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Abstract— Intracranial blood vessels segmentation from com-
puted tomography angiography (CTA) volumes is a promising
biomarker for diagnosis and therapeutic treatment in cerebrovas-
cular diseases. These segmentation outputs are a fundamental
requirement in the development of automated decision support
systems for preoperative assessment or intraoperative guidance in
neuropathology. The state-of-the-art in medical image segmenta-
tion methods are reliant on deep learning architectures based on
convolutional neural networks. However, despite their popularity,
there is a research gap in the current deep learning architectures
optimized to address the technical challenges in blood vessel seg-
mentation. These challenges include: (i) the extraction of concrete
brain vessels close to the skull; and (ii) the precise marking
of the vessel locations. We propose an Optimally Fused Fully
end-to-end Network (OFF-eNET) for automatic segmentation of
the volumetric 3D intracranial vascular structures. OFF-eNET
comprises of three modules. In the first module, we exploit the
up-skip connections to enhance information flow, and dilated
convolution for detailed preservation of spatial feature map
that are designed for thin blood vessels. In the second module,
we employ residual mapping along with inception module for
speedy network convergence and richer visual representation.
For the third module, we make use of the transferred knowledge
in the form of cascaded training strategy to gradually optimize
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the three segmentation stages (basic, complete, and enhanced) to
segment thin vessels located close to the skull. All these modules
are designed to be computationally efficient. Our OFF-eNET,
evaluated using 70 CTA image volumes, resulted in 90.75%
performance in the segmentation of intracranial blood vessels
and outperformed the state-of-the-art counterparts.

Index Terms— Convolution neural network, computed tomog-
raphy angiography, dilated convolution, inception module,
up-skip connection, intracranial vessels segmentation.

I. INTRODUCTION

NTRACRANIAL segmentation of blood vessels from com-

puted tomography angiography (CTA) in neuropathology
is of significant importance in diagnostic and clinical appli-
cations such as, stroke prevention and treatment, emboliza-
tion of cerebral aneurysms, and arteriovenous malformations
(AVMs) [1]. For example, to carry out improved embolization
of the AVM, the structural and geometric information of blood
vessels from 3D images is of supreme importance. Likewise,
detailed information about arterial vessel status play a crucial
role for both the prevention and the improvement of stroke
therapy. For this reason, the in-depth segmentation of cerebral
blood vessels [2] is required for guiding physicians in planning
better pre-operative strategies, monitoring intraoperative surgi-
cal progression, and predicting postoperative patient outcome
in neurosurgical analysis.

Considering the crucial importance of brain vessel status in
a routine procedure, vessel information could be easily inte-
grated in the clinical workflow, if in-depth segmentation meth-
ods are available and practically applicable [3], [4]. Possibly
an ideal segmentation results can be obtained through manual
delineation by a medical expert; however this is tiresome,
impractical in larger studies, and subject to inter-observer
inconsistencies. Despite technology advances in image seg-
mentation [5], existing methods still suffer from low accuracy
for in-depth vessel segmentation particularly to deliver seg-
mentation of vessels close to skull. An analytic and diagnostic
medical data often comprises 3D images, volumetric segmen-
tation of such large volumes using slice-by-slice approach is
very cumbersome. Additionally, aiming to learn 3D complex
visual patterns with a low computational burden from volu-
metric images is an ongoing research challenge. Therefore,
designing efficient and automatic 3D technique for learning
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Fig. 1.

Workflow of our proposed OFF-eNET for automatic intracranial blood vessels segmentation. First step is to collect brain CTA volumes and apply

various preprocessing techniques such as normalization and re-sampling the dataset with spatial window using spatially balanced sampling. Secondly, end-
to-end cascade training of CNN with a 22-layered architecture is carried out. Thirdly, our proposed CNN automatically segment and label brain vessels using
inference. Finally, 3D slicer is used for generating and enhancing 3D representation of segmented blood vessels with respect to multiple 3D views with respect

to sagittal (S), coronal (C), and transverse (T) planes.

visual representations for segmentation of fine structures in
volumetric images is of significant interest.

