch (green block) and a saliency detection branch (yellow block). Stage 1
and stage 2 use the green block only, while stage 3 uses both green and yellow blocks. The depth estimation branch disentangles the image features Ri into
depth-aware features Rd

i for estimating depth maps and depth-dispelled features Rs
i for predicting saliency. The saliency detection branch uses a depth-induced

fusion module (DIM) to fuse depth-dispelled features Rs
i and depth features. Finally, the saliency map is predicted by fusing all features {Fi }4

i=1 produced
by DIMs.

results in many computer vision tasks [21], [22]. As a typical
kind of SSL technique, self-ensembling usually devises a
consistency loss on the unlabeled data to guarantee invariant
predictions for perturbations of unlabeled data. For example,
the �-model [23] devised consistency constraints between the
current network prediction and the temporal average of net-
work predictions for unlabeled data. The mean teacher (MT)
framework [24] proposed to ensemble the network parameters
to replace the network predictions of the �-model [23],
achieving improved performance in the semi-supervised learn-
ing. Developing semi-supervised CNNs for RGB-D saliency
detection usually requires numerous paired RGB-D images,
which are not easy to collect. RGB images, however, are much
easier to collect. Hence, our model is devised to leverage
unpaired RGB images to formulate semi-supervised RGB-D
saliency detection.

III. METHODOLOGY

Fig. 1 shows an illustration of our dual-semi RGB-D
salient object detection network (DS-Net), which integrates
the labeled RGB-D data and unlabeled RGB images. A depth
decoupling convolutional neural network (DDCNN) is utilized
as the backbone, which contains two components: a depth
estimation branch and a saliency detection branch for esti-
mating the depth maps of RGB images and predicting the
saliency maps of RGB-D images, respectively. To train the
whole DS-Net with labeled RGB-D data and unlabeled RGB
images, we first train the depth estimation branch of DDCNN
using labeled RGB-D data to learn the mapping from an RGB
image to its depth map. Then, we estimate the pseudo depth

maps for all unlabeled RGB images to form the paired data.
Finally, we utilize DDCNN as the backbone in a teacher-
student framework. To train the whole DS-Net in a semi-
supervised manner, we utilize a supervised loss on depth and
saliency predictions for labeled RGB-D data and a consistency
loss on intermediate attention maps and saliency predictions
for unlabeled RGB images with their pseudo depth maps.

A. DDCNN

Fig. 2 illustrates the architecture of our DDCNN, which is
a two-branch structure including a depth estimation branch
(green block) and saliency detection branch (yellow block).
Given a pair of input RGB-D images, the RGB image is
passed to an encoder to generate RGB features (i.e., {Ri }4

i=1),
while the depth map is fed to another encoder to extract depth
features (i.e., {Di }4

i=1).
In the depth estimation branch of DDCNN, each RGB

feature Ri is disentangled into a depth-aware feature Rd
i

for estimating the depth map and a depth-dispelled feature
Rs

i for predicting saliency, using a convolutional block with
“Conv(3 × 3) → BN → ReLU → Conv(3 × 3)”. The depth-
aware features Rd

i are then up-sampled to the same spatial
resolution of Rd

1 and concatenated together to predict a depth
map by applying a “Conv(3×3) → Conv(1×1)” convolutional
block. Moreover, we fuse Rd

i and Rs
i to reconstruct RGB

features R̃i and compute a reconstruction loss Lr
i to regularize

the decoupling process:
Lr

i = L M S E (R̃i , Ri ), with R̃i = CB
(

Cat (Rd
i , Rs

i )
)

, (1)
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Fig. 3. The illustration of DIM, which contains the Depth-awareness Module (DAM) and Depth-gated Module (DGM).

where CB(·) is a convolutional block with “Conv(3 × 3) →
BN → ReLU → Conv(3 × 3)”. Cat (·) denotes a feature con-
catenation operation, and L M S E represents the mean square
error (MSE) loss.

