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Structure-Aware Motion Deblurring Using
Multi-Adversarial Optimized CycleGAN
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Abstract— Recently, Convolutional Neural Networks (CNNs)
have achieved great improvements in blind image motion deblur-
ring. However, most existing image deblurring methods require
a large amount of paired training data and fail to maintain
satisfactory structural information, which greatly limits their
application scope. In this paper, we present an unsupervised
image deblurring method based on a multi-adversarial optimized
cycle-consistent generative adversarial network (CycleGAN).
Although original CycleGAN can handle unpaired training data
well, the generated high-resolution images are probable to
lose content and structure information. To solve this problem,
we utilize a multi-adversarial mechanism based on CycleGAN
for blind motion deblurring to generate high-resolution images
iteratively. In this multi-adversarial manner, the hidden layers
of the generator are gradually supervised, and the implicit
refinement is carried out to generate high-resolution images
continuously. Meanwhile, we also introduce the structure-aware
mechanism to enhance the structure and detail retention ability
of the multi-adversarial network for deblurring by taking the
edge map as guidance information and adding multi-scale edge
constraint functions. Our approach not only avoids the strict need
for paired training data and the errors caused by blur kernel
estimation, but also maintains the structural information better
with multi-adversarial learning and structure-aware mechanism.
Comprehensive experiments on several benchmarks have shown
that our approach prevails the state-of-the-art methods for blind
image motion deblurring.

Index Terms— Unsupervised image deblurring, multi-
adversarial, structure-aware, edge refinement.
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I. INTRODUCTION

MOTION blur is a painful problem during the process
of taking photos by lightweight devices like mobile

phones. Because of these inevitable factors in the image
acquisition process especially under poor lighting conditions,
the image quality will be degraded to undesired blurry images.
Image motion deblurring problem is to restore the sharp image
from a given blurry image [2]–[5]. There are mainly two types
of image deblurring methods: blind and non-blind deblurring.
Many works have been focused on non-blind deblurring in
recent years, which are based on the assumption that the blur
function is known before, like blur caused by camera shake,
etc. However, it is a severely ill-posed problem to find the blur
kernel for every pixel. Aiming at the problem of non-blind
image deblurring, some methods are intended to parameterize
the blur model according to the assumed blur source. In [6],
Whyte et al. assume that the blurs are only caused by the
movement of 3D cameras. While this assumption is not always
true in practice. Recently, CNNs have shown strong semantic
analysis ability and have been widely used in blind image
deblurring. In [7], Madam et al. propose an architecture that
consists of an autoencoder to learn the data prior and an
adversarial network to generate and discriminate between the
sharp and blurred features. In [8], Schuler et al. describe
how to use a trainable model to learn blind deconvolution.
In [9], Xu et al. propose a model that contains two stages,
suppressing extraneous details and enhancing sharp edges.
In [10], Nah et al. propose a multi-scale convolutional neural
network (CNN) for blind image deblurring.

Although significant improvements have been made by
the emergence of deep learning, three major challenges still
stand in the way of the blind motion deblurring problem. (1)
Missing handcrafted yet critical prior features: Deep CNNs
often ignore the traditional manual features based on statistical
prior knowledge for image deblurring. Previous studies [11],
[12] have shown that the traditional manual features are very
important for image deblurring. (2) Obsolete disposing of
multi-scale deblurring: Although the multi-scale architecture
has long been used to solve the deblurring problem [10],
it may emphasize high-level semantic information and under-
estimate the key role of underlying features in deblurring.
(3) Limited training data: The traditional motion deblurring
methods always aim to find the cause of blurring and estimate
the approximate blur kernel so as to obtain the training
data. The estimation method often has a certain error which
leads to the blurred training data generated can only contain
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several general specific categories. In addition, training data
must contain both pairs of blurred and sharp images [10],
[13]–[15], which are often quite difficult to obtain in reality.
Otherwise, there is a large distribution difference between
the synthesized and real blurred images, so the universal-
ity of the network model trained by sharp image and its
corresponding synthesized blurred data needs to be further
improved.

For the paired training data requirements, various
unsupervised CNNs-based methods have been proposed.
Nimisha et al. [16] propose an unsupervised generative adver-
sarial network (GAN) based method with additional reblur
loss and multi-scale gradient loss. Although this method shows
good performance on the synthetic data set, it is only for the
special blurred type and cannot achieve a satisfactory effect on
the real blurred images. Other existing unsupervised methods
based on GAN for the image-to-image translation mainly
involve learning the mapping of blurred image domain to
the sharp image domain, such as CycleGAN [1] and discover
generative adversarial network (DiscoGAN) [17]. In this paper,
we choose CycleGAN [1] that is well known for its unpaired
image-to-image translation to instead the previous network
model. We take the advantage of CycleGAN to treat blurred
images and sharp images as two different data distributions
to overcome the paired data training problem about deblur-
ring mentioned above. Based on CycleGAN, a more flexible
deblurring effect can be achieved with an unpaired image
dataset than other methods that can only be trained with pairs
of sharp and blurred images. For the obsolete disposing of
multi-scale deblurring problem, we utilize a multi-adversarial
architecture that includes a series of slightly modified dense-
blocks [13] to improve the deblurring performance. The
multi-adversarial strategy can iteratively generate the sharp
images from the low-resolution to the high-resolution. For
the missing handcrafted yet critical prior features problem,
since previous studies have shown that sharp edge restoration
plays a very important role in the structural maintenance of
deblurring [9], [11], [12], we use a structure-aware strategy
that includes edge guidance by adding the edge map as part
of the input and structure enhancement by minimizing the
edge loss. Moreover, our architecture can avoid the introduc-
tion of other noise factors (such as color and texture) into
the generated deblurred images, which is easy to occur in
the original CycleGAN, and keep the structure and detail
information consistent with the corresponding sharp image
as much as possible. Combing with the perceptual loss [18]
and multi-scale structural similarity (MS-SSIM [19]) loss,
we obtain significantly better image deblurring results than
most of the existing methods. As shown in Fig. 1, compared
to the classical unsupervised methods, our results in Fig. 1(c)
are more satisfying. Our work makes the following three main
contributions:

• We introduce an unsupervised approach based on Cycle-
GAN [1] for blind motion deblurring without assum-
ing any restricted blur kernel model. It can avoid the
errors caused by blur kernel estimation and overcome the
drawback that other methods require pairwise images as
the training data [10], [14]. In addition, our model can

Fig. 1. Comparison of deblurred images by our method and the original
CycleGAN on the real images. (a) Blurred images. (b) Deblurring results
using original CycleGAN [1]. (c) Deblurring results by our method. It shows
our method is more satisfying, especially in the pink and yellow rectangles.

also automatically generate blurred images from sharp
images simultaneously to provide more available data for
subsequent studies.

