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Abstract—Given a target grayscale image and a reference color
image, exemplar-based image colorization aims to generate a
visually natural-looking color image by transforming meaningful
color information from the reference image to the target image. It
remains a challenging problem due to the differences in semantic
content between the target image and the reference image. In
this paper, we present a novel globally and locally semantic
colorization method called exemplar-based conditional broad-
GAN, a broad generative adversarial network (GAN) framework,
to deal with this limitation. Our colorization framework is
composed of two sub-networks: the match sub-net and the
colorization sub-net. We reconstruct the target image with a
dictionary-based sparse representation in the match sub-net,
where the dictionary consists of features extracted from the
reference image. To enforce global-semantic and local-structure
self-similarity constraints, global-local affinity energy is explored
to constrain the sparse representation for matching consistency.
Then, the matching information of the match sub-net is fed
into the colorization sub-net as the perceptual information of
the conditional broad-GAN to facilitate the personalized results.
Finally, inspired by the observation that a broad learning
system is able to extract semantic features efficiently, we further
introduce a broad learning system into the conditional GAN and
propose a novel loss, which substantially improves the training
stability and the semantic similarity between the target image
and the ground truth. Extensive experiments have shown that our
colorization approach outperforms the state-of-the-art methods,
both perceptually and semantically.

Index Terms—Image colorization, image manipulation, adver-
sarial generative networks, example-based, broad learning.

I. INTRODUCTION

MAGE colorization refers to assigning colors to a grayscale
image in such a way that it looks natural. Specifically, given
a grayscale image as the input image, the purpose of image
colorization is to output a chromatic image that is visually
realistic and perceptually appealing. Image colorization is
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a valuable technique with many practical applications like
automatically colorizing the black-and-white films or cartoon
scenes in a meaningful manner. Therefore, optimizing the
image colorization method is a worthwhile pursuit. However,
this problem is time-consuming and intrinsically equivocal
since there are feasibly many different colors that can be
allocated to the gray pixels of a target image (for instance,
the color of the same tree leaves may vary in different
seasons). Therefore, there is no single right solution, and
human intervention usually plays a significant role in the
coloring process.

Prevailing colorization approaches are classified into the
following three categories: scribble-based colorization [1]-
[S]], example-based colorization [6[]-[/13[], and learning-based
colorization [14[|-[20]]. Scribble-based methods require the
user to assign suitable colors to specific pixels according to the
patch’s semantic and luminance to achieve a plausible result.
These approaches are not only time-consuming and labor-
intensive but also require the users to have a strong artistic
sensibility. Hence, using them is a challenge for most users.
Regarding the example-based methods, given a grayscale im-
age and a similar reference image, these techniques will output
a colorized image in the light of the provided chrominance
information. These methods also take a lot of time to find
a suitable reference image. More seriously, the quality of
colorized results particularly depends on the selection of
the reference image. To further reduce the burden of users,
learning-based colorization algorithms have been proposed. In
these approaches, a large-scale image database is leveraged
to train the neural network in order to predict the appropriate
colors of the target image. Unfortunately, the produced result
is uncontrollable precisely because the whole colorization
process is completely automatic. Hence, none of the learning-
based methods allows customization. Besides, we cannot get
satisfactory results when similar objects are not contained in
the reference image database.

Due to the considerable capability of learning image distri-
bution, GANs [21] can be applied to generate the synthetic
color images [22]. Nevertheless, unfortunately, the original
GANs are often subjected to the model collapse problem,
which directly affects the training stability and makes it dif-
ficult to ensure the image quality. The conditional GAN [23],
one variant of GANs, provides a new way to overcome these
obstacles. Extra information can be utilized to constrain the
generator by guiding the color generation process, and assist
the discriminator by providing hints for the discrimination
process. Substantial works based on the above-mentioned
methods have been successfully used in style transfer [22],
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Fig. 1: Image colorization results using our method with different reference images. By using different reference images, the
same target grayscale image is effectively colorized to have different yet meaningful colors even if the semantic content of the
reference image is significantly different from target images (f) and (g).

[24] and image inpainting [25]]. However, they have seldom
been used for colorization to realize personalization within
the GANs’ literature.

Our recent work attempts to achieve the optimal solution
based on two valuable aspects: interaction and robustness.
Inspired by the recent success in GANs, which have achieved
plausible results in style transfer [26], this paper reformulates
the colorization problem to address the limitations discussed
previously. We define a sparse representation learning method
to reconstruct the input target image. And then, this recon-
structed information will be fed into conditional GANs as a
‘hint’ to tackle the issue of training and ensure the personalized
colorized results. Finally, a broad learning system is added to
conditional GANSs to improve the problem of model collapse.
In addition, we propose a simple yet effective loss function in
our GAN’s architecture to enforce the semantic similarity even
if there is substantial color variation between the reference
image and the target image. The proposed network realizes
the chromaticity transfer between multiple images, even if
the contents are quite different. As shown in Fig. [I] one can
change the image’s chrominance information while keeping
the image visually meaningful by using various reference
images. Note that the luminance information of the target
image always remains unchanged during the whole process.

To achieve these goals, we divide our framework into
two sub-networks. First, the match sub-net is used as a pre-
processing step of the colorization network. Compared to the
previous example-based colorization methods [6]-[8], which
estimate possible colors based on semantic similarity, our
approach considers both global semantic similarity and local
structure constraint simultaneously. In many instances, the
reference image may be unrelated to the input grayscale image.
Hence, it may be difficult to achieve the desired results by
dense correspondence. We establish the relationship between
the reference and the target image through feature extraction
and sparse representation. We first utilize the pre-trained VGG
network to extract the features of the target image and
the reference image in the luminance channel only. And
then, we reconstruct the target grayscale image through the
sparse representation method based on the dictionary, which
is composed of the reference image features. Inspired by the

observation [28] that patches with similar semantics within
the whole image and pixels with close spatial distance will
have similar sparse representations, we define global-local
affinity energy that leverages the global-semantic and local-
structure self-similarity to constrain the sparse matrix. The
self-similarity constrained sparse representation dramatically
decreases the noise in image reconstruction, thus improving
the proposed algorithm’s robustness.

