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Abstract— Automatic vertebra segmentation from computed
tomography (CT) image is the very first and a decisive stage
in vertebra analysis for computer-based spinal diagnosis and
therapy support system. However, automatic segmentation of
vertebra remains challenging due to several reasons, including
anatomic complexity of spine, unclear boundaries of the ver-
tebrae associated with spongy and soft bones. Based on 2D
U-Net, we have proposed an Embedded Clustering Sliced U-Net
(ECSU-Net). ECSU-Net comprises of three modules named seg-
mentation, intervertebral disc extraction (IDE) and fusion. The
segmentation module follows an instance embedding clustering
approach, where our three sliced sub-nets use axis of CT images
to generate a coarse 2D segmentation along with embedding
space with the same size of the input slices. Our IDE module
is designed to classify vertebra and find the inter-space between
two slices of segmented spine. Our fusion module takes the coarse
segmentation (2D) and outputs the refined 3D results of vertebra.
A novel adaptive discriminative loss (ADL) function is introduced
to train the embedding space for clustering. In the fusion strategy,
three modules are integrated via a learnable weight control
component, which adaptively sets their contribution. We have
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evaluated classical and deep learning methods on Spineweb
dataset-2. ECSU-Net has provided comparable performance to
previous neural network based algorithms achieving the best
segmentation dice score of 95.60% and classification accuracy
of 96.20%, while taking less time and computation resources.

Index Terms— Vertebra segmentation, vertebra classification,
computed tomography (CT) images, image fusion, computer-
based therapy support system, 2-dimensional U-Net.

I. INTRODUCTION

OWER back pain (LBP) caused by spinal disorders

is reported as a frequent cause for clinical visits [1],
[2]. The automatic image segmentation [3]-[S5] of the spine
obtained from a computed tomography (CT) image is signifi-
cant in diagnosing spine disorders such as fracture detection,
intervertebral disc pathology, and spinal trauma patients [6].
A computer-based spinal therapy support system uses CT
images of the patients to extract relevant information by
segmentation of the vertebra and create a 3D model [7].
Using these models the surgeon can more thoroughly assess
the situation by exploring views of patient’s spinal anatomy
from different angles and depth [8]-[10]. The bone structures
have high contrast in today’s medical imaging modalities
such as CT scans which provide high resolutions images
with numerous quantities. The vertebrae segmentation is still
considered a challenging task due to many difficulties like the
unclear boundaries of the vertebrae associated to spongy and
soft bones, the abnormal spine curves and complex structure of
the vertebra [11]-[13]. Moreover, such a large quantity of high
resolution images cannot be examined manually. Automated
image segmentation could increase precision by eliminating
the subjectivity of the clinician [14].

Various techniques have been proposed to overcome the
abovementioned shortcomings related to vertebra segmentation
in last decade [15]. Traditional segmentation algorithms fully
exploit the density, gradient and local similarity information,
together with clustering, histogram or graph theory algorithms.
Recent spine segmentation research can be categorized into
two main approaches: free estimation methods and trainable
methods. Free estimation methods do not require an explicit
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Fig. 1. The overall work flow of proposed approach. (a)-(d) are three modules and calculated loss of our proposed ECSU-Net i.e a) is the segmentation

module, b) is the intervertebral disc extraction (IDE) module, c) is the adaptive discriminative loss (ADL), and d) is the fusion module.

model for segmentation and include the followings: classical
region growing, watershed, active contours, and graph-cut
methods [16], [17]. However, the trainable methods impose a
central assumption that the structures of interest organs have
repetitive geometry. Therefore, we can utilize the repetitive
geometry into a probabilistic representation aimed toward
explaining the variation in the shape of the organ and uti-
lize the extracted information for segmentation task. All of
these methods require expert human intervention and the
manual adjustment of the parameter settings at various distinct
steps [8].

Other techniques such as [18] has been proposed which
utilized watershed segmentation and directed graph search
to locate the vertebral body surfaces whereas identifica-
tion and segmentation of the vertebrae were not carried
out. A 3D deformable model through mesh adaptation was
used by [15] for vertebra segmentation but its performance
depends on tremendous parameter setup. Chen et al. [19]
localized and segmented 3D intervertebral discs (IVDs) from
MR images. Their approach accomplished disc localization
task by estimating the image displacement and classification
which were done using a data-driven approach. In another
approach [20], a 3D U-Net based segmentation of IVDs
was proposed from multi-modality MRI images, where the
centers of intervertebral discs were first localized from all the
spine samples and then training of network was carried out
using the cropped small volumes centered at the localized
intervertebral discs. A recent method named S3egANet [21]
proposed to solve the high variety and variability of complex
3D spinal structures through a multi-modality autoencoder
along with a cross-modality voxel fusion module to incorpo-
rate comprehensive spatial information from multi-modality
MRI images and achieved state-of-the-art performance. In the
SpineParseNet [22] approach, the authors achieved automated
spine parsing for volumetric MR image using a 3D graph
convolutional segmentation network for coarse segmentation

and a 2D residual U-Net for 2D segmentation refinement. For
detecting and labeling vertebrae shapes, Glocker et al. [23]
implemented a trained model with supervised classification
forest; however, this method needed an appropriate feature
and require a prior knowledge of the spine shape, therefore,
considered as impractical for general and varying image data.

Automatic spine segmentation has challenges associated
with it. Some of these challenges are attributed to the anatomic
complexity of the spine (33 vertebrae, 23 intervertebral discs,
spinal cord, and connecting ribs, etc.), image noise (all real-life
data and CT images contain noise), low intensity (in spongy
bones and softer bones) [24], and high complexity due to com-
ponents like 3D convolution or high resolutional 3D images.
The majority of spine CT scans of the chest, abdomen or neck
cover only part of the spine. Segmentation and classification
should therefore not rely on the visibility of certain vertebrae
from a single view/axis [25]. A generic vertebra segmentation
algorithm therefore needs to be robust with respect to different
image resolutions and different coverages of the spine with
respect to various axis such as transverse, sagittal and coronal
views to provide 3D model of segmented vertebras.