• We propose a multi-adversarial architecture to solve
the artifact problem in high-resolution image genera-
tion. Different from the traditional multi-scale meth-
ods [10] and [20], the multi-adversarial constraints can
promote the network to produce the results closest to
the sharp images at different resolutions. Although the
multi-adversarial structure is somewhat more burdensome
than the original CycleGAN, it can effectively suppress
the artifacts in the high-resolution image generation.

• We present a structure-aware mechanism based on edge
clues for motion deblurring. Since how to effectively
restore sharp edges is vital for deblurring effect based on
the previous research [9], [12], [21], blurred image and
its edge map are fused as the input. Besides, multi-scale
edge constraints are introduced in the multi-adversarial
architecture to make the adversarial network generate
persuasive structural information at different resolutions.

II. RELATED WORK

In recent years, blind image motion deblurring has attracted
considerable research attention in the field of computer vision
[22]–[24]. In general, image motion deblurring tasks are based
on the assumption that the blur is uniform and spatially
invariant [9] and the endless number of solutions [10], [14],
[15] have been proposed. According to the need for blur kernel
estimation, image deblurring methods can be divided into with
kernel and kernel-free two categories.

A. Kernel Estimation Method for Motion Deblurring

1) Traditional Kernel Estimation Method for Deblurring:
Commonly, diverse methods tend to take advantage of the
sharp edges to estimate the blur kernel. Some kernel estimation
approaches [25]–[28] rely on implicit or explicit extraction
of edge information to detect and enhance the image edges
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through a variety of technologies, such as bilateral filtering
and gradient amplitude. In [29], Xu et al. propose an
L0-regularized gradient prior based on the sharp edge infor-
mation for blind image deblurring. In [12], Pan et al. develop
an optimization method based on L0-regularized intensity and
gradient prior to generate reliable intermediate results for blur
kernel estimation. In [30], Sun et al. use dictionary learning
to predict the sharp edges with the sharp edge patches of
clear images for deblurring. In [31], Pan et al. describe a
blind image deblurring method with the dark channel prior.
In [32], Kim et al. propose to estimate the motion flow and the
latent sharp image simultaneously based on the total variation
(TV)-L1 model. In [33], Bai et al. propose a multi-scale latent
structure prior and gradually restore the sharp images from the
coarse-to-fine scales on a blurry image. Recently, thanks to the
powerful semantic analysis and deep mining ability of CNNs,
more works tend to use large-scale samples to solve the blind
image deblurring problems.

2) CNNs Based Kernel Estimation Method for Deblurring:
In recent years, CNNs have played an unparalleled advan-
tage in solving computer vision problems including image
deblurring and achieved many promising results [7]–[9]. Some
methods use CNNs to estimate the blur kernel to achieve the
deblurring task. For instance, Sun et al. mainly estimate the
probabilistic distribution of the unknown motion blur kernel
based on CNN for deblurring [34]. However, these methods
have strict requirements for paired training data and cannot
directly realize the transformation from the blurred image to
the sharp image, and still cannot avoid errors in the process of
blur kernel estimation based on CNNs [35], [36]. In contrast,
our approach can avoid these errors, since our method is based
on the unsupervised image-to-image translation with unpaired
training data and can directly realize the transformation from
blurred images to sharp images without kernel estimation
process. In this paper, we show a comparison with [12], [31],
[34] to verify our advantages in Session IV-E.

B. Kernel-Free Learning for Motion Deblurring
Since the popularity of GAN, which is originally designed

to solve different image-to-image translation problems [37],
[38], more people try to generate deblurred images directly
from the blur images with GAN to avoid the distortion
caused by kernel estimation. In [39], Xu et al. use CNN
to learn the deconvolution operation guided by traditional
deconvolution schemes. In [7], Nimisha et al. propose a
novel deep filter based on GAN architecture integrated with
global skip connection and dense architecture to tackle this
problem. In [13], a special GAN with a densely connected
generator and a discriminator is used to generate a deep filter
for deblurring. Kupyn et al. [14] propose the DeblurGAN
method based on the conditional adversarial network and a
multi-component loss function for blind motion deblurring.
In [40], Li et al. propose a depth guided network which
contains a deblurring branch and a depth refinement branch
for dynamic scene deblurring. Although breakthroughs have
been made in these methods, the problems of missing structure
information and demanding paired training data still need to
be solved. Even the subsequent methods [16], [41], [42] can

realize the deblurring task by unsupervised use of unpaired
training data, [16], [41] only target at the specific image
domain deblurring problem, while [42] will encode other
factors (color, texture, etc., instead of blurred information) into
the generated deblurred image. Different from these previous
methods, our unsupervised method can solve the demand
of paired training data problems for the image deblurring.
Meanwhile, we utilize the multi-adversarial architecture and
structure-aware mechanism to further remove the unpleasant
artifacts and maintain structure information effectively.