Then the colorization sub-net realizes the color transforma-
tion and prediction by an exemplar-based conditional broad-
GAN. We take a set of chrominance images and grayscale
images for training. To reduce restrictive demands on reference
images while achieving high-quality results, we do not require
a high similarity between a reference and a target image. The
matching information that was generated by the match sub-net
is input into the GAN to facilitate customization. In addition to
transforming correct colors between the reference image and
target image, another important goal of image colorization is to
ensure that the output color images contain semantic features
of the input images. Considering the high efficiency of the
broad learning system (BLS) [29], we have introduced the
BLS into the discriminator to extract the semantic features of
colorized images and reference images, thereby guaranteeing
the presence of the target image’s semantic features. Therefore,
two diverse loss functions suitable for the multi-task learning
framework are devised: 1) Chrominance loss, which enforces
the sub-net to transfer the correct reference colors. 2) Per-
ceptual loss, which is formulated as a regularization in the
semantic feature maps of the BLS network to enforce semantic
similarity between the ground truth image and the target
image. In sum, our approach has the following contributions:

o Global-local affinity energy is designed for matching
consistency and robustness. We propose a novel match
sub-net architecture for feature matching and reconstruc-
tion. Global-local affinity energy is introduced to the tar-
get grayscale image to constrain the sparse representation
for the global-semantic and local-structure self-similarity
constraints, which dramatically improves the matching
consistency and robustness.

o Supplemental matching information is used as an
extra condition of the conditional GAN for user-
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guided colorization. We propose to utilize the matching
information between the target image and reference im-
age as an additional condition and feed it into both the
generator and the discriminator. This extra information,
as a form of perceptual loss or as a ‘hint’, enforces the
generation of customization results and helps the network
converge to a good state efficiently.

« Exemplar-based conditional broad-GAN is proposed
for semantic-aware image colorization. We propose
a novel semantic-aware network architecture, called
exemplar-base conditional broad-GAN, for jointly learn-
ing correct color propagation and prediction based on the
reference image. Furthermore, we introduce a perceptual
loss formulated as an Lo sparse regularization in the
semantic-level feature maps of the BLS network for
keeping the semantic content of the target image.

II. RELATED WORK

In this section, we introduce related colorization work-
s. We classify image colorization methods into four cate-
gories: scribble-based colorization, example-based coloriza-
tion, learning-based colorization, and hybrid colorization.

A. Scribble-Based Colorization

These methods require users to describe the picture with
a few color points or strokes, and then the specified colors
will automatically propagate to the entire target image. The
earliest interactive work [/1] propagated colors through Markov
Random Field based on a prerequisite that the colors of
neighboring pixels depend on their intensity similarity metrics.
Huang et al. [2] proposed a novel adaptive edge detection
algorithm that applied the Sobel filter with a high threshold to
detect edges and then extended them to protect from bleeding
over region boundaries in the colorization process. In order
to process mangas, Qu et al. [3|] applied the Gabor wavelet
to measure the pattern continuity and the level set method
to maintain the pattern continuity. Inspired by the ideas of
luminance-weighted chrominance blending and fast intrinsic
distance computations, Yatziv and Sapiro [4] generated high-
quality colorization results. Luan et al. [5]] further extended
texture-similarity constraints through a color labeling scheme.
However, scribble-based methods require intensive manual
operation and cannot provide rich enough color information.

B. Example-Based Colorization

Compared with the scribble-based methods, the example-
based colorization reduces the intensity of manual operation
substantially. These methods transfer color information from
a reference image, which can be supplied by users or taken
from the web, to the target grayscale image. Welsh et al.
[10] transferred color information by matching luminance and
texture information between the images. Charpiat et al. [|6] de-
fined a nonuniform spatial coherency criterion to estimate the
color probability distribution of each pixel. To let the method
be robust to any illumination differences between grayscale
image and reference images, Liu et al. [9] reconstructed the

illumination-independent intrinsic reflectance image of the
target from the reference image. Chia et al. [7] required users
to provide a semantic text label and segmentation cues for
finding a suitable reference image from the websites. Gupta
et al. [8] developed a superpixel representation approach to
encourage spatial coherence. It is further improved in [[13]]
by taking into account the intensity, texture, and semantic
features. Each superpixel’s descriptor is constructed by con-
catenating the extracted low-level intensity features, mid-level
texture features, and high-level semantic features. Then, a
dictionary is made up of feature vectors of a reference image’s
all superpixels. The authors also include a regularization
component in the energy function that emphasizes the locality
to enhance the output. Bugeau et al. [11] exploited specific
energy to solve the color selection and the spatial constraint
problems. He et al. [12] proposed a fully automatic image
colorization system that employs an end-to-end network that
calculates the similarity between the reference image and the
target image before the color transfer. Besides, to further
reduce manual work, their image retrieval algorithm automat-
ically suggests reference images by analyzing the luminance
and semantic features. However, their technique is unable to
compensate incorrect colors in less semantically significant
areas or differentiate less semantic portions having identical
local textures [12f]. Compared with these approaches, our
method further considers the semantic similarity between the
target image and the reference image due to employing the
match sub-network. Instead of using simple color mapping, we
formulate the matching between the target and the reference as
a sparse representation problem. We further introduce global-
local affinity energy to constrain the global-semantic and local-
structure self-similarity for the target image.

C. Learning-Based Colorization

These methods rely on large-scale image data to enforce
networks to learn color distributions. Cheng et al. [[14]] com-
bined a single neural network with a joint bilateral filtering to
realize automatic colorization. Deshpande et al. [[15] developed
a quadratic objective function to train the network. Recently,
several works based on Convolutional Neural Network (CNN)
have achieved realistic colorization results. lizuka et al. [16]
merged local information with global priors, and Zhang et al.
[17] solved this problem as a classification task to increase
the diversity of the results. Larsson et al. [18] predicted each
pixel color histogram via low-level and semantic representa-
tions. In addition, GANs can also be applied to multi-modal
colorization. Isola et al. [22] learned a loss function to train the
mapping from the target image to the resultant image. Yang et
al. [20] utilized the GANSs for 3D colorization, which learned
a model to transfer a latent color parameter space to color
space by a shape collection. The common shortcoming of the
learn-based methods is that they only produce a single realistic
color image for each target image and lack user interaction.

D. Hybrid Colorization

To further improve the quality of colorization, several works
proposed hybrid frameworks which inherit the interactivity
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Fig. 2: The pipeline of the proposed colorization algorithm. The system consists of two sub-networks. The match sub-net C'1
works as a pre-processing step. Taking the target grayscale image X and the reference image Y as inputs, it constructs the
mappings from the reference image to the target image. The colorization sub-net is an end-to-end conditional broad-GAN that
predicts the chrominance channels of the target image. It takes the target image X, the reference image Y and the matching

information as inputs, and outputs the resultant color image.

of scribble-based or example-based method and robustness
of the learn-based method. Zhang et al. [[19] utilized low-
level hints and high-level semantic information to guide color
transference. Sangkloy et al. [30] designed a feed-forward
neural network that allows users to control the result in
real-time. In [31], image colorization is defined as a multi-
nomial classification problem. Xiao et al. [31] estimated the
colors of the target grayscale image by analyzing the color
distribution of the reference image. He et al. [12] defined
the similarity metric between the reference image and target
image as a hint information to encourage the network to
propagate colors correctly. Analogously, our method combines
the example-based method and the learn-based method. Given
a target grayscale image and a reference image, we exploit
the sparse representation approach to establish the mapping
relations between them. Furthermore, a conditional broad-
GAN is used to reconstruct the target grayscale image based
on the match information. Motivated by the work [25], which
utilized a reference image as additional information to guide
the conditional GANs generate customized in-painting results,
we propose a multi-task conditional broad-GAN to enforce the
network produce semantically correct and visually delightful
chromatic images.