Inspired by the remarkable performance of [26], which
shows another direction to tackle instance segmentation by
employing clustering on the achieved output, we propose a
new 3D segmentation network named an Embedded Clustering
Sliced U-Net (ECSU-Net), which can alleviate the intricacy
issues related to high resolutional 3D images at input and
model complexity problems related to anatomy of vertebra
as shown in Fig. 1. ECSU-Net comprises of three modules
i.e segmentation, intervertebral disc extraction and fusion
modules [27]. In the first module, we exploit 2D U-Net by
introducing three sliced sub-nets to process transverse, sagittal,
and coronal axis of input image to provide scalability by
processing the high resolution 3D CT scans to three subnets in
the same way as to process 2D images. In the second module,
we introduce an intervertebral disc extraction (IDE) module
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to classify and tag the segmented vertebras for measuring
distances of adjacent vertebras. For the third module, we make
use of fusion concept in the form of concatenating strategy
to combine results obtained from the three segmentation
subnets (transverse, sagittal, and coronal slices) for refined 3D
segmentation results [28].

ECSU-Net improved the general 2D U-Net architecture to
incorporate the high resolution 3D input images in a similar
way as to process 2D images providing scalability as a novel
feature [29]. Our hybrid strategy based approach can be
useful for many other similar problems that should provide
efficient yet scalable solutions in 3D medical image processing
where the target objects usually have to process the high
resolution input images. The proposed segmentation network
provided comparable performance to previous neural network
based algorithms on Spineweb dataset-2 [11], while taking
less time and computation resources. Clinically, the proposed
model can benefit many automatic spine analysis problems
that use high resolution 3D CT scans. The ECSU-Net con-
currently performs segmentation of a vertebra as well as
classification that whether the vertebra is correctly segmented
in the image. Following are the key contributions of this
study.

o A novel 3D ECSU-Net as an instance embedding clus-

tering approach is proposed by jointly learning from
a hybrid strategy of three modules i.e. segmentation,
intervertebral disc extraction and fusion for effective
and efficient coarse-to-fine vertebra segmentation and
classification.

o The key feature of segmentation module is the improve-
ment in general 2D U-Net to provide scalability by intro-
ducing three sliced sub-nets to process high resolution
3D CT scans at input in the same way as to process 2D
images.

o The (IDE) module finely classify and tag the segmented
intervertebral disc to measure distances of adjacent verte-
bras to help surgeons for computer-based spinal diagnosis
and therapy support system.

« We introduce a fusion strategy, which combines the con-
tribution of features from sliced input data with a learn-
able weight control module for leveraging the advantages
of different axis to preserve spatial details for accurate
vertebra classification.

We quantified the similarity in terms of success and
failure rates for vertebra segmentation and intervertebral
disc classification using average precision and average recall
metrics. In according to the above three advantages, our
method can compute very efficiently for finer classification of
vertebra’s structures which can create improved segmentation
results.

II. METHOD
Inspired by [6], we propose a three-stage segmentation and
classification model based on 2D U-Net [30], our segmentation
model is 3D and comparatively low in cost. Different from [6],
our model exploits all the transverse, sagittal and coronal slices
of CT images and can be trained with insufficient data and few
computational resources (see Fig. 2 and Algorithm 1).

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

Algorithm 1 ECSU-Net Based Intervertebral Disc

Segmentation

Input: 3D_Vertebra_CT-Data
Output: Segmented_Intervertebral_Discs
Initialize_ Weights( f¢, fs, fc);
Split3Slices (Transverse( f;), Sagittal(fs), Coronal(f.));
for Seg Module;. ., && IDE_Module;, ., &&
Fusion_Module; ., do
Seg_Module < Apply_uNet(f:, fs, fc);
Seg_Loss=a.Lyc + 8.Lpr + v.Lrg;
Lapr = a.LossA_var + B.L055A_pist +7-L055A_Reg
IDE_Module <— IDFE (Seg_Module)
K-means (IDE Seg_Module);
Fusion_Module<— (IDE Seg_Module, (f:, fs, fc));
dy, dy <Calculate_Distance (IDE);

llo — a?||2,v=0,0 <0’ orve{l,2, 3}

Losspr, =

end for
repeat
Cal_Total_Loss¢— (L0, Loss apr+raLossrL)s
Move to next slice;
until Refined_3D_Seg(Segmented_Vertebra+Total_Loss);

A. U-Net

U-Net [30] is a light-weight segmentation network and is
especially popular among medical image analysis tasks. The
architecture of U-Net is given by [30], consisting of 4 down-
sampling modules, one bottom module and 4 upsampling
modules. The down-sampling module includes two 3 x 3
convolutions, a 2 x2 down pooling and the upsampling module
includes two 3 x 3 convolutions and a 2 x 2 up pooling.
The down-sampling module’s outputs are concatenated with
up-sampling modules with same feature map size. And the
bottom module only consists of two 3 x 3 convolutions. Since
U-Net is a fully convolutional network, it can handle images
with any sizes as long as the image size keeps unchanged after
pooling and up-pooling process, i.e. lengths of both side are
multiples of 16.

B. Segmentation Module

Segmentation module is applied on three subnets for which
the provided input is divided into three branches of trans-
verse, sagittal and coronal slices with identical structures.
Segmenting and classifying vertebras by focusing on only
one dimension is not always accurate. Experienced radiolo-
gists usually compare the current vertebra with its adjacent
vertebrae, utilizing the continuity of the spine in its 3D
form, i.e. how a normal vertebra in a 3D environment is
similar in the shape and signal intensity to its adjacent normal
vertebrae. Imitating the radiologists, the segmentation module
is designed to take three views of vertebra as input for concrete
accuracy and efficacy, i.e transverse, sagittal and coronal views
(denote as x;; x; x. respectively), and leverage a three-slice
architecture. We denote the three branches of input with
their corresponding three feature as (x;; x5; x¢): (ft; fs; fe)
respectively. The features obtained by three sliced branches
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module.

are input to the rest convolution layers of the stream S after
fusing them by pixel-wise addition. The final output features
of this stream Fy is expressed as:

Fr=S(fix) + £i(xs) + felxe)) M

The output of the network also includes a number k& which
represents how main pieces of spine are there in this CT image.
The clustering is applied to the outputted embedding space,
where we use the K-means algorithm to split the whole 512 x
512 pixels into k + 1 categories.