III. PROPOSED METHOD

Our overall flowchart is shown in Fig. 2. In Fig. 2, G B

and GS are two generator sub-networks which transform from
the sharp image to the blurred image and from the blurred
image to the sharp image, respectively. DB and DS are the
discriminators to distinguish the real images and generated
images, and give feedback to the generators. Different from the
traditional CycleGAN [1], we use the form of multi-adversarial
in different resolution constraints to gradually improve the
quality of the generated images and use skip connections to
make the low-level information better guide the high-level
generation structure. Meanwhile, we design a structure-aware
mechanism by introducing the multi-scale edge constraints
in the multi-adversarial architecture to make the adversarial
network generate persuasive structural information at different
resolutions, and edge map is also used as part of the input
to facilitate the network’s retention of structural information.
Besides, we add a variety of loss functions (structural loss
MS-SSIM and perceptual loss obtained by VGG16) to fur-
ther strengthen the constraints to reduce the generated false
information. Compared with other methods, our method can
not only solve the demand of paired data problem, but also
can maintain more structural information and achieve a better
deblurring effect.

A. Original CycleGAN-Based Deblurring Method

Inspired by the success of the unsupervised method Cycle-
GAN [1], we try to handle the demand of paired training data
problem by the unsupervised image-to-image translation man-
ner. Based on the original CycleGAN for deblurring, the archi-
tecture includes two generator sub-networks G B and GS that
transform from the blurred image b to the deblurred (sharp)
image s and from the sharp (deblurred) image s to the blurred
image b, respectively. DB and DS are the discriminators for
the blurred image and the sharp (deblurred) image, respec-
tively. The loss function of CycleGAN contains two parts:
adversarial loss and cycle-consistency loss. On one hand,
the adversarial loss aims to match the distribution of generated
images to the data distribution in the target domain. On the
other hand, the cycle consistency loss ensures that the cyclic
transformation can bring the image back to its original state.
Based on the traditional CycleGAN, we can successfully
transform from the blurred image domain to the sharp image
domain with unpaired training data. However, some annoying
artifacts (such as color and texture) will be encoded into
the generated results and some structure information also
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Fig. 2. The flowchart of our structure-aware multi-adversarial optimized CycleGAN. Our architecture relies on the unsupervised image-to-image translation to
learn the mapping between blurred images and deblurred (sharp) images with unpaired training data. G S and G B are two generator sub-networks for translating
blurred image to sharp image and translating sharp image to blurred image, respectively. DS64, DS128 and DS256 are the discriminators to determine whether
the image generated by G S is real or fake at three resolutions. DB64, DB128 and DB256 are the discriminators to determine whether the image generated by
G B is real or fake at three resolutions. We restore sharp images by this multi-adversarial manner to iteratively generate high-resolution from low-resolution
images. In addition, we introduce the structure-aware mechanism by adding edge input to guide the generation procedure and multi-scale edge losses to
maintain more structure details at different resolutions. Besides, we utilize cycle-consistency loss, perceptual loss and MS-SSIM loss to enforce constraints
on the structure generation.

sometimes lost [16], [43]. In order to solve these problems,
we expect to improve the generation effect step by step with
multi-adversarial architecture and structure-ware mechanism.

B. Multi-Adversarial Generative Network

As discussed in Section II-B, the classical GAN-based
structure often introduces artifacts when generating realistic
images, especially with the increase of resolution. To solve this
problem, a multi-scale way is preferred to improve the quality
of the generated images [10]. Ideally, a mature multi-scale
approach not only can significantly improve the network per-
formance but also need to minimize parameters to reduce time
consumption and hardware burden. However, the parameters
in some multi-scale approaches at each scale are still inde-
pendent of each other in some multi-scale methods [10], [20].
Given this, we introduce the multi-adversarial architecture in
our unsupervised deblurring model to make full use of the
input information and avoid the problem of false information
increasing with the increase of resolution.

Inspired by the traditional encoder-decoder network struc-
ture [44], the generator GS in our proposed multi-adversarial
network is shown in Fig. 3. The input of the generator
sub-network GS is the blurred image and the corresponding
edge map obtained by Sobel operator. The edge map used as
part of the input can provide additional structural information
to the network. GS contains a series of convolution layers,
deconvolution layers and upper sampling layers. Feature maps
are generated from each deconvolution layer through a 3 × 3
convolution forward layer with output images at different
resolutions. From Fig. 3, generator GS can produce the output

images with three resolution levels. Then, three independent
discriminators will judge the authenticity of the generated
images on different resolutions and feed information to the
generators. The hidden layers with different resolutions in the
network are constrained and the feature maps are iteratively
optimized to generate higher quality results. Additionally,
the generated edge maps at three different resolutions are used
for multi-scale edge constraints to improve the structure reten-
tion performance of the network. We also use skip connections
to take full advantage of the low-level information to guide the
deconvolution process.

For a blurred image b, generator GS generates synthesized
sharp image sb1 , sb2 , sb3 as outputs. The sb3 , which presents
the output of the last deconvolution layer, is sent as the input of
G B to generate three reconstructions b̂1, b̂2 and b̂3. Similarly,
for a deblurred (sharp) image s as input, G B will output
synthesized blurred images bs1 , bs2 and bs3 . And with bs3 as
the input, the generator GS will produce three reconstructions
ŝ1, ŝ2 and ŝ3. We then supervise these different outputs to
force them closer to the target at different resolutions. DS64,
DS128 and DS256 are defined for GS . DB64, DB128 and DB256
are defined for G B . Three resolutions of 64 × 64, 128 × 128
and 256×256 are applied on the corresponding deconvolution
layers, respectively. The adversarial losses can be written as
Eq. (1) and Eq. (2):

Ladv(GS, DSi ) = Eb∼p(b)

[
log(1 − DSi (GS(b)i))

]
+ Esi∼p(si )

[
log(DSi (si ))

]
(1)

Ladv (G B, DBi ) = Es∼p(s)
[
log(1 − DBi (G B(s)i ))

]
+ Ebi∼p(bi )

[
log(DBi (bi ))

]
(2)
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Fig. 3. Network structure of the proposed multi-adversarial generator. G S is the generator sub-network for the translation from the blurred image to the
deblurred (sharp) image. The input of the generator sub-network G S is the blurred image and the corresponding edge map obtained by Sobel operator. By the
multi-adversarial manner, G S can produce three different resolution outputs (64 × 64, 128 × 128 and 256 × 256). Multi-adversarial supervision is achieved
through multiple discriminators in the hidden layers. Discriminators DS64, DS128, DS256 are defined for G S at three different resolutions, respectively.
In addition, the generated edge maps at three different resolutions are used for multi-scale edge constraints to improve the structure retention performance of
the network. The specific parameters of the generator sub-network are shown in the figure so that we can train our multi-adversarial model with a specific
size and test the image of any size.