To the best of our knowledge, our proposed technique is
the first one to integrate the BLS and GANSs in this manner
to promote stability, and there is no such work devised in the
literature before us.

III. APPROACH OVERVIEW

Our goal is to generate a plausible color image from a
target grayscale image based on a color reference image, where
some semantic content of the reference image may be partially
related or completely unrelated to the target image. However,
two major challenges must be solved to achieve this goal.
First, it is difficult to establish a semantic map from reference
image to target image, especially when the reference image is
significantly unrelated to the target image in semantic content.
Second, even if the map is established, it is still challenging

to transfer suitable color and generate a plausible chromatic
image.

To address the two challenges mentioned above, an end-to-
end network architecture is proposed. This framework consists
of two sub-networks that, respectively, address the semantic
match and chromatic propagation between two input images.
In this way, we decompose the complex colorization problem
into two subproblems, each having a specific purpose. Our
system uses the CIE Lab color space, which has a luminance
channel L and two chrominance channels a and b. Fig. [2]
illustrates the system pipeline. The match sub-net takes a
target grayscale image Xy € R¥”*W X1 and a color reference
image Y., € RT*WX3 ag inputs, where H and W are the
height and width of the input image. We observed that the
patches with similar semantic features throughout the image
and the pixels with close spatial distance in the local regions
frequently have similar colors. In view of this, we formulate
the similarity matching problem as a sparse representation
problem. Global-local affinity energy is introduced to the
match framework to constrain the sparse representation for
global and local matching consistency. We utilize the pre-
extracted features for semantic matching, and the matching
result Mat(Xp,Yr)(where Xp € RUXN YR ¢ RUXN
denote the features extracted from the given input target
image and a reference image, N is the dimension of the
feature vector, U = H x W) will be used as one of the
inputs of the colorization sub-net. The colorization sub-net,
which consists of a generator G and a discriminator D, takes
X; € RHXWXI, Yo € RHEXWX3 and Mat(XF7YF) as
inputs, and outputs a color image Zrq, € RE*W >3 Tn this
stage, the extra reference information serves as a key ‘hint’
to guide appropriate color propagation. Furthermore, the BLS
is utilized to assist in network training. Two loss functions
are applied to this network. The chrominance loss function
Lchrom Mmeasures the chrominance differences between the
generated image Zr,, and the reference image Yp.,. The
perceptual loss function Ly, penalizes semantic content loss
between Zp and Tp, where Zp € RUXN and Tp € RVXN
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Fig. 3: Demonstration of chrominance transfer results with (a)
isolated sparse representation (Eq. (@) and (b) our proposed
global-structure and local-chromatic self-similarity constrained
sparse representation (Eq. (E[)).

denote the features extracted from the generated color image
and the ground truth. Furthermore, users can get the desirable
chromatic image by choosing different reference images.

IV. MATCH SUB-NETWORK

Typically, in exemplar-based colorization methods, the net-
work only considers the color distribution of the reference im-
age and lacks semantic correspondence between the reference
image and the target image [31]]. Our work is inspired by the
recent success of sparse representation in hyperspectral image
super-resolution [28]], which improves the performance and
robustness dramatically. The complete pipeline of our match
sub-network is illustrated in Fig. 2] Our main contribution is
to propose a novel sparse representation method that ensures
the matching consistency through global-local affinity energy
of globally and locally self-similarity constraints. This novel
method can be denoted as:

B = argmin Xy — DB} + o0(B) + B, (1)

where X is the feature vector containing the target images
features that were extracted by the pre-trained VGG network,
B is the coefficient matrix that reformulates the X by feature
vectors from dictionary D that is composed of the feature
vectors of the reference image, o, i are weighting factors,
||B]| is the sparse constraint, and d(B) is global-local affinity
energy on the coefficient matrix. More details will be covered
in the following two subsections. To get the result, both X,
and Y4 are fed into the match sub-network C', yielding the
match information Mat(Xp,Yr):

Mat(XF,YF) = Cl(XLaYLabvB*) @)

A. Formulation with Sparse Representation

In order to align the features between the target image and
the reference image, we use the pre-trained VGG network
to extract high-level semantic features. Due to the large variety
of semantic content in different images, learning a common
dictionary for all target images tends to generate a dramatic
matching error and essentially contradicts the exemplar-based
methods. We instead learn the dictionary directly from the
given reference image. The features, extracted from refer-
ence image by VGG network comprise the dictionary

D € RY*¥N, Without considering the noise, the feature vectors
X € RUXN containing the features extracted from the target
image can be expressed as a linear transformation from D as:

Xr =DA 3)

where A is the coefficient matrix that reformulates the X
by feature vectors from dictionary D without considering
the noise. Therefore, given D and Xy, the reconstruction
coefficient matrix B can be estimated by minimizing the
following error [32]:

B* = arg min IXr — DBJ|% + p|Blx 4)

In general, we can reconstruct the features of the target
image by Eq. (@), which establishes the map between the target
image and the reference image. This matching information
will be fed into the colorization sub-net serving as a ‘hint’.
Therefore, users can obtain customized results by selecting
varying reference images. Specifically, various reference im-
ages, which generate different dictionaries and sparse matrices,
result in different sparse representations.

B. Global-Local Affinity Energy of Globally and Locally Self-
Similarity Constraints

The sparse representation method discussed above achieves
matching results between target features and reference fea-
tures. In the task of exemplar-based image colorization, not
only do we need to select the appropriate color to propagate,
but the self-consistency of the target image is also important.
However, Eq. @) encodes the features of each pixel inde-
pendently, which ignores the globally semantic structure and
locally spatial structure consistency of target data. The isolated
error matching by the traditional sparse representation methods
results in unnatural chromatic images (see Fig. [3). Inspired by
the work of that suggests that a high-resolution hyper-
spectral image with a quality visual effect can be obtained by
forcing the similarity of the sparse representations for pixels
belonging to the same group and superpixel, we find that this
method is also useful for image colorization. Based on this
insight, two types of self-similarity constraints are introduced
into Eq. (I)):

o Global-semantic self-similarity constraint: Pixels, which
belong to the patches with similar semantic structure,
have a similarity of the sparse representations. These
patches include both adjacent patches and non-adjacent
patches.

o Local-structure self-similarity constraint: The sparse vec-
tors for different pixels are similar in the local region.
That means pixels with nearby spatial positions will have
similar colors.