Segmentation network is composed of three independent
sub-nets, which are based on 2D U-Net [30]. Compared to
3D convolution based networks, the 2D model is significantly
more efficient, smaller in size and easier to train. Since typical
CT scan images have high resolution, hence implementing
three 2D network require reasonably less computational power
than a 3D convolution model. Besides computational consider-
ation, 2D slices based method can fully exploit the insufficient
data. Lack of training data is a common issue in biomedical
image analysis and it is more severe in case of 3D models,
as the annotation of 3D images is expensive and laborious.
Our 2D approach can partly alleviate this issue by splitting
3D voxels into multiple 2D images (see Fig. 3).

The input channels (W) after spatial embedding of pixel /;;
in a image with size (H, P) can be formalized as: Wi(jl) = I,
Wi(jz) = # and Wi(?%) = %. The sagittal and coronal net-
works output 20-channel softmax results which stands for the
probability for a pixel to be a part of background or one
of the 19 vertebrae. Each of three sub-nets is trained on all
the transverse, sagittal and coronal slices of CT scans and
produces a rough 3D segmentation of the whole image by
stacking all the 2D outputs.

1) Adaptive Discriminative Loss (ADL): Our novel idea of
ADL found best suited for instance-level segmentation tasks
which is inspired by [31]. The core idea of our designed loss
is differentiated from the previous losses is in having a special

Transverse

Sagittal Coronal

Fig. 3. Illustration to show the transverse, sagittal, and coronal slices of
input image to provide scalability for processing the high resolution 3D CT
scans.

design to handle losses of three subnets with respect to three
axis of input CT image.

Losspr, =L =a.Lyc+ p.Lpr +7y.LrG 2)

Above is the general form of discriminative loss function.
where the LVC denotes variance loss (Lossa_yqr), LDT is rep-
resenting distance loss (Lossa_pis;) and LRG is showing the
regression loss (Lossa_geg). For generating embedding space
of each slice, we have designed a differentiable slice-wise pixel
embedding function that maps each pixel in an input CT image
to a point in n (for our case n = 3) dimensional feature space.

The perception behind our adaptive loss function is that
embedding with the same label (same slice) should end up
close together, while embedding with a different label (dif-
ferent slices) should end up far apart. We now formulate our
discriminative loss in terms of repelling and attracting forces
between and within clusters. The ADL divides loss item into
three terms: (1) Adaptive variance (A_Var): regraded as the
attracting force to draw embedding towards the mean value of
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the cluster for transverse, sagittal and coronal slices. (2) Adap-
tive distance (A_Dist): regarded as the repelling force that
pushes the cluster away from each other for transverse, sagittal
and coronal slices (3) Adaptive regularization (A_Reg): a
small attracting force to draw all clusters embedding to the
center of the same embedding cluster of transverse, sagittal
and coronal slices.

For our setup, a cluster is defined as a group of pixel
embedding sharing the same label with the same slice, e.g.
pixels belonging to the same instance and slice. We use the
following definitions: C is the number of clusters in the gold
standard ground truth, N, is the number of elements in cluster
¢, xi (x¢, x5, %) is an embedding for three slices transverse,
sagittal and coronal, g, (ter, tes, tec) 1S the mean embedding
of cluster e (the cluster center) for the three slices (e, ey, e.).
The term |[|.|| is representing three distances D1, D, and D3 for
three losses Lossa_var, LoSSA_pist, LOSSA_Reg, and [x]4 =
max(0; x) denotes the hinge. €, and ¢; are respectively the
margins for the variance and distance loss. Now the ADL can
be written as follows:

C 2
1 1
Lossa_var = — E —Hfﬁl e — (x7, x5, x| — € | +
C < N.

(3)
| c
o c c
LOSSA_DISI = C(C — 1) ZHeS:lHeC:1
eql
2
[261) = pter — ttes — ﬂeC||:| + 4)
neql = er = lepseg,ecter,estect
1 &
LOSSAfReg = E Z ||,ue(T,S,C)|| (%)
e=1
ZLapL = a.LosSA_var + f.L0oSSA_pist + ) .LOSSA_Reg
(6)
In our case we set « = f = 1 and y = 0.0001. The

loss is minimized by stochastic gradient descent. Thus, the
classification of vertebrae in the output of the same class are
clustered together while those of different classes are repelled
apart.

C. Intervertebral Disc Extraction (IDE) Module

After acquiring the embedding space of the input RGB
image and get each instance segment of three corresponding
slices with the K-means algorithm. we present a searching
line algorithm along the y-axis of the embedding space in
order to find out the inter-space between two-pieces of spine.
Basically, what we done is to find each pixels along each y-axis
to see whether its upper and lower area are belong to different
instance segment while its own location is in the background.
We find this simple algorithm works well when the quality
of the outputted embedding space is good enough. We have
shown the efficacy of presented idea in the results section
with qualitative analysis. However, vertebra classification and
tagging require very different features, and both tasks are
characterized by high intra-class and high inter-class similarity

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

’ D, :Smallest distance D, : Largest distance |

Fig. 4. Intervertebral distance calculation and tagging concept. D1 is the
distance between pixel on the same segment of a spine whereas D2 represents
distance on the different segments.

between the adjacent vertebras. For resolving this issue we
have presented a novel concept of ADL for enabling the pixels
belong to the same object as close to each other as possible
(Dy) on the embedding space while for the pixels belong to
different objects, the distance should be as large as possible
(D7). Our IDE module learns to identify vertebra through
comparing and contrasting interspace distance between adja-
cent vertebra using intra class and inter-class distance to
deliver fine-grained tagging results as shown in Fig. 4.