where GS(b)i = sbi , G B(s)i = bsi and i = 1, 2, 3 corresponds
to the three different resolutions. bi and si are the blurred
image and sharp image at i th resolution, respectively. DBi and
DSi are the discriminators corresponding to G B and GS at i th

scale, respectively.
As for the cycle-consistency loss in the traditional

CycleGAN, it can be improved to multiple resolutions:
Lcycbi

= ∥∥b̂i − bi
∥∥

1 = ‖G B(GS(b)3)i − bi‖1 (3)

Lcycsi
= ‖̂si − si‖1 = ‖GS(G B(s)3)i − si‖1 (4)

where GS(b)3 = sb3 and G B(s)3 = bs3 . The final
multi-adversarial objective function is defined as:

L Mult iG AN (GS, G B , DS, DB)

=
3∑

i=1

(Ladv(GS, DSi ) + Ladv (G B, DBi )

+ μi (Lcycbi
+ Lcycsi

)) (5)

Simplified as:

L Mult iG AN =
3∑

i=1

(Ladvi + μi Lcyci ) (6)

where μi is the weight parameter at i th resolution to balance
the different components. Lcyci = Lcycsi

+Lcycbi
, and Ladvi =

Ladv(GS, DSi ) + Ladv(G B , DBi )

C. Structure-Aware Mechanism for Deblurring
The high-frequency details of the image are weakened

to some extent due to the blurring process, how to restore
the structure and details as much as possible in the image
deblurring task is very important. Previous studies [11], [16],
[45] prove that image edge is of great significance in subjective

image quality assessment and image restoration tasks. In [16],
an unsupervised network for deblurring with a reblurring cost
and a scale-space gradient cost is proposed. In [11], Vasu et al.
first investigate the relationship between the edge profiles and
the camera motion, and then incorporate the edge profiles into
an existing blind deblurring framework. In [45], a two-stage
edge-aware network is proposed to improve image deblurring
according to the feature that human eyes pay more attention to
edge sharpening. Although several structure-aware strategies
have been successively applied to deblurring problems, it is
still difficult to maintain structure information and reduce
inherent ambiguity in unsupervised deblurring tasks.

In order to preserve the structural information of the
deblurred image to the maximum extent, we introduce the
structure-aware mechanism by taking the corresponding edge
map as part input and adding multi-scale edge constraint func-
tions in the multi-adversarial architecture. Different from the
structure-aware mechanism in other image processing tasks,
the structure-aware mechanism in our unsupervised deblurring
model not only includes the input edge clues for structural
information assistance but also includes multi-scale edge con-
straints for generating the deblurring with different resolutions.
Besides, the multi-scale edge constraints can be organically
combined with the multi-adversarial strategy to promote the
generation of structural information in unsupervised networks.
We have verified that both of them can effectively promote
the structure retention ability of the network and generate
a more satisfactory deblurring effect through the ablation
experiments.

The proposed structure-aware mechanism can emphasize
the protection of image geometry to alleviate the important
ambiguity problem of the original CycleGAN. In this paper,
the proposed structure-aware mechanism network is shown
in Fig. 3. Due to the input edge guidance, the Eq. (1) and

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:25:08 UTC from IEEE Xplore.  Restrictions apply. 



WEN et al.: STRUCTURE-AWARE MOTION DEBLURRING USING MULTI-ADVERSARIAL OPTIMIZED CycleGAN 6147

Fig. 4. Comparative experiment of structure maintenance effect. (a) The original blurred image. (b) Deblurring result using CycleGAN [1]. (c) Deblurring
result with edge map as input. (d) Deblurring result with edge loss. (e) Deblurring result with both edge map as input and edge loss. It shows our method
is more satisfying, especially in the yellow rectangles.

Eq. (2) can be revised as Eq. (7) and Eq. (8):

Ladv (GS, DSi ) = Eb∼p(b)

[
log(1 − DSi (GS(b, be)i ))

]
+ Esi∼p(si )

[
log(DSi (si , se

i ))
]

(7)

Ladv (G B, DBi ) = Es∼p(s)
[
log(1 − DBi (G B(s, se)i ))

]
+ Ebi∼p(bi )

[
log(DBi (bi , be

i ))
]

(8)

where be and se are the edge maps of the image b and
image s obtained by Sobel operator, respectively. be

i and se
i

are the responding edge maps at i th resolution. By this edge
guidance manner, we can take the advantage of the additional
edge information to make the generated images in the target
domain contain similar edge structure information of the
source domain and better guide the discriminator to distinguish
the generated images from the real images. However, even the
edge guidance can improve the accuracy of discrimination,
we find that the generated deblurred image still exits the
problems of ringing and oversharp.

In order to handle the existing problems and force the struc-
ture of the generated deblurred image to match its correspond-
ing sharp image, we introduce the multi-scale edge losses in
the multi-adversarial structure. Since our unsupervised method
has no access to the corresponding reference image and it
is difficult to generate an accurate corresponding edge map,
we follow the heuristic from [16], [46] and utilize the fact
that the resized image bη which is obtained by shrinking a
blurred image b with a factor of η is sharper than the image
b itself. Thus, we introduce the multi-scale edge losses to
enforce the edge of the generated deblurred image to match
its corresponding sharp image. The factor of η in our model
is set to 0, 1/2 and 1/4 for three different scales respectively.
Then, the introduced multi-scale edge losses are defined as:

LGradbi
= ∥∥�sbi − �bi

∥∥
1 = ‖�(GS(b)i ) − �bi‖1 (9)

LGradsi
= ∥∥�bsi − �si

∥∥
1 = ‖�(G B(s)i ) − �si‖1 (10)

where � is the Sobel operator to calculate the gradient map
of an image, and LGradi = LGradbi

+ LGradsi
.