Based on the above two constraints, global-local affinity
energy is introduced to reformulate the consistent matching.
We use k-means to cluster all similar patches and use
superpixel segmentation method [34] to obtain superpixels.
To realize global consistency, all similar patches form the
global-semantic groups G = {g,, &5, ..., 8,4}, which will have
similar sparse representations. There are d groups in global-
semantic groups, and g, is the indexical vector composed
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Algorithm 1 Image Matching with Self-similarity Constrained
Sparse Representation

Input: Target Image X, Reference Image Y.
Output: Matching Result: Mat(Xr, YF)

1: extract features from target image X and reference im-
age Y by pre-trained VGG to form X, Yr, and the
dictionary D = Yp;

2: build global-semantic groups G = {g;, g, ...
local-structure superpixels L = {1,1s,...,1,};

3: calculate the affinity matrices W€ and W

4: for each global-semantic weight w((Gm) of global affinity
matrix WG; n < N do

5: compute the global-semantic weight with Eq. (6)

6: end for

7: for each local-structure weight w](Lm )
matrix W"; n < N do

compute the local-structure weight with Eq. (8)

9: end for

10: solve Eq.
matrices W@

, g4} and

of local affinity

with the dictionary D and the affinity
nd W';

by superpixel indices of the d-th group. Likewise, similar
sparse representations will be enforced for these pixels within
the same superpixel. Local-structure self-similarity constraint
is represented by superpixels L = {lj,lo,...,1,} (in total ¢
superpixels), and 1, is also an indexical vector formed by pixel
indices of ¢-th superpixels. Based on the above analysis, a
weighted mean of the sparse matrix for all pixels in the same
global group or in the same superpixel can be used to represent
the sparse vector of a pixel. Therefore, the global-local affinity
energy is defined as follows:

by =AY wl, ybi+ (1=X) ) u, )b,

€8, JE€ly 5)
withn € g, An€ly

where b,, is the n-th sparse vector of sparse matrix B, w&ﬁ 3
is the global-semantic weight, which constrains the similarity
between the ¢-th sparse vector b; belonging to the same global—
semantic group and sparse vector b,,. Homoplastically, w ( )
is the local-structure weight, which constrains the similarity
between j-th sparse vector b; belonging to the same superpix-
els and sparse vector b,,. And ) is a parameter used to maintain
the balance between group-semantic and local-structure self-
similarity constraints.

Specifically, w& ;) Measures the semantic similarity be-
tween pixels within the same global-semantic group, and we
calculate w, ;) as follows:

G £, f|\2

Win,i) = hG 6Xp{ } (6)

where f,,, f; are, respectively, the feature vector of n-th pixel
and i-th pixel, pg is a scale parameter for the semantic
measure, and S is a normalization term guaranteeing that

> w&_’i) =1, and is defined as:

Z exp{—

1€9d

f 2
” ) @

Analogously, wé‘;t ;) measures the spatial distance between
pixels within the same superpixel. It is defined in the exactly
same format, as:

_n.l|2
lpn 2p;ll ) ®)
L

1
W) = jrespl=
where, p,, p; are, respectively, the spatial location of n-th
pixel and i-th pixel, pr, is scale parameter for distance measure,
and A has analogous definition as Eq. .

Finally, the global-local affinity energy is formulated as:

NW-B| 7, 9)

where W€ € RV*N and WE € RV*N are global and local
affinity matrices that can be computed by Eq. (6) and Eq. (8).
We summarize the overall matching algorithm between the
target image and the reference image with global-semantic and
local-structure self-similarity constrained sparse representation
in Algorithm |1} Firstly, we extract the features of the target
image and the reference image by pre-trained VGG [27]], and
the features from the reference image constitute the dictionary.
Then, we create the global-semantic groups and local-structure
superpixels to calculate the global and local affinity matrices.
Finally, the matching can be obtained by solving Eq. ().

d(B) = |B — A\W®B — (1 —

V. COLORIZATION SUB-NETWORK

We divided the complex problem of colorization into two
parts. The match sub-network solves the matching problem
between the target image and the reference image. And
the purpose of the colorization sub-network is to selectively
propagate and predict colors correctly through the ‘hints’ of
the match sub-network to complete the colorization of the
target image. As shown in the right-side part of Fig. [J] the
colorization sub-network Cs takes target grayscale image Xy,
reference image Y45, and match information Mat(Xp, YF)
as inputs, and outputs color target image Zz qp:

Zia, = Co(Xr,Yras, Mat(Xp,Yr)) (10)

Considering that GANs have produced high-quality col-
orization results, we propose using the reference image as the
exemplar information of the conditional GAN to perform the
colorization task. For our experiments, the model architecture
consists of two networks. One is the generator G that is
used to colorize the target grayscale image, and the other is
the discriminator D that is used to judge whether the image
is from the ground truth image or synthetic. To retain the
semantic content of the target image, we utilize the BLS
to extract the semantic features of the reference image and
the target image, which helps the discriminator distinguish
images at the semantic level. In the training process, for each
target image z; in the training set X = {x1, 23, ..., 1}, there
exists a corresponding reference image y; in the reference set
Y = {y1,y2, ..., Yr }, where k is the number of image pairs in
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the training set. We train our network with a large number of
image pairs to achieve the desired results.

In this work, we introduce two loss functions to solve the
exemplar-based colorization:

(G*,D*) =arg mgm mgm(ﬁcGAN(G, D)
+ 5£chrom (G) + 5Lp€TC(G))

(1)

where L.qan denotes the adversarial loss function, L.prom
and L., are the chrominance and perceptual loss functions,
respectively, ¢ and 4 are relative weights. We use Eq. (T1)
to solve the min-max problem. We present the details of our
proposed two loss functions in the following subsections.