In the saliency detection branch of DDCNN, we devise a
depth-induced fusion module (DIM) to fuse depth-dispelled
features Rs

i with two depth features (Rd
i and Di ) at each

CNN layer. The fused features from DIMs at the four levels
of feature extraction layers are denoted as {Fi }4

i=1, as shown
in the yellow block of Fig. 2. Finally, we iteratively merge the
four obtained features {Fi }4

i=1 to predict a saliency map with a
3×3 convolution, a 1×1 convolution, and a sigmoid function.
When merging features (Fi and Fi+1) from two adjacent CNN
layers, we up-sample the low-resolution features Fi+1 to the
same resolution as the high-resolution features Fi , and then
refine the feature map Fi from the shallow layer by passing
it to an atrous spatial pyramid pooling (ASPP) module [25]
with four dilated convolutional layers (dilation rates: 1, 6,
12, 18), followed by a 1 × 1 convolutional layer on the four
dilated features concatenated together. We then fuse the refined
features of ASPP with up-sampled Fi+1 to produce the merged
features of Fi and Fi+1.

1) Depth-Induced Fusion Module: As shown in Fig. 2,
a DIM at each CNN layer merges three feature maps (i.e.Rd

i ,
Rs

i and Di ) to leverage the complementary information of
RGB and depth modalities. Fig. 3 gives an illustration of
the DIM at the i -th CNN layer, which takes depth-aware
feature Rd

i , depth-dispelled feature Rs
i and depth feature Di

as inputs and produces a fused feature Fi . To be specific,
we first devise a depth-gated module (DGM) to fuse depth
features Di from the input depth map and Rd

i from the depth
estimation branch. The fused features of DGM are denoted
as Fdgm

i . Then, we adopt a depth-awareness module (DAM)
to fuse Rs

i , and depth features Di from the input depth map
to obtain new features Fdam

i . Moreover, we concatenate Fdgm
i

and Fdam
i , and apply a 3×3 convolutional layer and a sigmoid

function on the concatenated features to learn an attention map
Ad

i for weighting depth features Di , thereby generating a new
feature map Fd

i . Finally, the output of DIM (denoted as Fi )

is computed by adding Fdam
i , Fdgm

i , and Fd
i :

Fi = Fdam
i + Fdgm

i + Fd
i , (2)

2) Depth-Awareness Module: Considering the redundancy
and noise in low-quality depth maps and the intrinsic differ-
ence between RGB and depth features, we design an effective
fusion method to suppress noise and utilize the complementary
information from the features Rs

i and Di of the two modalities.
Inspired by CBAM [26], we design a DAM equipped with a
channel attention and a spatial attention operation to merge
RGB features Rs

i , and depth features Di . Fig. 3 shows the
workflow of DAM, which outputs a new feature map Fdam

i .
This is achieved by applying a channel attention operation
on Di to weight different channels of Rs

i , and then a spatial
attention is computed on Di to recalibrate pixel-wise saliency
cues of Rs

i to obtain Fdam
i :

Fdam
i = Satt (Di ) ⊗ (Catt(Di ) � Rs

i ), (3)

where the channel attention Catt(·) includes a 3×3 convolution
and a global average pooling. The spatial attention Satt (·)
consists of a 3 × 3 convolution with a softmax function. �
denotes a channel-wise multiplication while ⊗ represents an
element-wise multiplication.

3) Depth-Gated Module: Rd
i are the depth signals from

RGB image, hence combining them and depth features Di

from the input depth image enriches the depth representation
from different depth modalities. As such, we devise a DGM
to merge Rd

i (size: H × W × C) and Di (size: H × W × C)
by considering long-range pixel dependencies for learning
saliency cues. First, we first apply a 3 × 3 convolutional
layer on Rd

i , reshape the resultant features as an intermediate
C × H W feature map, apply another 3×3 convolutional layer
on Rd

i , reshape the resultant features as another intermediate
H W × C feature map, and then multiply two intermediate
features to generate a non-local similarity matrix with size
H W ×H W . Furthermore, we apply a 3×3 convolutional layer
on Di and reshape the resultant features as an intermediate
H W × C feature map, which is then multiplied with the
non-local similarity matrix. After that, we reshape the features
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H W × C resulting from the multiplication to a feature map
with size H × W × C , which undergoes a 3 × 3 convolution
to obtain the features Fdgm

i of DGM.