Fig. 4 shows the effect of just using the edge loss and adding
edge as an input to the generator. From Fig. 4, most structure
information can be migrated to the target domain with edge
input in Fig. 4(c), and most artificial noise can be effectively
eliminated through multi-scale edge losses in Fig. 4(d). The

combination can better improve the motion deblurring perfor-
mance as shown in Fig. 4(e).

D. The Network Structure
1) Generator: The generator in our architecture is shown

in Fig. 3. It contains a series of convolution layers
and residual blocks. Specific as follows: C7S1 − 64,
C3 − 128, C3 − 256, RB256 × 9, T C64, T C32, C7S1 − 3,
where, C7S1 − k represents a 7 × 7 ConvBNReLU
(Convolution+BatchNorm+ReLU) block with stride 1 and
k filters, C3 − k represents a 3 × 3 ConvBNReLU block
with stride 2 and k filters. RBk × n denotes k filters and
n residual blocks which contain two 3 × 3 convolution lay-
ers, T Ck represents a 3 × 3 TConvBNReLU (Transposed
Convolution+BatchNorm+ReLU) block with stride 1/2 and
k filters. In addition, we introduce the structure-aware archi-
tecture (including edge input guidance and multi-scale edge
constrains) in GS and G B during training process.

2) Discriminator: The discriminator is also shown in Fig. 3.
Classic PatchGANs [47] is used as a discriminator to classify
overlapping image blocks and determine whether they are real
or false. All the discriminator networks at three resolutions
mainly include: C64−C128−C256−C512, here Ck presents
a 4 × 4 ConvBNLeakyReLU (Convolution + BatchNorm +
LeakyReLU) block with stride 2 and k filters. The parameter of
LeakyReLU is set to 0.2 in our experiment. According to the
specific parameters of the generator and discriminator, we can
train our multi-adversarial model with a specific size and test
the images of any size.

E. Loss Functions
1) Multi-Scale SSIM Loss: The perceptually motivated met-

ric Structural SIMilarity index (SSIM) [48] has often been
used to measure the similarity of two images. To preserve the
information of contrast, luminance, structure in the generated
images and alleviate the ambiguity problem of CycleGAN,
we use the Multi-scale SSIM loss (MS-SSIM) based on SSIM
between b̂i and bi in our model. The MS-SSIM we used is
defined as:

L M SS I Mbi
= 1−[

lM (bi , b̂i )
]αM

M∏
j=1

[c j (bi , b̂i )]β j [m j (bi , b̂i )]γ j

(11)
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where l(bi , b̂i ) = 2μbi μb̂i
+C1

μ2
bi

+μ2
b̂i

+C1
, c(bi , b̂i ) = 2σbi σb̂i

+C2

σ 2
bi

+σ 2
b̂i

+C2
and

m(bi , b̂i ) = σbi b̂i
+C3

σbi σb̂i
+C3

. (bi , b̂i ) denotes the image pair of

input image and the reconstructed image, respectively. μbi ,
μb̂i

, σbi , σb̂i
, σbi b̂i

indicate the means, standard deviations and
cross-covariance of the image pair (bi , b̂i ), respectively. C1,
C2 and C3 are the constants determined according to refer-
ence [48]. l(bi , b̂i ), c(bi , b̂i ) and m(bi , b̂i ) denote the compar-
ison components of luminance, contrast and structure between
bi and b̂i , respectively. α, β and γ are the hyper-parameters
set according to [48], which are used to control the relative
weight of the three comparison components.

Similarly, the MS-SSIM loss function L M SS I Msi
between

ŝi and si is defined as the same way, and the total MS-SSIM
loss at i th resolution is L M SS I Mi = L M SS I Mbi

+ L M SS I Msi
.

2) Perceptual Loss: Previous work [38] shows that cyclic
perceptual-consistency losses have the ability to preserve
original image structure by investigating the combination of
high-level and low-level features extracted from the second
and fifth pooling layers of VGG16 [49] architecture. Accord-
ing to [38], the formulation of cyclic perceptual-consistency
loss is given below, where (bi , b̂i ) refers to the blurred and
ground truth image set, φ is a VGG16 [38], [49] feature
extractor from the second and fifth pooling layers:

L Perceptualbi
= ∥∥φ(̂bi ) − φ(bi )

∥∥2
2 (12)

Similarly, L Perceptualsi
between ŝi and si is defined as the

same way, and the total perceptual loss at i th resolution is
L Perceptuali = L Perceptualsi

+ L Perceptualbi
.

3) Identity Preserving Loss: In addition, we use an identity
preserving loss to reinforce the identity information of the
input image during the unpaired image-to-image translation.
Thus, information such as the color of the input and output
images can be mapped as accurately as possible. The identity
preserving loss between the source domain and target domain
can be defined as:

L I dbi
= ‖G B(b)i − bi‖1 (13)

L I dsi
= ‖GS(s)i − si‖1 (14)

The total identity preserving loss at i th resolution is L I di =
L I dbi

+ L I dsi
. From the above loss functions described in

Eq. (1) ∼ Eq. (14), the total loss for our deblurring model
is:

L =
3∑

i=1

(Ladvi + ω1 Lcyclei + ω2 LGradi + ω3 L M SS I Mi

+ ω4L I di + ω5 L Perceptuali ) (15)

where, ω1, ω2, ω3, ω4 and ω5 are non-negative constants
to adjust different influence on overall deblurring effects. i
denotes the component at i th resolution. Similar to other
previous methods [1], [10], parameters ω1, ω2, ω3, ω4 and
ω5 in Eq. (15) are set according to the data characteristics for
different cases and we weight each loss empirically to balance
the importance of each component.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

We conduct our training and testing experiments on a
workstation with Intel Xeon E5 CPU and NVIDIA 2080ti
GPU. The model we used is implemented with Pytorch
platform [50]. For fairness, all the experiments are set in the
same data set and environment except for special instructions.
Throughout our experiments, we use ADAM [51] solver for
model training with parameters β1 = 0.9 and β2 = 0.999.
Limited by the memory, the batch-size is set to 2 for all the
methods. The initial learning rate is fixed to 0.0002 for the
first 30 epoches and then decay to one-tenth every 30 epoches.
Totally, 200 epoches already satisfy the convergence condition.