A. Broad Learning System

Given a colorized image Zr € RY*" and a ground truth
image Tr € RY*M, which is preprocessed by the pre-
trained VGG [27] with U samples, each of N dimensions,
Zp and T are the output matrices that belong to RV*C (C
is the dimension of broad features processed by the BLS),
where Zp and Tp denote the broad feature matrices of the
generated image and the ground truth. The feature information
of the output matrices is composed of mapped features and
enhancement nodes. For U feature mappings, the image’s
mapping feature nodes can be obtained by the following
equation:

E,. = ¢(ZWep, + B.,n) m=12..,.U (12)
where W,,, and 3., are generated with proper dimensions
randomly corresponding to the weights and bias of the mth
feature map, ¢ is the mapping function. All feature nodes are
constructed as:

Em = (El,EQ,

JEn) (13)

The rth group of enhancement nodes is defined below:

H, = Y(E, Wy, + 3,,,.) r=1,2,..,U (14)
where Wy, and (3;, are generated with proper dimensions
randomly corresponding to the weights and bias of the rth
group of enhancement nodes, % is the mapping function sim-
ilar to ¢. Analogously, all enhancement nodes are constructed
as:

H" = (Hy,H,,....H,) (15)
Hence the colorized broad features can be denoted as:
Zp = [E1,E,, ... E,|H,Hy, ... . H,]W"
r=[E,Es |Hy, Ho ] (16)

— [Em7 H’I‘]wT

where W" are the connecting weights for the broad network,
here W' = [E™ H"|TF, which can be calculated by ridge
regression approximation of [E™, H"]* [29]. The definition of
Tp is exactly in the same format. Fig. shows the network
of the broad learning system described above.

£y
r
E, w
ZF YF .
t
. E,,
Z Y
) Features F*F
Feature
Extraction Hz
enhanced
Features

Fig. 4: The structure of our BLS. The input image (generated
image Z and reference image Y) is pre-processed by the
feature extraction and then convoluted to get the mapped
features. Then, these mapped features are convoluted once
again to obtain the enhancement features. Finally, all features
are concatenated together to form the output FZ FY of the
flat network.

B. Feature-Aware Conditional Broad-GAN

The original GAN was considered unstable for two reasons:
firstly, it trains two adversarial neural networks for contradic-
tory purposes; secondly, the input image can be mapped to
any potential image. For exemplar-based image colorization,
we desire the output image’s chrominance to be as similar
as possible to the reference image. To reduce the space of
possible mapping functions, we introduce feature-aware condi-
tional broad-GAN that guides the generator GG to predict colors
by analyzing the semantic features of the reference image. G
learns to generate a color image that fools the discriminator D.
For our experiments, we used the network presented in [31]]
as our generator. To generate colorful and visually pleasant
images, Xiao et al. [31] leveraged the inherent multi-scale
pyramid structure, while our framework uses only a single-
level network structure. The inputs to the generator GG are the
target grayscale image Xy, the reference image Y., and
Mat (X Fs Y F)-

Compared to the generator, the discriminator judges whether
a target image is colorized or not. However, generally, GANs
suffer from the model collapse problem [35], where the target
image tends to map the color distribution but ignores the
semantic features. More details are shown in Section
Therefore, the semantic features of the resulting color image
are used as a criterion for the discriminator to judge the
quality of colorization. Furthermore, we discover that the BLS
can extract the semantic information of images efficiently.
In this paper, the mapped features and the enhancement
features are concatenated to construct the feature nodes and
the enhancement nodes, respectively. Then, these two types of
nodes are merged to output the resulting matrices. Finally, the
output matrices will be fed into the traditional discriminator
as the basis for judgment.
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Algorithm 2 Image Colorization with Conditional Broad-
GAN
Input: Grayscale Image Xy, Reference Image Y.y and
Matching Information Mat(Xp,Yr)
Qutput: Colorized Target Image Zy 4
1: calculate the adversarial loss L.y using Eq. (117[)
2: compute the chrominance loss £chmm using Eq. (I8);
3: extract the feature maps Z - and T of the colorized i image
and the ground truth image, respectively, through BLS;
4: using Eq. , calculate the perceptual loss Ly, With
the help of features extracted through BLS;
5: use Eq. (TI) to solve the min-max problem;

C. Loss Function

The objective of previous colorization works was to encour-
age the target color image Zr,;, to be as similar as possible
to the ground truth image Tr.,. However, it is inherently
contradictory to exemplar-based colorization since the target
color image should be perceived as being consistent with the
reference image. Thus, it is not right to directly reduce the
difference between Zy,,, and Tr,,. Therefore, based on the
above analysis, the objective of our cGAN is still to learn
how to transform a grayscale image into a color image with
the ‘hint’ of a reference image, and that learning objective is
defined as:

Lecan =Euy yropaara (@) 109D (Tr, Yi)]

By Genyop. 10901 — D(Glasu)] )

Nevertheless, two loss functions specific to the reference-
based method can also be added to the network. There are
two primary considerations in designing the loss function:
first, our output image should be as close as possible to the
reference image to get a customized result; second, we enforce
the output color image to be as natural as possible, even
when the reference image is extremely unrelated to the target.
To achieve these goals, we need to ensure that appropriate
reference colors are used for the input grayscale image while
ensuring that the resulting color image retains the semantic
content of the input target image. Thus, we adopt a multi-task
learning framework that uses the same network and weights to
train both the chrominance and perceptual branches. The two
branches have their own input and loss functions for different
purposes.

In the chrominance branch, the objective of the network is
to learn to selectively extract colors from the reference image
and apply them to the target input image. In the preliminary
stage of network training, we use the ground truth image as
a reference image and feed it into the network. However, this
method is not actually an exemplar-based approach. Therefore,
we leverage the proposed sparse representation method to
reconstruct a reference image X,Lab from the ground truth
image. Hence, reconstructed ground truth image X/Lab during
the training stage replaces the reference image Y., in the
training stage. Under the guidance of the reference image
X,Lab, the grayscale image X is colorized if the network

e Prel e

(a) Ground truth (b) Reference (c) Colorized result 1 (d) Colorized result 2

Fig. 5: Visualization of perceptual loss. Both colorized results
have the same reference image, but the unnatural pink sky
(c) is colorized by minimizing the chrominance loss only. A
more plausible color (d) is colorized by minimizing both the
chrominance loss and the perceptual loss.

chooses suitable colors. There, we use a simple loss function
[22]:

Echrom =K - 1’;@”1]

(18)
where, we use L1 distance to enforce that the target image
and the reference image are as similar as possible in terms of
color distribution.