D. Fusion Module

Since three sub-nets in segmentation networks may produce
different results on some pixels which is hard for them to
identify individually, the best idea is to take all their results
into consideration and fuse the outputs into one. As, splitting
data into 2D slices may omit the local information of reduced
dimension, here our fusion strategy can significantly recover
the skipped information. Our fusion module takes input in the
form of coarse segmentation results from IDE module and
outputs the refined 3D segmentation [32]. Degradation in our
case is of two types. First one is additive noise due to image
denoising and second one is effects of convolution process in
the form of blind convolution. To remove denoising effects
we have applied mean fusion which is simply averaging the
obtained image over multiple realizations with respect to time.

In the fusion module, we have introduce a weight control
term which generates adaptive weight 4 to integrate and con-
trol features from three slices f;, fs, f.. An obvious strategy
for ignoring incompletely visible vertebrae in the segmentation
process would be to train the network only with examples
of fully visible vertebrac. However, the proposed scheme
requires segmentation of vertebral slices with respect to three
axis. If a slice in one plane is incompletely visible, there is
possibility of its complete visibility in another axis. Hence
inspired by the [25], we therefore choose to incorporate a
classification component in our fusion network that classifies
each segmented vertebra as correctly segmented or incorrectly
segmented. The output comprises of single value in [0, 1],
which specifies the possibility that the vertebra is completely
visible in the input image with respect to all axis. The
obtained segmented images consists of true/segmented part
and false/degradation part, which we have restored by fusion
strategies. A function ¢, is employed to transform fused
feature of f;, f;, and f. to weight h;, hs, h, with 3D as
follows:

h:¢h(ft»fs»fc) )
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The fused output f;, is obtained by concatenating h; X f;, hy X
fs and h. x f.. Total weight loss (product) of fused module
can be expressed as:

LosspL = H[lla — o’ 0=0,0 <o, orve{l, 2,3},
1 .
o > —, otherwise (8)
O-l)

h(ti,si,¢i)
Sftissisei)
o’(c” > 3), which controls the bound of . Here we define

the total loss of proposed method as:

where o is the weight ratio we set a parameter

LTotal = M ZLossapL + A ZLossrL 9)

1) Mean Fusion: Let s, ss, sc denote the 2D segmentation
scores on axial, sagittal, and coronal slices of one voxel. Mean
fusion is simply averaging the three scores:

Sa + Ss + S

Smean = 3 (10)

If the mean fusion is implemented on classification results,
only sagittal and coronal results are used:

Ss + S,
Smean = d - (11)
2
The final results O are:
Omean = argjmaxsmean,j (12)

Blind deconvolution is an ill posed problem for one single
image, which can be solved by accruing multiple acquisitions
of the same object. To remove degradation due to blind
convolution, for an input image /, with W; channel in three
dimensional sagittal, coronal and transverse plane (x;, X, X¢),
the noise n added by blind deconvolution D is defined in terms
of:

/[1 x Wil(xg, xi, xc) + ni(xs, X, xc) = Di(xg, xp, x0)  (13)
we have regularized by point spread function (PSF) regular-
ization which is defined in our case for multiple channels D
to D, as:

D]Z/IXW],DzZIXWQ,...,DnZIXCn (14)

hence we have regularized the terms as:

I xX Wi x Wy — Wy x Wy x1 (15)
Dy x Wo =W x Dy (16)
Now, after regularization R we have obtained
1
RWa) =5 > 1IDax Wy =Dy x Wal> (17)

1<a.,b<i

for an additive constrain of 0 <
1V (xg, X1, X¢, @).

After regularization, vote fusion is implemented for segmen-
tation results with binarization, i.e. it is applied on the binary

Wa(-x39-xf’x6‘) =

885

outputs rather than score so it can be seen as the plural vote
result of three input channels.

0. = argjmaxS_’j (18)

1, Ifos+os+o.>1
Oluge = {O, otherwise (19)

|1, Ifos+os+o0.>2
O20e = {O, otherwise (20)

1II. EVALUATIONS AND DISCUSSIONS
A. Dataset Details

We evaluate various vertebra segmentation methods,

including classical and deep-learning method, on Spineweb
dataset-2 [33], which contains spine CT scans of 10 young
adults with annotation in .nii format. The CT scans are 3D
12-bit (ranging from 0-4095) gray images. We downsample
the data to 8-bit by dividing the pixel values by 16. We also
converted the .nii format files to hdf5 files for higher reading
speed. We sliced the CT images on three directions, which
include over 5000 2D slices for each direction. We split the
data set into three sets: train, valid and test. The first 9 scans
were used for the training and validation phase and the left one
were used for testing. We randomly sampled 10% of slices of
the first 9 scans as validation set and 90% as training set. Our
training set contains about 4000 slices, validation set contains
about 500 slices and test set contains about 500 slices, which
slightly vary among different slicing directions. In order to
keep the output size unchanged during pooling and up-pooling,
we crop the image size to its nearest multiple of 16.

B. Evaluation Parameters

The manually labeled images from the Spineweb
dataset-2 [33] of each CT scan are used as ground truth and
the results of ECSU-Net segmentation are converted into
binary images with the same voxel resolution and image
dimensions as the ground truth image. In this study for
description, the ECSU-Net segmentation result is indicated by
US and the ground truth by GT. We have utilized three types
of metrics for quantitative evaluation including similarity
metrics (dice coefficient, intersection over union), distance
based metrics (average symmetric surface distance), and
classical measurements (accuracy, precision, and recall).

1) Dice Coefficient (DC): DC quantifies the degree of the
spatial overlap between two binary images to be compared.
DC values range between 0-1, where 0 means no overlap

and 1 means perfect agreement in compared images. For this
2|USNGT|
[USTHIGT|

2) Intersection Over Union (IoU): We have utilized IoU as
a measure to calculate extent of overlap found between ground
truth (GT) image and the segmented image (US) obtained from
our method.