B. Training Strategies

1) Supervised Loss for Labeled Data: For labeled data,
we have a pair of input RGB and depth images with the
corresponding annotated saliency mask. It is natural to take the
annotated saliency mask as the ground truth (Gs) for RGB-D
saliency detection. On the other hand, we also have the ground
truth (Gd ) for the depth estimation task, which is the input
depth map. With the two ground truths (Gs and Gd ), the
supervised loss (denoted as Ls ) for a labeled image (x) is
computed as the summation of the saliency detection loss and
depth estimation loss:

Ls(x) = L BC E (Ps , Gs) + α L M S E (Pd , Gd ) , (4)

where Ps and Pd denote the predicted saliency map and depth
map, respectively. L BC E and L M S E are the binary cross-
entropy (BCE) loss and MSE loss functions, respectively.
We empirically set the weight α = 1.0 during the network
training.

2) Consistency Loss for Unlabeled Data: As a well-known
semi-supervised manner, the teacher-student approach ensem-
bles parameters of the network at different training processes
as teacher network’s parameters and devises a consistency loss
to make the student network learn from the teacher network
for improving the quality of the network predictions. In detail,
we feed the unlabeled RGB data into the depth estimation
branch of DDCNN to predict a depth map and take this
prediction as a pseudo label of the depth map for the unlabeled
RGB data. After that, we pass the unlabeled RGB image and
corresponding pseudo depth image into the student and teacher
networks to obtain two groups of depth map and saliency map
prediction results. We then force the predicted saliency map
and the four learned attention maps of DIMs to be consistent
for the student and teacher networks. A consistency loss Lc

on unlabeled data y is defined as:

Lc(y) = L M S E (Ss , Ts) + γ

4∑
l=1

L M S E (Sl
A, T l

A), (5)

where Ss and Ts denote two detected saliency maps of the
student and the teacher networks. Sl

A and T l
A represent the

learned attention map of DIM at the l-th CNN layer from
the student and the teacher networks. We empirically set γ =
0.1 in this work.

3) Overall Loss for the Student Network: The total loss of
our network is computed as:

Ltotal = 1

N1

N1∑
i=1

(
Ls(xi ) + β1

4∑
l=1

Lr
l (xi )

)

+λ
1

N2

N2∑
j=1

(
Lc(y j ) + β2

4∑
l=1

Lr
l (y j )

)
, (6)

where N1 and N2 are the number of labeled RGB-D
image pairs and unlabeled RGB images in our training set.

Ls(xi) denotes the supervised loss (Eq. (4)) for the i -th labeled
image xi while Lc(y j ) is the consistency loss (Eq. (5)) for
the j -th unlabeled image y j . Lr

l (xi ) and Lr
l (y j ) represent the

reconstruction loss (Eq. (1)) for labeled xi and unlabeled y j ,
respectively. We empirically set the weights β1 = 0.01 and
β2 = 1.0. The weight λ balances the loss between the
labeled and unlabeled data. Following [21], we use a time
dependent Gaussian warm-up function to update λ: λ(t) =
λmaxe(−5(1−t/tmax)

2), where t denotes the current training
iteration and tmax is the maximum training iteration. In our
experiments, we empirically set λmax = 1.0.

Following existing self-ensembling frameworks [24],
we minimize the total loss Ltotal of Eq. (6) to train the
student network. The parameters of the teacher network are
computed as the exponential moving average (EMA) of the
parameters of the student network to ensemble the information
in different training steps. Following [21], during the inference
stage, given an input RGB image and an input depth image,
we pass them into the student network to predict a saliency
detection map, which is then taken as the final result of our
semi-supervised RGB-D saliency detection network, and the
teacher network is not involved in the inference stage.