B. Datasets and Metrics

For the blurred text images, we use the dataset
BMVC_TEXT [52] which totally contains 66K text images
with the size 300 × 300. This dataset contains both defocus
blur generated by anti-aliased disc and motion blur generated
by a random walk. The blurred images in BMVC_TEXT are
divided into two parts: the training set and the test set (50% of
the total, and no crossover is ensured), and the corresponding
sharp images are divided in the same way. During the training
process, we crop the image into 128 × 128 image blocks
in both the blur set and the sharp set. The parameter ω1
is set to 5, parameters ω2 and ω3 are set to 0.5, ω4 is set
to 10 and ω5 is set to 0 in Eq. (15) because we find that
the perceptual loss L Perceptual has little impact on overall
performance. To compare with other classical deblurring meth-
ods, we choose the algorithms given by Pan et al. [12], [31],
Xu et al. [29], Sun et al. [34], MS-CNN [10], Deblur-
GAN [14]. We also choose other unsupervised methods Cycle-
GAN [1], Madam et al. [16] and UID-GAN [43] that trained
on the same text training dataset with our unpaired data.

For the blurred face images, the CelebA dataset [53] which
mainly includes more than 200K face images with size
178 × 218 are used. We first select 200K data from the data
set, where 100K is the sharp images and the other 100K is
the blurred images. In addition, we select 2000 images from
the remaining images for testing. We scale all the images to
128 × 128 and ensure that there is no paired data during the
unsupervised algorithm training. The method of generating
blurred images by sharp images is consistent with the method
proposed in UID-GAN [43]. The parameters ω1 ∼ ω4 are
set in the same way as BMVC_TEXT [52] dataset, and the
parameter ω5 is set to 5.

For the motion blurred images, the same as [10], we firstly
use the GoPro dataset proposed in [10] to train our model.
Since our model is based on the unsupervised image-to-image
translation, during the training process, we firstly segregate the
GoPro dataset into two parts. We just use the blurred images
from one part and the clean (sharp) image from the second
part so that there are no corresponding pairs while the training
process. 2103 blurred/clear unpaired images in GoPro dataset
are used for training and the remaining 1111 images are used
for evaluation. We ensure no overlap in the training pairs and
randomly crop the image into 256×256 image blocks in both
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TABLE I

ABLATION STUDY ON THE EFFECTIVENESS OF DIFFERENT COMPONENTS
IN OUR MODEL. ALL THE RESULTS ARE TESTED ON THE GOPRO

DATASET [10]. G S MEANS THE TRANSLATION FROM THE BLUR

DOMAIN TO THE SHARP DOMAIN, AND G B MEANS THE

TRANSLATION FROM THE SHARP DOMAIN
TO THE BLUR DOMAIN

the blur set and the sharp set. The parameter ω1 is set to 5,
parameters ω2 and ω3 are set to 0.5, ω4 is set to 10 and
ω5 is set to 1 in Eq. (15). We use PSNR and SSIM two
metrics to show quantitative comparisons with other deblurring
algorithms.

C. Ablation Study

To analyze the effectiveness of each important component
or loss (perceptual etc.), we perform an ablation study in
this section. Both quantitative and qualitative results on the
GoPro dataset are presented for the following six variants of
our method by adding each component gradually: 1) origi-
nal CycleGAN method [1]; 2) adding the multi-adversarial
structure; 3) adding edge map input component; 4) adding
multi-scale edge constraints; 5) adding multi-scale SSIM loss;
6) adding all the above components.

We present the PSNR and SSIM for each variant in Table I.
GS (blur-sharp) means the translation from the blurred domain
to the sharp domain, and G B (sharp-blur) means the trans-
lation from the sharp domain to the blurred domain. From
Table I, we can see that the multi-adversarial structure signif-
icantly improves the deblurring performance because of the
multi-resolution constraints. Meanwhile, the structure-aware
mechanism (with the edge as input and multi-scale edge
constraints) can also preserve the structure and details because
of the additional edge information and edge constraints. Even
the original CycleGAN basically implements the unsupervised
translation from blurred to sharp and from sharp to blurred,
it introduces the unpleasant noise information (colors, textures,
etc.). In contrast, with adding the multi-adversarial structure,
discriminators are able to determine whether the resulting
clear image is true or false from multiple resolutions and then
feedback to the generators. With the edge map as part of the
input, more structure-guided information can be transferred to
the target domain. With the multi-scale edge constraints to
guide the deblurring process, some unwanted ringing artifacts
at the boundary of the generated images can be removed
effectively. With the multi-scale SSIM loss, the generated
image can preserve the luminance, contrast and structure
information effectively. The overall deblurring performance
in Table I also shows that there is a close relationship
between our multi-adversarial learning and the structure-aware
mechanism.

Fig. 5. Stability analysis for our proposed model. (a) The overall loss
variation. (b) The perceptual loss variation. (c) The multi-scale edge losses
variation of our method at resolution 256×256. (d), (e) and (f) are the identity
loss variation at resolution 64 × 64, 128 × 128 and 256 × 256, respectively.
(a), (b), (c) and (d) show that different losses of our model can steadily
decrease with the increase of iteration times during the training process.
(d), (e) and (f) indicate the identity preserving loss of our model decrease
steadily with the increase of iteration times at different resolutions.

To illustrate the stability of the proposed model, Fig. 5
shows the different loss change curves of our proposed meth-
ods. Fig. 5(a) is the overall loss variation curve. Fig. 5(b) is
the perceptual loss variation curve. Fig. 5(c) is the multi-scale
edge losses variation of our method at resolution 256 × 256.
Fig. 5(d), Fig. 5(e) and Fig. 5(f) indicate that the identity
preserving loss of our model can decrease steadily with the
increase of iteration times at different resolutions (64 × 64,
128 × 128 and 256 × 256, respectively). As seen from the
change curve of all losses, different types of losses and losses
with different resolutions can steadily decline with the increase
of iteration times during the training process, which fully
indicates that our model is relatively stable.