3) Average Symmetric Surface Distance (ASSD): ASSD
determines the measure of border voxels US and GT images.

4) Classical Metrics: We make use of the confusion matrix
to achieve classic measurements by calculating four variables:
true negative (TN), false negative (FN), true positive (TP), and
false positive (FP).

research, the DC values are calculated using
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Fig. 5. Left: Felzenszwalb. Right: SLIC. The yellow lines indicates the
segmented boundaries.

a) TN: Measures the pixels which are not classified as the
vertebra in the ground truth as well as ECSU-Net (correctly
detected as background).

b) FN: Pixels classified as the vertebra in the GT image,
but not classified as vertebra by the proposed method (falsely
detected as background).

c) TP: For this study, TP is a measure of pixels correctly
segmented as the vertebra in the ground truth and ECSU-Net
segmented images (correctly segmented).

d) FP: FP is the measure of pixels which are not clas-
sified as the vertebra in the ground truth, but are classified as
the vertebra by ECSU-Net(falsely segmented)

Using these four measures, we have defined precision

TP .. .
as 7pIFp: recall as a measure of true positive rate using
TP . TP+TN
7p3FN» and accuracy of segmentation as 7p 7y FpIFN

Also, we take average of abovementioned metrics.

C. Evaluation Details of Classical Methods

Before presenting results obtained from our model, we have
shown the segmentation results obtained from several popular
segmentation models, which are detailed below.

o Felzenszwalb algorithm [34]. The algorithm was pro-
posed by Pedro F. Felzenszwalb in 2004, introducing a
graph-based method of image segmentation. It presented
a predicate to define the image region’s border, and used
this predicate to greedily decide how to perform the image
segmentation.

o SLIC [35]. It is an algorithm used to generate superpixels
given an image with K-means clustering. The main idea
of super-pixel is to abstract the information contained
in the image, reducing the computational complexity,
obtaining a more robust and generalized representation.

Here we illustrate some sample images segmented by these
two algorithms in Fig. 5. Both algorithms tends to over
segment the image. SLIC’s [35] segmentation presents regions
that are more compact, while Felzenszwalb gives bigger
segmented regions which are slightly irregular. Moreover,
different views also result in varied performance. To solve
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TABLE I

RESULTS WITH CLASSICAL SEGMENTATION METHODS WITH
TRANSVERSE AND SAGITTAL AXIS

Method Dice (Transverse)  Dice (Sagittal)
Felzenszwalb [34] 0.5863 0.7168
SLIC [35] 0.7165 0.6624
TABLE 11

RESULTS FOR FUSED CLASSICAL METHODS A| AND Ay DENOTES FELZ
AND SLIC RESPECTIVELY ALONG WITH DICE

Ist Axis 2nd Axis Al A2 Dice
Transverse Sagittal SLIC  Felz  0.7420
Transverse Sagittal SLIC SLIC 0.7067
Transverse Sagittal Felz  SLIC  0.4791
Transverse Sagittal Felz Felz  0.4867

Sagittal Transverse Felz SLIC  0.7193

Sagittal Transverse ~ SLIC  Felz  0.5868

Sagittal Transverse ~ SLIC ~ SLIC  0.6944

Sagittal Transverse  Felz Felz  0.5640

the over segmentation problem, we used gray scale threshold
to classify whether a segmented region belongs to a vertebra.

Considering the two algorithms are designed for 2D images,

we also evaluated them along two different axis: transverse
and sagittal, results in terms of DC are shown in Table I.
As shown, SLIC [35] significantly outperformed Felzenszwalb
algorithm [34] along transverse, while Felzenszwalb [34]
presented better performance along sagittal. The different per-
formance inspired us to combine their advantages by fusing the
results of Felzenszwalb and Huttenlocher [34] and SLIC [35]
on the two different axis. The fusing strategy can be stated as
follows:

o Perform Felzenszwalb and Huttenlocher [34] or
SLIC [35] along the first axis, using gray threshold ¢ to
classify.

o Perform Felzenszwalb and Huttenlocher [34] or
SLIC [35] along the second axis. For a region, if it
satisfies the threshold requirement, and more than max
y of its pixels is predicted as vertebra by the first axis,
label this region as vertebra. If less than min y of its
pixels is predicted as vertebra by the first axis, label this
region as background.

In our experiment, we set maximum upper limit to 90, and
minimum lower limit to 50, resulting in best performance. The
evaluation results are shown in Table II. The best performance
is visualized in Fig. 6. As shown, the fusing strategy success-
fully improved the segmentation performance. Inspired by the
different performance along different axis, we introduced a
fusing strategy in our proposed model.

D. Quantitative Analysis

1) Quantitative Analysis w.r.t Success and Failure Rates:
To show the mean average accuracy of ECSU-Net from a
different point of view with respect to transverse, sagittal, and
coronal slices of input image, we have carried out experiments
to demonstrate the success and failure rates. Following four
metrics are used: success rate, failure rate, partial success rate,
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Fig. 6. Left: Original image. Middle: Ground truth. Right: Predicted result.
The vertebra is highlighted with yellow. Al is the algorithm composed on the
first axis, and A2 is the algorithm composed on the second axis.