4) Training Configurations: We use the same HRNet archi-
tecture as the backbone for both the RGB image and the depth
map. Given a 256 × 256 input image, the HRNet outputs
multi-scale features at four convolutional blocks (layer 8, 27,
63, and 104) with a resolution of 64 × 64, 32 × 32, 16 × 16,
and 8×8, respectively. These features are fed straight into the
following network pipeline. As for the VGG-16, VGG-19 and
ResNet-50 backbones, we employ the outputs from the layer
(4, 7, 10, 13), (4, 8, 12, 16), and (11, 23, 41, 50) with the
same resolution as the HRNet, respectively.

IV. EXPERIMENTAL RESULTS

A. Benchmark Datasets

We employ seven widely-used benchmark datasets to
evaluate our network and state-of-the-art RGB-D saliency
detectors. They are (i) NJU2K [40] (2,000 images),
(ii) NLPR [41] (1,000 images), (iii) STERE [42] (1,000
images), (iv) RGBD135 [43] (135 images), (v) LFSD [44]
(100 images), (vi) SIP [3] (929 images), (vii) DUTD [10]
(1,200 images). On the DUTD, we follow the setting of [10]
and use 800 images for training and 400 images for testing.
For the other datasets, we follow recent works [3], [9],
[11] to utilize the same 1,500 images from NJU2K and the
same 700 images from NLPR as labeled RGB-D images to
train our network for fair comparisons. For unlabeled RGB
images, we utilize 10,553 RGB images from the training
set of DUTS [45]. Although each training image of DUTS
has the annotations of the saliency map, we do not use any
saliency information of these images when training our dual-
semi RGB-D saliency detector.

B. Evaluation Metrics

We adopt four widely-used metrics to quantitatively
compare RGB-D saliency detection performance, including
S-measure (Sm ) [46], F-measure (Fmax

β ) [47], E-measure

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 12,2025 at 07:47:43 UTC from IEEE Xplore.  Restrictions apply. 



1112 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE I

COMPARISONS OUR NETWORK AGAINST STATE-OF-THE-ART DETECTORS ON SEVEN BENCHMARK DATASETS. THE BEST RESULTS ARE HIGHLIGHTED
IN BOLD. DS-NET (HRNET AS BACKBONE) IS MARKED IN BOLD WHEN IT OUTPERFORMS ALL OTHER BASELINES

TABLE II

QUANTITATIVE RESULTS OF OUR METHOD AND BASELINE NETWORKS FOR THE ABLATION EXPERIMENTS ON NJU2K [40], NLPR [41], STERE [42],
RGBD135 [43], LFSD [44], AND SIP [3]. “SL” DENOTES SUPERVISED LEARNING, WHILE “SSL” REPRESENTS SEMI-SUPERVISED LEARNING

(Emax
φ ) [48], and Mean Absolute Error (M AE) [49]. In gen-

eral, a more accurate RGB-D saliency detector shall have a
larger Sm , a larger Fmax

β , a larger Emax
φ , and a smaller M AE .

C. Implementation Details

During training, the backbone is initialize by popular back-
bones, such as VGG-16 [50], VGG-19 [50], ResNet-50 [51]
and HRNet [52], which has been well-trained for the image
classification task on the ImageNet [53] and other layers are
randomly initialized. Training data is resized to 256×256 and
augmented by random rotation and horizontal flipping. In addi-
tion, color jittering is used for the perturbation of unlabeled
data. Stochastic gradient descent (SGD) with a momentum of
0.9 and a weight decay of 0.0005 is used to optimize the whole
network. The learning rate is adjusted by a poly strategy [54]
with an initial learning rate of 0.001 and the power of 0.9. The
whole training takes 25 hours with training batch size 8 (i.e.,
4 labeled pairs and 4 unlabeled RGB images) and a maximum
iteration of 20, 000 on a single NVIDIA GTX 2080Ti GPU.

D. Comparison With Baselines

We evaluate the effectiveness of our network by comparing
it against 23 state-of-the-art RGB-D salient object detectors.