However, L.0m only works when the target image and the
reference image have significant similarities in semantic con-
tent. To encourage the network to get a perceptually reasonable
color image even if there is no suitable reference image, we
propose a perceptual branch. The perceptual loss minimizes
the semantic differences of target image caused by unrelated
reference image and improves the robustness of appearance
differences, as shown in Fig. @ In this branch, we adopt the
feature maps in the BLS, which has been demonstrated to
have good classification ability. Accordingly, we define the
perceptual loss as:

|Gz, 21)

’ ’
Tk, Ty "Pdata (z,2" ), 2k p2

Tr(p) ]

where, ZAF and T r refer to the feature maps of the colorized
image and the ground truth image extracted from BLS, and p,
is the ¢-th pixel of the resulting color image or the ground truth
image. The broad-discriminator is encouraged to distinguish
whether the resulting image maintains the semantic similarity.
Therefore, L,c. aims to minimize the semantic difference
between the ground truth image and the colorized image,
which is robust to the images with differences in appearance.
We have also described the working of the colorization sub-net
in Algorithm 2}

‘cPETC = Eptv\pdata(p) [HzF (pt) - (19)

VI. EXPERIMENTAL RESULTS

In this section, we show our experimental results on images
with different semantic contents. Note that our network is
trained using the Places Database [36] that contains 205 scene
categories and approximately 2.5 million images and Pascal
VOC data sets [37]]. We take about 600,000 image pairs for
our model training and 25,000 for model testing. The image
categories contain popular categories, such as architectures,
forest, people, vehicles, scenery, animals. To generate visually
plausible color images for any reference image, the pairs
are composed of images with different extents of similarity.
Practically, 20% of reference images are the ground truth of
target images, 50% of image pairs have significant similarity
by our artificial selection, and the remaining 30% of image
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(d)

Fig. 6: The influence of parameters pg, pr with different
values. (a) target grayscale image, (b) ground truth, (c) ref-
erence image, (d)—(f) resulting color images corresponding to
different parameters. (d) pg = 1, pL = 1078. (e) pg = 1078,
pL=10 (d) pe =1, p. = 10

pairs are randomly selected within the same category. As
shown in Fig. I, we can get customized results easily by
selecting different reference images. In addition, we evaluate
our method qualitatively and quantitatively in the following
aspects: first, we perform experiments to detail the role of the
match sub-net; second, we set up a single-branch framework
experiment and visualize the functions of the chrominance
branch and perceptual branch. Then, we train our colorization
model and compare it with several state-of-the-art methods;
and lastly, we utilize a user study to validate our approach
and quantitatively evaluate users’ subjective preferences.

A. Role of Match Sub-Net

Our end-to-end network architecture includes two sub-nets:
the match sub-net and the colorization sub-net. The match sub-
net measures the semantic similarity between the reference im-
age and the target image. And the colorization sub-net transfers
colors from the reference image to the grayscale image. The
match sub-net defines as a preprocessing step to provide the
basis for the color transformation of the colorization sub-net.
We analyze the effect of the match sub-net by fine-tuning the
experiment framework.

For feature extraction, we have used the pre-trained VGG
model that was trained on the RGB color space. All the
other details, like normalization and parameter settings, can
be found in the original paper [27]]. The parameter A balances
the weights between global-semantic and local-structure self-
similarity constraints. Here A = 0.5 is used, which means
global constraint and local constraint are equally important.
Besides, pg determines the feature similarity globally, and
pL determines the spatial consistency locally. To show the
effect of parameter adjustment on the results, we compared the
distinctions when pg = 1, p. = 1078, pg = 1, pL = 10, and
pe = 1078, pp = 10, respectively. Fig. |§| shows the colorized
results with different parameters. In extreme cases, the local
constraint is almost ignored in Eq. (9) when we fixed py, close
to 0 in Eq. (8). Fig. [6(d) shows that many local patches were

Fig. 7: Visualization of color selection in the chrominance
branch. (a) and (c) different reference images, (b) and (d)
colorized images corresponding to different reference images,
(e)—(h) corresponding color histograms.

miscolored when we neglected the local-chromatic constraint.
For example, many isolated patches of pink flowers are mis-
matched to the green leaves. At the other extreme, when pg is
close to 0 in Eq. (6), the global term is ignored, and the self-
similarity constraint is determined by the local term in Eq. (9).
Fig. [e) shows that many superpixels with similar semantics
do not match similar colors, resulting in a global inconsistency.
Lastly, as shown in Fig. [[f), the experiments demonstrate
that these suitable parameters exhibit better performance. For
the rest of the experiments, the parameters are set as global-
semantic similarity measure pg = 1, local-structure similarity
measure p, = 100, weighting factor A = 0.5, balance factors
a = 0.0001, and 8 = 0.025.

B. Chrominance Branch and Perceptual Branch

Our colorization sub-net is created by the exemplar-based
conditional broad-GAN that learns to select suitable color sam-
ples, propagate colors, and predict colors. To accomplish this
effectively, we have designed a multi-task learning framework,
including chrominance branch and perceptual branch. Each
branch serves a distinct purpose by minimizing a diverse loss
objective. To learn the influence of chrominance branch on the
colorization sub-net, we only train the chrominance branch of
the Cy by setting ¢ = 100, § = 0 in Eq. (TI). As shown
in Fig. [7| we visualize it through an example to learn its role
intuitively. The colorized results with diverse reference images
are shown in Fig. [7(b) and Fig. [7(d). In order to estimate the
color transformation performance between the reference image
and the target image intuitively, we plot the color histogram
to visualize the results in Fig. [/(e)-Fig. [/(h). As we can see,
the histograms of the resulting images are very close to the
reference images. This illustrates that our network can catch
the color information from the reference image and apply it
to the whole target image.

To understand the effect of perceptual branch, we only
train the perceptual branch of the C5 by setting ¢ = 0,
6 = 0.5 in Eq. (TI). As shown in Fig. [§] we use the same
image set to compare the roles of chrominance loss and
perceptual loss. Fig. [8fe) and Fig. [8j) demonstrate that the
perceptual branch predicts the colors by semantic features of
the target image from the large-scale data, e.g., the leaves



IEEE TRANSACTIONS ON IMAGE PROCESSING

TABLE I: Evaluation of each component of our method.

Component -Global  -Local  -Chrom -Perc +All
MEAN PSNR 27.78 26.95 26.43 28.13 28.87
Drop Rate -378%  -6.65%  -8.45%  -2.56% -

Fig. 8: Comparison of results from the training with different
branch configurations. (a) and (f) target grayscale image, (b)
and (g) different reference images, (c)—(e) and (h)—(j) resulting
color images corresponding to different loss functions. (c) and
(h) chrominance loss only (¢ = 100, § = 0), (e) and (j)
perceptual loss only (¢ = 0, § = 0.5), (d) and (i) both loss
functions (¢ = 100, 6 = 0.3).

are colorized with green no matter what color the leaves
are in the reference image. Therefore, the perceptual loss
controls the image colorization by semantic features, which
improves the mismatch caused by chrominance loss only.
Considering the complementarity of the two branches, we
minimize both loss functions simultaneously by leveraging a
multi-task learning network. Hence, we train both branches
with the objective in Eq. (TI). We estimate the effect of
varying weights for the colorization results in Fig. [8(d) and
Fig. [§]i). This indicates that our network transfers colors when
there exist well-matched patches between the target image and
the reference image but predicts color from the large-scale
database when the reference image and the target image are
highly unrelated. In this paper, we set ¢ = 100, § = 0.3 by
default after performing many experiments.