TABLE III

QUANTITATIVE RESULTS IN TERMS OF SUCCESS AND FAILURE RATES
ALONG WITH PARTIALLY SUCCESS AND FAILURE RATES (S.R, F.R,
P.SR, P.FR RESPECTIVELY). R(S:F) STANDS FOR RATIO OF
SUCCESS AND FAILURE RATES OF CLASSIFIED
AND TAGGED VERTEBRA

Class S.R FER PSR PFR R (S:F) (%)
Class A
(Cervical) 61.518 3.083 3.166 31.251 61:3
Class B
(Thoracic) 70.916  6.253  5.124  17.666 70:8
Class C
(Lumbar)  80.398 2975 2953 12.67 82:2

and partial failure rate. The results and statistical analysis
of these four metrics are described in Table III. For our
case, the success rate is a percentage measured as a total
number of successfully detected pixels which are correctly
segmented as the vertebra in the ground truth and ECSU-Net
segmented images (correctly segmented). Failure rate is a
percentage calculated as a number measured pixels, which are
not classified as the vertebra in the ground truth as well as
ECSU-Net. Partially success rate is metric to show a total
number of partially successful measured pixels, which are not
classified as the vertebra in the ground truth, but are classified
as the vertebra by ECSU-Net (falsely detected as vertebra).
Partially failure rate is the number of partially failed pixels
classified as the vertebra in the GT image, but not classified
as vertebra by the ECSU-Net (falsely detected as background).
2) Training Details and Evaluation of ECSU-Net: In this
subsection, we have presented the implementation and evalu-
ation details of ECSU-Net. We trained the three segmentation
sub-nets individually with Adam optimizer having learning
rate 5 x 10, momentum parameters 0.5 and 0.999. Since
the input images are different in size, the batch size is set
to 1. All the networks are trained for 10 epochs with Tesla
T4 GPU on Google Colab platform. The training of transverse
slices took about 40 minutes per epoch and coronal and sagittal
slices took 30 minutes per epoch.
a) Individual sub-nets performance: First, we evaluated
three 2D U-Net individually. Since the classification outputs
of 20-channel coronal and sagittal networks can be easily

887

TABLE IV

TEST SEGMENTATION RESULTS OF OUR PROPOSED ECSU-NET
WITH DIFFERENT FUSION STRATEGIES

Accuracy  Precision  Recall TIoU DC
Method %) * %) %) (%)
Transverse only 99.55 93.28 9598  89.77  94.61
Coronal only 99.34 85.81 98.13 8443 91.56
Sagittal only 99.53 89.68 98.93  88.82 94.08
1 vote fusion 99.62 96.72 94.47  91.54 9558
2 vote fusion 99.63 91.95 99.19  91.26 9543
Mean fusion 99.64 92.07 99.41  91.57 95.60
TABLE V

TEST CLASSIFICATION RESULTS OF ECSU-NET

Method Accuracy (%) Mean Accuracy (%)

Transverse only - -
92.53

Coronal only 96.34
Sagittal only 91.20 95.03
Mean fusion 93.20 96.34

transformed into 2-channel segmentation results by regarding
all 19 vertebrae classes into one class. Besides, in order to
overcome the influence of class imbalance (pixels in back-
ground class are much more than others), we calculated class-
wise mean accuracy, which is the average accuracy on each
class. The evaluation results on three sub-nets on test set are
shown in Table IV and some inference results are visualized
in Fig. 7. Where axis O represents segmentation results of
transverse plane via first sub-net, axis 1 is showing result
obtained from coronal plane with second sub-net while the
axis 2 is depicting results achieved via sagittal plane from the
third sub-net. With single 2D U-Net, the segmentation results
can be quite accurate. It can be seen that the 2D U-Nets with
different slicing directions significantly outperform traditional
methods. The best segmentation direction is transverse whose
dice score can reach 94.61%, because the slices on transverse
plane have least noises and are regular in shape. It is hard to
find the difference between ground truth and model prediction
with human eyes. The best classification direction comes to
sagittal network whose mean accuracy is 95.20% and its
segmentation results are close to the transverse one.

b) Fusing strategy: We evaluated the fusion strategies
in terms of accuracy, precision, recall, IoU and DC para-
meters. The results are shown in Table IV and Table V,
some of the fusion methods achieves higher accuracy while
some others have negative effect. For segmentation, the best
fusion approach is simple mean fusion, which achieves the
best segmentation results among all experiments we have
conducted. The other fusion strategies for segmentation also
improve the dice score by almost over 1%. For classification,
surprisingly, the accuracy of mean fusion outputs is better
than single coronal network but worse than sagittal network.
Perhaps weighted mean fusion would outperform the current
fusion method.

E. Qualitative Results

1) Tagging of Classified Vertebras With Respect to
Measured Distance: We have evaluated ECSU-Net by
drawing precision-recall curves to qualitatively evaluate its
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Fig. 7.
while the axis 2 is depicting results achieved using sagittal plane.

performance for tagging the classified vertebra with the mea-
sured distances. Our experimental setup draws precision-recall
curves for true positive rate and positive predictive value (TPR,
PPV) with respect to varying views of slices i.e. transverse,
sagittal and coronal slices at specific threshold of IoU value.
For analyzing effects of measured distance on tagging the
classified vertebra with respect to specific precision-recall
values, we have used IoU as a measure to calculate how much
overlap found between two regions of adjacent vertebras. [oU
permits us to detect the measured distance overlapping to the
two adjacent vertebras. The true-positive rate is known as
recall while the PPV is termed as precision.

In this work, precision is defined as the ratio of truly
tagged vertebra to the total number of vertebra classified by
ECSU-Net. Precision values closer to 1.0 means that positive
tagging by proposed approach are in fact correct tagging as
illustrated in Fig. 8. We have utilized recall for measuring false
negative rate. The recall is defined in our scenario as the ratio
of truly tagged vertebra to the total number of actual vertebra
in an input image as shown in Fig. 9. Recall values near to 1.0

Visualization of 2D U-Net results: Axis 0 represents segmentation results of transverse plane, axis 1 is showing result obtained from coronal plane

represent almost all vertebra in input CT image are positively
tagged by ECSU-Net. We have defined three threshold levels
for ToU as follows:

o IoU (%) (Thershold; = 89.77): The presented value of
IoU shows least overlapping distance (improved precision
recall values) between two adjacent vertebras for trans-
verse slice

o IoU (%) (Thershold, = 84.43): The presented value
of ToU shows least overlapping distance between two
adjacent vertebras for coronal slice which means we have
obtained improved precision recall values.

e IoU (%) (Thershold; = 88.82): The presented value
of ToU shows least overlapping distance between two
adjacent vertebras with improved precision and recall
values for sagittal slice.