They are LBE [4], DF [27], CTMF [18], PCF [8], TANet [28],
CPFP [9], DMRA [10], D3Net [3], SSF [13], UCNet [12],
JLDCF [11], JLDCF[J] [29], HDF-Net [30], ATSA [35],
SSDP [36], DSA2F [37], PGA-Net [31], DANet [32],
cmMS [33], Cas-Gnn [34], CMWNet [20], CoNet [39], and
BBS-Net [38]. Note that LBE [4] utilizes handcrafted features
to infer salient objects, while other 22 methods employ differ-
ent deep networks to learn discriminative features for RGB-D
saliency detection. To make the comparisons fair, we obtained
the saliency maps of all baselines either from the authors or
by using their released training models and parameters.

Table I reports the Sm , Fmax
β , Emax

φ , and M AE values of
our method and baselines on all seven benchmark datasets.
From the results, we find that DDCNN, i.e., our network
with only labeled data, also outperforms other compared
RGB-D saliency detectors in terms of four evaluation metrics.
By considering unlabeled RGB images, our DS-Net further
improves the performance over other saliency detectors on
almost all of the seven datasets. This indicates that our network
can more accurately identify salient objects from the input
pair of RGB-D data than the compared detectors. Besides,
we also explore the efficiency of semi-supervised learning
without any extra RGB images. Specifically, we construct an
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Fig. 4. Visual comparison of saliency map results produced by different methods. As can be seen, our network produces more accurate saliency maps than
compared methods.

additional experiment by splitting 3/10 labeled RGB-D data
as the unlabeled RGB images (denoted as “DDCNN-semi-
ourSplit”). As shown in Table I, “DDCNN-semi-ourSplit” still
outperforms DMRA [10], but fails to suppress the most recent
state-of-the-art supervised methods (i.e., BBS-Net [38] and
CoNet [39]) due to the use of only 7/10 labels of RGB-D
datasets. Compared to the best-performing results, our network
achieves a Sm improvement of 1.59%, a Fmax

β improvement of
1.63%, a Emax

φ improvement of 0.66%, and a M AE decrease
of 9.89% on the average of seven benchmarks.

Fig. 4 visually compares the saliency maps produced by
our network and the state-of-the-art RGB-D saliency meth-
ods. By observing the different saliency maps, we can con-
clude that other compared methods in Fig. 4 (e)-(m) tend
to include non-salient backgrounds or lose salient details in
their predicted saliency maps, whereas our DS-Net better
detects salient objects from input RGB-D image pairs and
our results are more consistent with the ground truths (see
Fig. 4 (c)). This indicates that, by leveraging only unlabeled
RGB images, our network can suppress non-salient objects
and detect more salient pixels than the state-of-the-art RGB-D
saliency detectors, which are mainly trained in a supervised
manner.

E. Ablation Analysis

1) Baseline Network: We perform ablation experiments
to evaluate the effectiveness of the major components

in our DS-Net. We consider ten baselines. The first
seven employ supervised learning for RGB-D saliency
detection, using DDCNN as the backbone, without the
teacher network. Specifically, we firstly verify the con-
tributions of fusion between RGB and depth features.
“DDCNN-w/o-DAM”; “M1”, “DDCNN-w/o-DGM”; “M2”
and “DDCNN-w/o-DIM”; “M3” replace DAM, DGM and
DIM with a simple feature concatenation operation, respec-
tively. The fourth baseline (denoted as “DDCNN-w/o-depth”;
“M4”) removes the depth estimation branch from our
DDCNN and does not separate RGB features but directly
fuses them with depth features via DAM modules for
saliency detection. The fifth baseline (denoted as “DDCNN-w/
o-reconstr-loss”; “M5”) removes the reconstruction loss from
our DDCNN. For the other two baselines with supervised
learning, one (denoted as “DDCNN-w/o-pretrain”; “M6”)
directly trains DDCNN on labeled RGB-D data in an
end-to-end manner, while the other (“M7”) is our full
DDCNN.