D. Parameter Sensitivity

As we mentioned in Section III-E, the weight ω1 for
cycle-consistency loss Lcycle, ω4 for identity preserving loss
L I d , ω5 for perceptual loss L Perceptual need to be tuned
so that the deblurred image neither stays too close to the
original blurred image, nor contains many artifacts. The
quantitative performance is shown in Fig. 6. From Fig. 6,
we can see that parameter ω4 setting for L I d is greatly
different from the traditional CycleGAN based task (such as
for Photo-Sketch). As our method is based on multi-resolution
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Fig. 6. Quantitative results for different setting of ω1 for cycle-consistency
loss Lcycle , ω4 for identity preserving loss L I d , ω5 for perceptual loss
L Perceptual . The orange bar chart represents the average PSNR value on
the GoPro test set when parameter ω1, ω4 and ω5 are set to 1, respectively.
Correspondingly, the yellow bar represents the average PSNR value on the
GoPro test set when parameters ω1, ω4 and ω5 are set to 5, respectively.
The green bar represents the average PSNR value on the GoPro test set when
represents ω1, ω4 and ω5 are set to 10, respectively. We can see that different
parameter settings have a certain influence on the final deblurring effect.

Fig. 7. Visualizations of sample image in GoPro dataset with different sets
of ω5 for perceptual loss L Perceptual . As shown in (d), when the ω5 is set
to 0.1, the generated deblurred image is very blurred. As shown in (e) and
(f), when the ω5 is set too high (ω5 = 5 and ω5 = 10), vast artifacts will be
introduced to cause quality degradation.

adversarial learning, L I d loss has a great impact on the overall
deblurring effect, when ω4 is set to 10, the deblurring effect
is the best. For parameter ω1 is set too high (ω1 = 10),
the deblurred image generated by GS becomes very blurred
and the quantitative performance is poor. In contrast, if the
ω1 is set too low (ω1 = 1), vast artifacts will be introduced.
ω5 for perceptual loss L Perceptual also has a certain influence
on the overall deblurring effect. We set the parameters as
ω1 = 5, ω4 = 10 and ω5 = 1 on the GoPro test set. As shown
in Fig. 6, many experiments have proved that relatively good
results can be obtained when ω5 = 1. Fig. 7 also shows
the visualizations of sample image in GoPro dataset with
different setting of ω5 for perceptual loss L Perceptual . From
Fig. 7(d), when the ω5 is set to 0.1, the generated deblurred

image is very blurred. In contrast, Fig. 7(e) and Fig. 7(f)
show that if the ω5 is set too high, vast artifacts will be
introduced to the generated images, especially in the colored
rectangular area. In real experiments, the parameters ω1 ∼ ω5
are set according to the data characteristics for different
cases.

E. Comparison With State-of-the-arts
1) BMVC_TEXT Dataset [52] and Face Dataset [53]: In

order to compare the performance of different algorithms on
the text images and face images, we use the same training
data (described in Section IV-B) to retrain the CNN-based
methods. We randomly select 100 samples from the test set
in the BMVC_TEXT dataset and 2000 samples from face
dataset [53] (as described in Section IV-B) for evaluation. The
quantitative results are presented in Table II. The last column
of Table II shows the quality metrics of our deblurred method.
From Table II, we could conclude that our method significantly
outperforms other state-of-the-art supervised (Pan et al. [12],
Pan et al. [31], Xu et al. [29], Sun et al. [34], MS-CNN [10]
and DeblurGAN [14]) and unsupervised methods (CycleGAN
[1], UID-GAN [43] and Madam et al. [16]) for text images
and face images deblurring. Fig. 8 presents several examples
from the BMVC_TEXT dataset [52] to illustrate the qualitative
comparisons of other methods with ours. In Fig. 8, especially
in the central character part, the deblurring results by our
method can achieve the clearest characters. These examples are
sufficient to prove that our method can achieve quite effective
results on BMVC_TEXT dataset [52].

2) GoPro Dataset: Table III shows the quantitative com-
parison results with other state-of-the-art deblurring methods
on GoPro dataset [10]. The average PSNR and SSIM for
image quality assessment show our significant improvement
in deblurring effect compared with other popular methods.
From Table III we can see that, compared with almost all
the classical conventional deblurring algorithms (Xu et al.
[29], Whyte et al. [6] and Kim et al. [32]) and the latest
unsupervised CNN-based deblurring approaches (CycleGAN
[1], DiscoGAN [17], UID-GAN [43], Madam et al. [16]),
our algorithm shows quite attractive deblurring effect. Mean-
while, compared with most supervised CNN-based deblurring
methods (Pix2Pix [47] and Sun et al. [34]), we can still
achieve relatively satisfactory results. Although our method
is slightly inferior to the supervised CNN-based method [10]
and DeblurGAN [14] on GoPro, the reason is that it is more
difficult to learn unpaired data compared with paired data and
CycleGAN itself has performance flaws in handling the gener-
ation of high-resolution images. Meanwhile, our method can
also achieve better performance on multiple other databases
(such as BMVC_TEXT dataset [52] and face dataset [53]).
Additionally, methods [10] and [14] require a large amount of
paired training data, unlike our unsupervised learning, which
can greatly reduce the strong need for paired training data.
Fig. 9 shows some visual examples from the GoPro [10]
test set. It shows that even in some cases of the GoPro, our
approach is as desirable as method [10]. From Fig. 9, it is
obvious that the classical conventional deblurring algorithm
cannot keep structure information well and most unsupervised
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TABLE II

PEAK SIGNAL-TO-NOISE RATIO AND STRUCTURAL SIMILARITY MEASURE, MEAN ON THE BMVC_TEXT [52] AND FACE DATASETS [53]

TABLE III

PEAK SIGNAL-TO-NOISE RATIO AND STRUCTURAL SIMILARITY MEASURE, MEAN ON THE GOPRO DATASET [10]

Fig. 8. Comparison of deblurred images by our method and other popular approaches on some images from BMVC_TEXT dataset [52]. (a) Blurred images.
(b) Deblurring results using Pan et al. [12]. (c) Deblurring results using Pan et al. [31]. (d) Deblurring results using Xu et al. [29]. (e) Deblurring results
using Sun et al. [34]. (f) Deblurring results using MS-CNN [10]. (g) Deblurring results using CycleGAN [1]. (h) Our results. It shows the characters in our
results are much clearer.