FE. Ablation Study

We further investigate the individual contribution of the
three key architectures in ECSU-Net, i.e. the segmentation,
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TABLE VI

ABLATION STUDY RESULTS FOR PROPOSED METHODOLOGY, WHERE SEG.M REPRESENTS SEGMENTATION MODULE, IDEM STANDS FOR
INTERVERTEBRAL DISC EXTRACTION MODULE, F. M Is SHOWING FUSION MODULE, T.L REPRESENTS TRIPLET LOSS
AND ADL IS SHOWING THE ADAPTIVE DISCRIMINATIVE LOSS

Method Avg. Accuracy(%) meanAvg. Accuracy (%)  Avg. Precision (%)  Avg. Recall (%)
Seg.M with MaskRCNN (V1) 33.43 32.44 85.43 83.49
Seg.M with SegNet (V2) 84.37 83.44 86.38 85.25
Seg.M with U-Net (V3) 87.44 86.98 85.18 84.29
Seg.M (V3) + IDEM + EM + T.L 86.93 85.43 89.69 88.98
Seg.M (V3) + IDEM + EM (without sliced input) 95.43 91.28 92.34 94.34
Seg.M (V3) + IDEM + FM + ADL (with sliced input) 99.64 98.95 96.07 99.41
1 Transverse
i-;) 1oU=89.77 % Coronal
= o8 Sagittal
o
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o 0.2 04 0.6 0.8 1
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Fig. 8. Qualitative experiment for showing the segmentation and classification
performance with different number of training samples We choose the training (b)
set with 150, 200 and 270 samples from top to bottom. Column 1 is showing
the CT image, column 2 is the coarse segmentation result while column 3 is  Fig. 9.  Receiver operator curves (ROC) for various levels of threshold

the representation of refined segmentation and classified vertebra.

intervertebral disc extraction and fusion modules, via the
ablation study.

1) Discussion on Various Combination of the Proposed
Method: We compare the performance of the segmenta-
tion module with and without sliced CT images at input.
Another aspect of comparison is carried out by utilizing
Mask RCNN [36] and SegNet [37] as an encoder-decoder
along with U-Net. Moreover, we have added triplet loss and
AD loss along with ECSU-Net whole stream to analyze its
performance. The performance of sliced input is similar to
without sliced input, but sliced-input architecture provides the
possibility to optimize each sliced individually thus making the
training process efficient thus easing the trade-off relationship.
Compared to without sliced input, the avg. precision and avg.
recall of sliced input with AD loss increase up to 4% (92.34%
vs 96.07%) and 5% (94.34% vs 99.41%) respectively as shown
in Table VI.

We notice that adding triplet loss damages the performance
of the ECSU-Net. Triplet loss can enhance the feature extrac-
tion ability of ECSU-Net but weaken its training efficiency.
Experiments prove our hypothesis that decoupling the three

metric (IoU) with respect to precision and recall values.

kinds of slices for input data enhance each feature extraction
with respect to three dimensions, which as a result can improve
the segmentation and classification performance of vertebra.
Comparing the performance of proposed model with Mask
RCNN [36] and SegNet [37] as an encoder network, we can
see form the Table VII that our method achieves higher avg.
accuracy and mean avg. accuracy by up to 3-4%(83.43% and
84.37% vs 87.44%) and up to 3-4% (82.44% and 83.44% vs
86.98%) respectively. As, the compared techniques are suited
for proposal base segmentation and semantic segmentation
which is varied form our goal of instance segmentation.
The experimental results reveal that although ECSU-Net has
hybrid the interrelated modules, its generalization ability and
embedded expert knowledge, significant for learning distin-
guishable features efficiently from a small amount of training
data.

2) Comparison of ADL With Other Losses: In this section,
we introduce the choice of our loss function used to train the
segmentation network. We tried three different loss functions
and finally found the last one achieve the best experiment
results.
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The first idea is inspired by the triplet loss introduced
by [38]. The main idea of triplet loss function is to let the
instances within the same category be as close as possible in
the outputted embedding space, which just totally match our
goal and needs. A common triplet loss function can be written
as follow:

Triplet(Loss) = max (d(a, p) —d(a,n)+margin, O)
(2D

where a represents the anchors (in our tasks, it is pixel-
level embedding vector), p represents a positive image and
n represents a negative image, margin is a threshold that
defines how far the dissimilarities between the positive and
negative samples should be in the embedding space. In our
case, to define a proper margin is easier said than done.
Although we can turn the scale of the outputted embedding
space into a uniform scale, for example from O to 1 by using
Softmax, since there are multi-class (about 8-10 classes) in one
image, the fixed margin is hard to satisfy all pair of classes.
Also, running this loss function in this spine segmentation is
also not training efficient, since each two different piece of
spine need to calculate one loss. Suppose there are (11 + 1)
pieces of spine (+1 represents the background segment), the
overall number of loss we need to calculate and add together is
12 x 11 = 132, which might be a huge redundant of training
efficiency cost. We tested this loss function with a margin
set as 0:5 and add a Softmax layer as the outputted layer
and found it works fine but inefficient with respect to training
performance.

Since, the intuition of our idea is to let the pixel embedding
of the same segments as close as possible, which can be
regarded as the distance between the mean value of the two
segments as small as possible and the pixel embedding of the
different segments as far as possible. Hence, we follow this
simple idea and get our second loss function, which can be
shown as follow:

bx1

Loosy = a x disgiyy + —
disqifs

(22)

where a and b are two weight factors used to balance the
two parts of this equation. To improve the training efficiency
of this loss function is in each training iteration, we opt to
sample a certain number of points to calculate this loss, for
example 500 in our experiments settings. We found this loss
function not only achieve better training efficiency compared
to original triplet loss in our cases but also a better way
to avoid overfitting, since in each training iteration, only a
part of pixels are taken into consideration. The experiment
result of this loss function is much better in both accuracy
and efficiency compared to previous triplet loss. However,
the problem of this loss function is the embedding of the
background is quite noisy, which might affect the clustering
result. Table VII is showing the statistical results of ADL with
other two losses.