The first semi-supervised baseline (denoted as “DDCNN-
semi”; “M8”) is constructed by directly extending a supervised
two-task DDCNN to a semi-supervised learning framework
by computing consistency loss on saliency predictions for
unlabeled RGB images with their associated pseudo depth
maps. In other words, “DDCNN-semi” is equal to removing
the consistency loss on the attention maps of our DS-Net.
Furthermore, we experiment on only labeled data to explore
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Fig. 5. Visual comparison of saliency map results produced by different methods. (a) Input RGB image from benchmark datasets; (b) Input depth image;
(c) Ground truths (denoted as ‘GT’); (d)–(n) Saliency maps predicted by our method and ten constructed baseline networks (i.e., M10 to M1). Please refer to
Section IV-E for the explanation of M1 to M10).

the upper-bound performance of semi-supervised RGB-D
saliency detection, where 3/10 labeled RGB-D data are split
as the unlabeled RGB images. (denoted as “DDCNN-semi-
ourSplit’; “M9”). The last baseline (denoted as “DDCNN-
semi-depthEst”; “M10”) is designed to analyze the quality of
estimated depth maps and the contribution of multi-task joint
learning. “M10” firstly utilizes an independent depth estimation
model [55] to obtain paired RGB-D data for unlabeled RGB
images, then trains the DS-Net in a semi-supervised manner.
Among all the baseline networks, M1 to M7 are trained
in a normal supervised manner with labeled RGB-D data.
M9 is also trained on labeled RGB-D data only but adopts
fewer samples than supervised learning baselines. At last, M8,
M10 and our DS-Net employ both labeled RGB-D data and
unlabeled DUTS images.

2) Quantitative Comparisons: Table II lists the results of
our network and ten baseline networks (i.e., M1 to M10)
on six benchmark datasets. From the results, we have the
following observations: (i) M7 outperforms M1, M2 and M3
in a large margin, showing that DAM, DGM and DIM have
their contributions to the superior performance of our network.
(ii) M7 achieves larger Sm and smaller M AE scores than M4,

demonstrating that detecting additional depth maps enables
DDCNN to better detect saliency maps from RGB-D image
pairs. (iii) The superior results of M7 over M5 on two
evaluation metrics indicates that DDCNN has a more accurate
RGB-D saliency detection performance when computing a
reconstruction loss on depth-aware RGB features and depth-
dispelled RGB features since the reconstruction loss better
separates these two kinds of RGB features. (iv) M7 clearly
outperforms M6 in terms of Sm and M AE on six benchmark
datasets, showing that DDCNN can better identify salient
objects by using a pre-trained depth estimation branch for
network initialization. (v) M8 has better Sm and M AE results
than M7 on all six benchmark datasets. This shows that
utilizing unlabeled RGB-D image pairs makes the RGB-D
saliency detection of DDCNN more accurate, even though
their depth maps of input are not the ground truths but
are estimated by our DDCNN. (vi) Although M9 fails to
outperform both M7 and M8, it still wins a supervised method
DMRA [10]. This result demonstrates that semi-supervised
learning improves the capacity of supervised RGB-D saliency
detectors and makes a main contribution to our final
model. (vii) Compared to M8, M10 degrades performance,

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 12,2025 at 07:47:43 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: BOOSTING RGB-D SALIENCY DETECTION BY LEVERAGING UNLABELED RGB IMAGES 1115

TABLE III

QUANTITATIVE RESULTS FOR DEPTH ESTIMATION ON NJU2K AND NLPR DATASETS

Fig. 6. Qualitative results of our depth estimation branch.

quantitatively verifying that our depth estimation branch
can produce better depth maps than an independent model.
In addition, M10 has a competitive result with respect to M7,
indirectly proving that our DIM can merge depth and RGB
features adaptively and discard the non-reliable depth pixels
with the assistance of the attention mechanism. (viii) Our
DS-Net can more accurately detect salient regions than M8,
as indicated by its superior results in two evaluation metrics on
six benchmarks. This further shows that the consistency loss
on attention maps contributes to the superior RGB-D saliency
detection performance of our network.

3) Visual Comparisons: Fig. 5 visually compares the
saliency maps predicted by our method and ten baseline
networks. Among the results, our method can achieve the
most similar saliency maps to the ground truth saliency,
demonstrating the effectiveness of our DDCNN design and
incorporating unlabeled RGB images into RGB-D saliency
detection.