Fig. 9. Comparison of deblurred images by our method and other popular approaches on one sample from GoPro Dataset [10]. (a) Blurred image. (b) Deblurring
results using Pan et al. [12]. (c) Deblurring results using Xu et al. [29]. (d) Deblurring results using Sun et al. [34]. (e) Deblurring results using MS-CNN [10].
(f) Deblurring results using CycleGAN [1]. (g) Deblurring result using DiscoGAN [17]. (h) Our results. It shows our results are more satisfying, especially
in the pink and yellow rectangles.

methods will introduce new artifacts, while our method can
better maintain the structure in the areas such as the girl’s
head flower or arm. We also provide the visual contrast effect

on Köhler dataset in Fig. 10, which also verifies our better
performance compared with both supervised and unsupervised
methods.
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Fig. 10. Comparison of deblurred images by our method and other popular approaches on one sample taken from Köhler Dataset [55]. (a) Blurred image.
(b) Deblurring result using Pan et al. [12]. (c) Deblurring result using Xu et al. [29]. (d) Deblurring result using Sun et al. [34]. (e) Deblurring result using
MS-CNN [10]. (f) Deblurring result using CycleGAN [1]. (g) Deblurring result using DiscoGAN [17]. (h) Our results. It shows our results are more satisfying,
especially in the pink and yellow rectangles.

Fig. 11. Comparison of deblurred images by our method and other popular approaches on one real image taken from Lai Dataset [54]. (a) Blurred image.
(b) Deblurring result using [31]. (c) Deblurring result using [29]. (d) Deblurring result using [12]. (e) Deblurring result using [34]. (f) Deblurring result using
[16]. (g) Deblurring result using CycleGAN [1]. (h) Deblurring result using [17]. (i) Deblurring result using [47]. (j) Deblurring result by our method.

3) Real Dataset: In order to compare the effects of different
deblurring algorithms on real blurred images, we use the
model trained on GoPro data set to test the real blurred images
in the real set of Lai dataset [54]. Since the real blurred
images do not provide the corresponding sharp images, it is
impossible to evaluate the deblurring effect with the full ref-
erence image quality evaluation methods (Such as SSIM and
PSNR). Therefore, we compare the deblurring performance
of different algorithms in the real blurred images with the
help of subjective user analysis. Inspired by [56], we use
the Bradley-Terry model to estimate the subjective score.
Each blurred image is processed with the deblurring methods
Pan et al. [12], Xu et al. [29], Whyte et al. [6], Sun et al.
[30], MS-CNN [10], CycleGAN [1] and DeblurGAN [14].
We test all these methods with corresponding models trained
on GoPro. Together with the original blurred images, all these
results are sent for pairwise comparison (22 human raters are

involved) to form the winning matrix. The quantitative results
in Table IV show that the methods based on CNNs usually
have better effect than the convolutional methods, and our
method can achieve a more satisfied deblurring effect in real
blurred images compared with most existing methods. From
Fig. 11, our method shows superior performance compared
with other methods, especially in the girl’s eyes and mouth.

According to the above experiments, we can conclude that
our method has obvious advantages in solving the deblur-
ring task on all the test datasets when comparing with the
most existing unsupervised deblurring methods [1], [16],
[43]. We can also infer that our unsupervised deblurring
method can achieve competitive results with the supervised
deblurring algorithm [10], [12], [14], [29] in most datasets
except for the GoPro dataset. We believe this is mainly due
to CycleGAN’s lack of ability to generate high-resolution
images and the difficulty for unpaired data learning compared
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TABLE IV

AVERAGE SUBJECTIVE EVALUATION SCORES OF DEBLURRING PERFORMANCE ON THE REAL DATASET [54]

TABLE V

THE AVERAGE RUNNING TIME COMPARISONS OF OUR METHOD WITH

OTHER SEVERAL CLASSICAL METHODS ON

BMVC_TEXT DATASET [52]

with paired data. Since our deblurring method is based on
unsupervised learning and can be trained with finite unpaired
training data. Compared with other supervised-based methods,
our unsupervised deblurring method has a wider application
value.

F. Evaluation of the Running Time

Table V shows the average running time per image compar-
isons of several classical deblurring methods with 512 × 512
on the test dataset of BMVC_TEXT dataset [52]. According
to Table V, we can see that the proposed unsupervised
method achieves the state-of-the-art deblurring quality, while
maintains relatively high and competitive speed in comparison
to most existing supervised and unsupervised methods on
BMVC_TEXT dataset [52]. Even though the time used is
slightly longer than CycleGAN [1] and MS-CNN [10] due to
the multi-adversarial and multiple constraints structure, we get
a better deblurring effect. In future work, we are committed to
further streamlining the network and improving its operational
efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a structure-aware motion
deblurring method based on a multi-adversarial optimized
CycleGAN model. Unlike previous work, our CycleGAN
based method can avoid the error of the kernel estimation and
does not need the paired training data to make the training
more flexible. In addition, the multi-adversarial constraints in
the generator of CycleGAN we used are different from the
traditional multi-scale manner to ensure that the results closest
to sharpening images are generated at different resolutions.
Besides, we introduce a structure-aware method based on
edge clues so that the generated deblurred image can keep
more structural information as much as possible. Extensive
experiments on the different benchmark datasets demonstrate
the effectiveness of the method we proposed. In the future,
we are committed to solving the problem of significant target
deblurring and further reducing the complexity of the network.
Besides, we will further explore an unsupervised motion
blur method with better performance and apply the proposed
network model to the video deblurring problem.
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