3) Performance With Different Number of Training Sam-
ples: In this section, our experiment focus on the segmentation
performance with different number of training samples and
try to more vividly represent the relationship between the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE VII
VARIANTS OF PROPOSED METHODOLOGY ALONG WITH LOSS FUNCTIONS

Method Avg. Auc  mAvg. Auc  Avg. precision  Avg. Recall
+ (%) (%) (%) (%)
Loss Function
ECSU-Net
+ 86.93 85.43 89.09 88.98
Triplet loss
ECSU-Net
+ 95.43 94.31 93.52 96.11
Losso
ECSU-Net
+ 99.64 98.95 92.07 99.41
ADL
TABLE VIII

COMPARISON OF PROPOSED METHOD WITH THREE
STATE-OF-ART APPROACHES

Accuracy ASSD DC
Method %) (mm) (%)
Lessmann et al. [25]  96.89+0.05 0.45+0.42 94.89+2.13
Vania et al. [8] 98.01+0.13  0.40+0.31  94.00+0.10
Janssens et al. [24] 97.44+0.22  0.38+0.14  95.2740.52
Ours 99.64+0.15  0.19£0.29  95.60+0.15

number of samples in the training set and the performance
of the final classification. We choose the training set with
150, 200 and 270 samples and train the model independently.
We test them on the same validation set and the result is
shown in Fig. 8. The visual results shows that with the number
of samples in training set increasing, the performance of our
model is getting better.

G. Comparison With Deep Learning Methods

We have carried out comparison of ECSU-Net with three
recent state-of-art vertebra segmentation approaches in terms
of DC, accuracy, and ASSD. Table VIII is describing the
obtained results on Spineweb dataset-2 [33]. [-FCNN [25]
employed instance memory to analyze image patches for
searching as well as segmenting vertebra. In [8] a hybrid
combination of CNN and FCN along with class redundancy is
utilized to enhance vertebra segmentation accuracy while [24]
uses a cascade FCNN having localization and segmentation
networks for pixel wise multi-class segmentation.

If we compare the classical segmentation results to the
simple pixel-wise threshold result, we will find that the dice
scores were actually similar. However, if we visualize them,
we can see that classical segmentation results look much
better than pixel-wise threshold result. This is because classical
segmentation algorithms generated more structured regions as
compared to thresholding, suffering less from outliers and
noises. Moreover, fusion helps by introducing some 3D struc-
ture information into the segmentation. Based on the similarity
metrics DC provided in Table VIII, ECSU-Net obtained better
results than the classic segmentation methods. For vertebra
segmentation, ECSU-Net compares favorably with state-of-art
methods as we have achieved the DC value up to 95.60+0.15%
with an ASSD value of 0.19+0.29 mm while taking less time
and computational resources because of 2D subnets usage.
Vertebrae were classified as correctly or incorrectly segmented
with an accuracy of 99.64%. We showed improvement and
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TABLE IX

COMPARISON OF PROPOSED APPROACH WITH THREE RECENT

INTERVERTEBRAL DISC SEGMENTATION APPROACHES
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the process, a 3D ResNet-model identifies the vertebral class.
Using a generative adversarial network Sekuboyina et al. [41]
proposed Btrfly-Net for labelling sagittal and coronal max-
imum intensity projections of the spine with the reinforce-
ment of prior learnt. Table IX is showing the comparison of
ECSU-Net with above-mentioned approaches.

IV. CONCLUSION

Accurate spinal segmentation and classification from CT
images is important for an early diagnosis of spinal disorders,
surgical planning and locating spinal pathologies like degen-
erative disorders, trauma, and fractures. We have presented a
way to enhance vertebra segmentation by introducing a three
stage network named ECSU-Net, which alleviates intricacy
of high resolution input 3D data and anatomical complexity
related to the vertebral model. The ECSU-Net concurrently
performs segmentation of a vertebra as well as intervertebral
disc classification independently of the input image resolu-
tions or spine coverages. Our method efficiently segment the
vertebra and provide convincing results in terms of dice score
up to 95.60% and classification accuracy of 96.20%. We have
provided experimental validation for our claims as well as
visualization results to show the practicability of proposed

Approach Dice (%) ASSD (mm)

Chen et al. [39] 91.6040.99 0.26£0.45
Payer et al. [40] 91.08+0.90 0.294+0.35
Sekuboyina et al. [41]  88.85+0.20 0.35+0.19
ECSU-Net (ours) 95.6040.15 0.1940.29

achieved good results in terms of DC and ASSD as compared
to approaches presented in [25], and [8].

The method in [25] has utilized a prior knowledge that
the vertebrae are always located next to each other, which
may perform substantially better than a regular multiclass
FCN with DC score up to 94.942.1%. However, segmentation
performance in such cases may often susceptible to cascading
failure. Although authors in [25] have proposed refinement of
the labeling through a maximum likelihood approach, still it
can suffers from a similar weakness. Similarly, the approach
presented in [8] utilizes class redundancy as a soft constraint
to greatly improve the segmentation results with DC up to
94.00£0.1. Redundancy in one case may provide improved
segmentation results but at the same time it may cause com-
putational burden which leads to impracticability in clinical
routines. The performance of ECSU-Net is comparable to [24]
which have utilized pixel-wise multi-class segmentation to
map a cropped lumber region volumetric data to its volume-
wise labels. However, we have greatly improved in terms
of DC score up to 95.601+0.15% with an ASSD value of
0.194£0.29 mm with an additional contribution of classify-
ing the segmented vertebras (see Fig. 10). As, our concept
of fusion aids in achieving better accuracy by regenerating
some ignored 3D structural information during segmentation
process.

Payer et al. [40] proposed 3D U-Net based multi-staged,
patch-wise approach where individual vertebrae are localized
and identified with the SpatialConfiguration-Net. Each verte-
bra is then independently segmented as a binary segmentation
with a post processing technique for localization stage’s out-
put. Chen et al. [39] introduced a multi-staged, patch-based
3D U-Net approach which coarsely localizes the spine along
with a U-Net to perform binary segmentation. At the end of

method in clinical routine.
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