F. Discussion

1) Evaluation of the Depth Maps: The depth estimation
branch in our work is to align the labeled RGB-D data
and unlabeled RGB images as inputs and does not limit the
choice of the specific method. Although we only implement
a small branch with pretty simple architecture, it is still
essential to evaluate the quality of depth maps generated by the
branch. Specifically, we train the SG-Loss [56] and DBE [55]
with the same setting as the depth estimation branch of our
DDCNN. We adopt four widely used metrics, including Mean
Average Error (MAE), Root Mean Square Error (RMSE), and
their inverses. Although only the depth maps for unlabeled
DUTS images are fed into our DS-Net, they have no avail-
able paired ground truth depth maps for evaluation. Thus,

Fig. 7. Illustration of performance (in Sm and Emax
φ ) of our model with

different hyperparameter configurations and numbers of unlabeled images.

we report the results on the unseen testing set of NJU2K
and NLPR benchmarks. Quantitative and qualitative results
are summarized in Table III and Fig. 6. From the results,
although our depth estimation branch is devised with a pretty
simple decoder, it still outperforms the DBE in a significant
margin and achieves comparable results against the more
recent depth estimation model (i.e.SG-Loss). These results
show that our feature disentangling can extract depth-related
features correctly and ensure the quality of pseudo depth maps
for unlabeled RGB images. What is more, the powerful feature
encoder also regularizes the RGB-D saliency detection to make
up for the lack of perfect depth quality.

2) Effects of the Hyperparameters: We conduct a group of
experiments to select the best configurations for hyperpara-
meters α in Eq. 4, γ in Eq. 5 and β1, β2 and λmax in Eq. 6.
Table IV and Fig. 7 summarize the results quantitatively and
qualitatively. From the results, the configuration with α = 1.0,
γ = 0.1, β1 = 0.01 and β2 = 1.0 and λmax = 1.0 achieves
the best results, which is consistent with our empirical setting
obtained after a few warm-up epochs. The reason behind this
is that the best configuration may be the one maintaining the
best balance for the order of magnitudes during the whole
training process.

3) Role of the Depth-Dispelled Features: In this paper,
Rs

i is designed to predict the RGB-D saliency. However,
because of the possible non-equivalent mapping of RGB
features disentangling [57]–[59], we cannot guarantee that
all the helpful information for saliency prediction is encoded
into only Rs

i . Consequently, while predicting the final RGB-D
saliency, we merge Rs

i , Rd
i , and corresponding depth features

to utilize as much RGB information as possible. In addition,
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TABLE IV

QUANTITATIVE RESULTS OF OUR METHOD WITH DIFFERENT CONFIGURATIONS OF HYPERPARAMETERS β1 AND β2

TABLE V

QUANTITATIVE RESULTS OF OUR METHOD AND BASELINE NETWORKS ON NJU2K [40],
NLPR [41], STERE [42], RGBD135 [43], LFSD [44], AND SIP [3]

to further verify the role of Rs
i , we conduct a group of

experiments where RGB-D saliency is predicted by fusing
Rs

i (or Rd
i ) and depth features with our DAM (or DGM)

only, which are denoted as “DDCNN-depthDispelledOnly”
and “DDCNN-depthAwareOnly”, respectively. Table V shows
the quantitative results. From the results, our DDCNN signifi-
cantly outperforms the baselines with the depth-dispelled fea-
tures or depth-aware features only. It indicates that predicting
RGB-D saliency with depth-dispelled features can recover the
RGB information as completely as possible and contributes to
improving saliency detection accuracy.

4) Role of DIM in the Semi-Supervised Learning Set-
ting: To further explore how the different components work
under the semi-supervised learning setting, we construct
three additional baselines denoted as “DS-Net-w/o-DAM”,
“DS-Net-w/o-DGM”, and “DS-Net-w/o-DIM” by replacing
DAM, DGM, and DIM of our DS-Net with a simple fea-
ture concatenation operation, respectively. Quantitative results
are summarized in Table V. From the results, our DS-Net
outperforms “DS-Net-w/o-DAM”, “DS-Net-w/o-DGM” and
“DS-Net-w/o-DIM” by a substantial margin, demonstrating the
necessity of DAM, DGM, and DIM in the semi-supervised
learning setting. In addition, “DS-Net-w/o-DAM”, “DS-Net-
w/o-DGM” and “DS-Net-w/o-DIM” win the correspond-
ing supervised baselines (i.e.“DDCNN-w/o-DAM (M1)”,
“DDCNN-w/o-DGM (M2)” and “DDCNN-w/o-DIM (M3)”)
in terms of six benchmark datasets, showing that the relatively
weak baselines can also benefit from our semi-supervised
framework.