C. Evaluation of Model Components

We analyzed the effectiveness of different components by
comparing the peak-signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) performances [39]], when one
of the model components is discarded. The components are
as follows: global-semantic self-similarity constraint, local-
structure self-similarity constraint, chrominance branch, and
perceptual branch. Table [] and Fig. [9] show the impact on
the colorization performance of our approach when lacking
one of the model structures. As we can see, each component
of our proposed method plays an individual positive role in
colorization performance. As shown in Table [} the first row
indicates the average PSNR (dB) performance of colorized
images on the whole test set when one of the network
elements is not used. The second row presents the drop rate of
reconstruction performance compared with the results obtained
when all components are integrated together. The last column
shows the performance of the complete architecture. From

25%

Global-semantic self-simliarity
Local-structure self-similarity

Chrominance branch

perceptual branch
— Al

12 15 18 21 24 27 30 33 36
PSNR (dB)

20%

15%

percentage(%)
§

u
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Fig. 9: The PSNR distribution with/without each model com-
ponent. The proposed method achieves the best performance
when integrating all components together.

these results, it is evident that we achieve the best performance
when combining all components together. As shown in Fig.
[ the components can be sorted by importance as: chromi-
nance branch, local-structure self-similarity constraint, global-
semantic self-similarity constraint, and perceptual branch.

D. Comparison with Existing Colorization Methods

To evaluate the performance of our method visually, we
compare the resulting images of our algorithm with existing
image colorization methods [8]], [L1], [16]-[18]], [38]. The
methods [8], [11]], [38]] are exemplar-based methods that prop-
agate chrominance information from the reference image to the
target image, and methods [16]—[ 18] are learning-based tech-
niques that predict the color distribution of grayscale image
by analyzing a large number of images from image database.
To ensure fair comparison, we extract the colorization results
from their papers or run their attainable code.

We compare color images generated from our proposed
method and other exemplar-based methods [8]], [11f], [38].
Several results are shown in Fig. [TI0] Gupta et al. (8] leveraged
the features that were extracted from the reference image and
the target at the level of superpixels to guide the colorization
process, and added an image space voting mechanism to
enforce the spatial coherence simultaneously. However, there
is still a great number of mismatches between the target
image and the reference image. As seen in the 2nd column
of Fig. [I0] some part of the tiger’s skin is mismatched to the
green grass. Both [[11] and [38]] see the color reconstruction
as a problem that selects the most appropriate color from
the reference image. To obtain the best color candidates and
enforce spatial constraint, a variational framework is proposed
in [11]. The method [11] ignores the relation between lumi-
nance and chrominance that leads to a de-saturation effect
of the colorized image. Pierre et al. [38] introduced a novel
regularization term that is capable of considering both of
the channels of luminance and chrominances. However, for
both algorithms [11] and [38]], global structure constraint and
local chrominance consistency are disregarded in the process
of selecting suitable colors (e.g., the 3rd and 4th column of
Fig. [I0). In comparison, our method can not only choose the
most appropriate color candidates according to the semantic
guidance but also guarantees global and local consistency by
adding a constraint term in the sparse representation. As shown



IEEE TRANSACTIONS ON IMAGE PROCESSING

11
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(e) Pierre et al.

Fig. 10: Comparison of our colorization results with exemplar-based methods , , . Visually, our results look more
natural than that of Pierre et al. [38]] and are closer to the ground truth. In addition, numerous isolated error matching patches
of Gupta et al. and Bugeau et al. result in really poor colorized images. In comparison, the colorization results of the
proposed method have a higher semantic consistency. Besides, the de-saturation effect of the colorized image of the method

still leads to artifacts of color inconsistency.

in Fig. our method obtains a superior visual quality than
the other techniques. For example, in the last low of Fig.
walls in the first three methods’ results are mismatched with
the blue sky, but this is not the case with our approach.

Then, we compare the performance with learning-based
methods [16]—[18]. As shown in Fig. [[1] the colorization
results of techniques [I6]-[I8] are automatically generated
based on a large-scale database, but ours are generated based
on a reference image. Generally, plausible colorized results are
generated by these methods. Based on Convolutional Neural
Networks, lizuka et al. [16] proposed a hidden layer that
is able to merge global priors and local features. However,
as shown in the 3rd column of Fig. [I1} large areas with
complex textures are not colorized correctly. For example,
some of the flowers in the 3rd row are still gray. Zhang et
al. took grayscale image colorization as a classification
task and enriched the color gradients by class-rebalancing in
the training process. Nonetheless, as we can see in the 4th
column of Fig. [T1} a yellow patch appears in the center of
the image, which affects the image colorization quality. Lars-
son et al. utilized both low-level and semantic features
to generate realistic images but failed to control the local
consistency. Furthermore, such learning-based methods only
generate a single result and cannot achieve customized results.
Comparatively, our approach merges the advantages of both
exemplar-based and learning-based approaches. As seen in
the 6th column of Fig. [TT] our network colorizes the target
image under the guidance of the reference image but predicts
the colors based on the semantic features when the reference
image lacks corresponding patches. However, there are still
some limitations because of the global-semantic and local-

TABLE II: Quantitative evaluations on different resolutions
with the ground truth as the reference image.

Method PSNR (dB) SSIM

2562 5122 10242 2562 5122 10242

Gupta et al. [8] 2495 2478 2432 072 070 0.68
Bugeau et al. ||'_[]| 2632 2611 2587 081  0.79 0.73
Pierre et al. [38]  27.59 2723 2665 086  0.83 0.80
Tizuka et al. |16 2758 2711 2659 080  0.79 0.76
Zhang et al. [17]  28.33 2798 2734 087 0.5 0.81
Larsson et al. | 2859 2834 2821 085  0.84 0.81
Our proposed 2898 28.66 2847 0.89 0.85 0.83

structure self-similarity constraints. As shown in the last row
of Fig.[IT] the information of flowers’ red color was lost during
the image reconstruction process, but the colorized image is
still semantically meaningful.

We conduct another experiment to further evaluate the
effectiveness of our colorization architecture. In this exper-
iment, we compare the PSNR and SSIM performances of
the generated results with both exemplar-based and learning-
based methods. Note that, the techniques [8]l, [11]], [38] and
ours take the ground truth as the reference image. Besides,
all methods have the same input grayscale image. Therefore,
we evaluate the PSNR and SSIM of colorized results directly
by comparing them with their ground truth images. Table
[0 presents the PSNR and SSIM results. The reason why
method [38] achieves higher PSNR and SSIM than the other
two exemplar-based methods is that the approach of
couples luminance and chrominances channels. Different from
exemplar-based method [8]], [II]], [38], the learning-based
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(a) Gray image (b) Reference image (c) lizuka et al. (d) Zhang et al. (e) Larsson et al.