5) Accuracy of the Attention Maps: Attention consistency is
computed at multi-scale features from different convolutional
layers. This contributes progressive and globally coherent
guidance to semi-supervised learning, which ensures that each
step of feature learning in our framework is relatively correct.
To further demonstrate the role of consistency loss on inter-
mediate attention maps and evaluate their accuracy, we report
our accuracy of the attention maps by using a linear evaluation
protocol. Specifically, we extract the attention maps with four
scales from the different layers of “DDCNN-semi(M8)” and
our DS-Net, respectively, and train a logistic regression model
to predict the final saliency with the resolution of 64 × 64,
32 × 32, 16 × 16 and 8 × 8. The training and testing split
is consistent with the setting of the whole network. Table V
quantitatively summarizes the results of linear evaluation
with the resolution of 64 × 64. From the results, although
“DS-Net-linear” degrades performance w.r.t. the normal
DS-Net due to freezing the attention maps and most layers
of the network, it outperforms the baseline “DDCNN-semi-
linear” by a considerable margin. This demonstrates that the
consistency loss on attention maps significantly improves the
accuracy of the corresponding attention maps and contributes
to the final saliency predictions.

6) Effects of the Number of Unlabeled Images: In general,
a model will gain a stronger generalization ability when
fed into more samples. To further explore the relationship
between the model performance and the number of unlabeled
samples, we conduct five additional ablation experiments using
our DS-Net on 1k, 2k, 4k, 8k, and 10k (10,553) unlabeled
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Fig. 8. Samples with multiple objects. (a) Input RGB image from benchmark
datasets; (b) Input depth image; (c) Ground truths (denoted as ‘GT’); and
(d) Our results.

RGB images, respectively. All of the samples are randomly
sampled from the DUTS dataset. Fig. 7 presents the effect
of the number of unlabeled samples qualitatively. From the
results, on the one hand, the model achieves higher and higher
metric performance with the increase of the number of unla-
beled samples, demonstrating that semi-supervised learning
can benefit from more training data significantly. On the other
hand, the performance gain decreases as more unlabeled data
are fed into the model, indicating that the model has an
upper-bound performance no matter how much data from the
same domain is employed. This indicates a research direction
worth exploring, which is to improve further the generalization
ability of the model by using out-of-domain data.

7) Samples With Multiple Objects: To study the upper-
bound performance of our model and find the capability
boundary of it, we delineate several samples with multiple
objects. These samples are extremely challenging for existing
state-of-the-art RGB-D saliency detectors, even for a human
annotator. We carefully selected a few in Fig. 8. Apparently,
our model can detect salient objects in these complicated
samples accurately. This indicates that our model can handle
samples with different levels of difficulty and achieve superior
overall performance.

V. CONCLUSION

In this paper, we have presented a Dual-Semi RGB-D
Salient Object Detection Network (DS-Net) by leveraging
unlabeled RGB images to assist the RGB-D SOD task in
a semi-supervised manner. A depth decoupling convolutional
neural network (DDCNN) has been proposed to jointly esti-
mate the pseudo depth maps for RGB images and predict
saliency maps for paired RGB-D images. Our DDCNN dis-
entangles the features from RGB images into depth-aware
features and depth-dispelled features, which enables the net-
work to identify the latent features specific to each modal-
ity. Experimental results on seven benchmark datasets have
demonstrated the effectiveness of our method. We have also
shown that the semi-supervised manner could further improve
the performance of RGB-D SOD, even using an RGB image
with the pseudo depth map.
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