(f) Proposed  (g) Ground truth

Fig. 11: Comparison of our colorization results with the output of previous learning-based methods —. In general, the
existing approaches being compared generate reasonable colorized images. However, there are still some limitations exhibited
by them. For instance, some parts of grass and sky are colorized in gray by Iizuka et al. [16] in the 3rd column, an incorrect
yellow patch appears at steamship by Zhang et al. in the 4th column, and a region of snow mountain is colorized in blue
by Larsson et al. . In comparison, our method can generate plausible images by semantic guidance.

TABLE III: The comparison of HIS scores of our proposed
technique with other state-of-the-art algorithms.

Gupta Bugeau Pierre lizuka Zhang  Larsson

Our
et al. et al. et al. et al. et al. et al.
iT6) proposed
0.42 0.46 0.48 0.57 0.63 0.66 0.68

TABLE IV: Inference time (in seconds) of our approach in
comparison to the state-of-the-art methods.

Gupta Bugeau Pierre lizuka Zhang  Larsson

Our
et al. et al. et al. et al. et al. et al.
(16] 18] proposed
- - 1.09 0.41 0.12 0.57 0.35

methods [16]—[18] get performance improvement due to the
utilization of a learning system. However, as we can see,
our approach obtains the highest performance as compared
to these algorithms. In addition, the PSNR and SSIM of our
method have little changes on different resolutions. That is
because our algorithm can find out the correspondent semantic
patches between the reference image and the target grayscale
image easily. To further test the robustness of our proposed
method, we performed the evaluation using the histogram
intersection similarity (HIS) metric , which assesses the
color histograms of the reference and resultant images in
terms of cumulative resemblance. The HIS score comparison
is presented in Table [l These results also highlight the
superiority of the proposed approach as our technique has
obtained the best HIS score compared to the other state-of-
the-art algorithms.

The only area in which our proposed technique lags a
bit behind one of the existing algorithms [[17] is the in-
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Fig. 12: Boxplots of user preferences for our proposed ap-
proach with different methods, including Gupta et al. [8],
Bugeau et al. [11]], Pierre et al. [38], lizuka et al. [16]), Zhang
et al. [17]], Larsson et al. [I8], showing the mean (red line),
quartiles, and extremes (black lines) of the distributions.

ference time. Table [[V] shows the inference times of our
designed approach and the state-of-the-art methods. Although
the proposed technique takes more time than [[17], the overall
performance is not too bad considering the superiority of the
proposed algorithm in other evaluation results.

E. User Study

In addition to visual evaluation, a user study was conducted
to compare the naturalness of the generated images with the
existing methods. Although the Peak Signal to Noise Ratio
(PSNR) can be used to evaluate the quality of colorization
through human perceptual differences, it may not be entirely
suitable for all colorized results. For example, the target
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Fig. 13: The results of three user studies from our approach in comparison with other state-of- the-art methods, including
Gupta et al. [§]], Bugeau et al. [I1]], Pierre et al. [38], lizuka et al. [I6], Zhang et al. [17], Larsson et al. [I8]. Each section
of the pie indicates the percentage of participants that voted for this method. (a) Compared with exemplar-based methods,
(b) compared with learning-based methods, and (c) compared with both exemplar-based methods and learning-based methods.
The results indicate that the output color images generated by our technique look more natural and authentic than the existing
state-of-the-art approaches. Our algorithm can transform more faithful colors from the reference image.

grayscale image colorized by the exemplar-based method
could be completely different from the ground truth, but the
results can be natural and in line with human visual perception.
Therefore, a user study is designed to evaluate our technique

against other six approaches [8], [11]l, [16]-[18], [38].

In order to guarantee the fairness, we showed the results to
users and asked them to select one of them that looked more
natural. One hundred (100) users aged between 14 and 65
were invited to help complete our user study. We divided the
67 = 42 images (6 different grayscale images were colorized
by 7 methods, [8]], [T1]l, [16]-[18]], [38]] and ours) into 6 groups
and presented them to the users, and asked them to choose the
most plausible image in each group. The method accumulated
one point if the image generated by it was selected. Hence,
each technique could score a maximum of 100 points and a
minimum of 0 points in each group. The statistical results of
user preference for each approach of the user study are shown
in Fig. [I2] The red line in the chart indicates the average
score of each method. As shown in Fig. [I2] the learning-
based methods are obviously superior to the exemplar-based
algorithms. In addition, our method has the highest average
score. This demonstrates that the proposed approach is capable
of generalizing well and generating plausible color images.

In addition, the techniques [I6]-[18] input only one
grayscale image into their networks and do not use any hint.
However, the works [8]], [11]}, and our method have the
reference image and the target grayscale image as inputs. We
qualitatively evaluate the performance of colorization results
with naturalness and reference faithfulness, respectively. Then,
we compare the fidelity of colorized image of all techniques.
For each group of results in Fig. [TT] users were asked a single
choice question: ‘which image do you think is more natural?’
Fig. [[3]b) shows the result of the user study. From these
results, it can be observed that our algorithm can generate a
more natural image than the other learning-based approaches
[T6]—[18]. In the same way, we implement the second and third
user study with the questions of ‘which image is more faithful
to the reference image?’ and ‘which image is more authentic

to the ground truth image?’. Fig. [[3[a) and Fig. [[3{c) show
the results. As shown in Fig. [[3[a), our approach is able to
match the semantic information between the reference image
and the target image and propagate the colors correctly. Fig.
[[3c) shows that our technique is able to restore the image
details better than state-of-the-art methods.

VII. CONCLUSION AND FUTURE WORK

This paper presents a novel example-based image coloriza-
tion architecture with three significant technical advances:
i) to enforce the matching consistency, we design a self-
similarity constrained sparse representation that consider-
s global-semantic and local-structure simultaneously. ii) to
encourage customization of results, an auxiliary matching
information is added to the adversarial network. iii) to stabilize
the GAN training, we introduce an exemplar-based conditional
broad-GAN for feature-aware image colorization. Many exper-
iments of a separate sub-net and the whole architecture using
visual evaluation and user study have shown that the proposed
method dramatically outperforms state-of-the-art algorithms.
However, our approach relies on global and local consistency
matching, which ignores the color bleeding near edges in some
cases. In the future, we would like to improve the colorization
algorithm by taking edge preservation into account and then
extend it to video colorization.
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