Consequently, various methods have been proposed such as
rule-based, which are implemented using vessel intensity dis-
tributions, geometric models to extract vessels for developing
more robust and accurate automatic vessel segmentation meth-
ods [6], [7]. However, these approaches are based on manually
engineered hand-crafted features and may prove to be inade-
quately validated. Convolutional neural networks (CNN) has
shown to be promising tools for learning visual representations
for image classification and segmentation tasks in various
fields [8]-[11], and particularly in neuroimaging [12]. The
distinguishing ability of CNN to learn hierarchical feature rep-
resentation [13] without relying on manually detected features
makes them suitable for automatic delineation of volumetric
images. Multiple CNN implementations have been proposed,
Zikic et al. [14] presented a pioneer work based on 2D
CNN for segmentation of neural membranes. Further studies
on CNN for automatic segmentation of brain images were
introduced by [15]-[17]. Although these studies contributed
reasonably in tailoring CNN to analyze volumetric images,
the majority of the existing work studies image representations
in 2D. Here, to carry out brain segmentation task from 3D CT,
each 2D slice has to be independently processed, which is
perhaps an impractical utilization of the volumetric represen-
tations [18]. Phellan et al. [19] showed promising preliminary
results while exploring the small sample size with shallow net
lead to limited performance. One of the most promising deep
learning frameworks is the U-Net [20] specifically designed
for segmentation tasks and has shown high performance for
biomedical images [21]-[23]. Livne et al. [24] presented a
revised U-Net for high-performance brain vessels segmenta-
tion [25]. In [26], Vesal et al. presented global context through
the use of dilated convolutions in fully 3D CNN which helps
in domain adaptation, and the overall segmentation accuracy
for Left atrial segmentation in 3D gadolinium enhanced-MRI.

Another paradigm of fully 3D CNN architecture fol-
lows a pathway of convolution and deconvolution combina-
tion to accomplish high-resolution segmentation [27], [28].

Sabokrou et al. [29] proposed a two-stage cascade strategy
for anomaly detection and localization in video data showing
crowded scenes. A semi-supervised method for brain vessels
segmentation using hierarchical CNN was proposed in [30]
which showed better performance than classical rule-based
segmentation models. In another study [31], DeepVesselNet
was introduced that optimized for segmenting and analyz-
ing vessels (centerline prediction, and bifurcation detection)
using angiographic volumes. A voxel wise analysis for brain
vascular segmentation using time-of-flight magnetic resonance
angiography (TOF MRA) images based on trained CNN [19]
was proposed for bi-dimensional manually annotated image
patches. Another recent method [32] have utilized variability
of blood flow signals to segment brain vessel from TOF MRA
Images.

A 3D FCNN for subcortical segmentation of brain MRI [33]
and for segmenting infant brain MRI [34] have proved remark-
able performance. It uses small kernels and intermediates
layers for local and global contextual information with efficient
processing. It involves post processing to achieve concrete
segmentation. A deep voxel wise residual network [35] is
proposed for volumetric brain segmentation with greater effi-
ciency. Despite the popularity of 3D CNN architectures, their
computational cost and memory requirements during inference
to deliver in-depth and robust segmentation is still an open
challenge. To date, no 3D architecture is presented that is
specifically designed for intracranial vascular segmentation to
clearly separate blood vessels in areas closely adjacent to the
skull. In this study, we have proposed an Optimally Fused
Fully end-to-end network (OFF-eNET) for automatic dense
volumetric 3D intracranial vascular segmentation from CTA
volumes in areas closely adjacent to the skull. Fig. 1 depicts
workflow of the proposed method. The main contributions of
this study are summarized as three modules:

o For the segmentation of intracranial vessels near the
skull, we propose a dilated convolution with cross-layer
architecture as the up-skip connections. This combination
enhances network connectivity between the convolution
and dilated convolution path to facilitate the model’s
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Fig. 2. The schematic representation of our proposed architecture. It consists of 22 layers with 10 residual connection blocks. Each block with an inception
module is composed of two 3 X 3x3 paired convolution layers followed by batch normalization layer and element-wise rectified linear unit (ReLU) layer with
up-skip connections. The first three blocks with 32 X 32 feature map shows the normal convolution layer designed to extract low-level volume features such
as corners and edges, the three blocks in the middle with feature map of 64 X 64 convoluted layers have dilation factor of 2, and the last 4 blocks consist of
128 x 128 feature map comprising dilation factor of 4. The inputs are 128 x 128 x 128 voxel slices and fully connected (FC) last layer gives classification

results for each respective input voxel.

capacity to learn multilevel features as well as detailed
preservation of spatial resolution feature map.

o To increase the network’s capacity for learning richer
representations, in addition to accelerate network con-
vergence, we introduce an extension to the residual
connection by adopting inception modules fusion of
residual connection which enabled the proposed method
to capture advanced visual information under controlled
computational complexity.

o An optimized way of employing cascade training strategy
is employed for using transferred knowledge to achieve
concrete segmentation into three sub-stages (basic, com-
plete, and enhanced).

Related to our problem scenario, the scene image segmenta-
tion approaches such as CCL [36], SVCNet [37], and BFP [38]
tailored skip connections, dilated convolution and dilated
FCN for contextual and sematic segmentation where to be
detected objects are specified determined objects. OFF-eNET
mainly deals with medical image segmentation where the to
be segmented objects i.e. intracranial vessels are not clear
and specified. Our problem scenario is significantly different
from CCL [36], SVCNet [37], and BFP [38] in the way
that we have personalized the use of skip connection and
dilated convolution by introducing a fusing strategy to preserve
very low level details from the image to segment vessels
close to skull which are very thin and need segmentation of
detailed features. In this context our central contribution is an
improved and compact fully 3D end-to-end CNN architecture
for automatic intracranial vascular segmentation from CTA
volumes in areas closely adjacent to the skull. To achieve better
performance, we have used small kernels which exploit the
capability of dilated convolution for preserving fine structural
details along with up-skip connections to accelerate informa-
tion flow to ensure more low-level features. We further extend
our architecture by an innovative fusion of residual mapping
with inception modules to increase the network’s capacity for

learning richer representations in addition to accelerate net-
work convergence under controlled computational complexity.
The motivation of modifying residual connection and dilated
convolution is that they both show good result in natural 2D
image segmentation such as DeepLab [39], so we try them for
3D volume segmentation.

II. APPROACH

Fig. 1 shows our workflow, at first, we collect the brain
CTA volumes, apply various preprocessing techniques such
as normalization and re-sampling. The input volumes are
sampled by a [128 x 128 x 128] spatial window from the
CTA volumes. After a cascaded training strategy of network,
we have obtained intracranial labeled blood vessels in three
sub-stages (basic, complete, and enhanced) through inference
and verified the automatic segmentation results by comparing
them with manually labeled gold standard CTA volumes
as well as using quantitative metrics analysis. We enhance
the visualization of labeled blood vessels using 3D slicer
version 4.7.0 [40], which reconstruct the vessels from different
viewpoints. Further explanation for each component of the
proposed network is given below.

A. Network Architecture for Fully 3D End-to-End CNN

Fig. 2 shows architectural design of our network. It consists
of 22 layers with 10 residual connection blocks having an
inception module associated to all 10 blocks. Each block is
composed of two 3 x 3x3 paired 3D convolution layers [41]
followed by batch normalization layer and elementwise recti-
fied linear unit (ReLU) layer. The first three blocks are nor-
mal convolution layers designed to extract low-level volume
features such as corners and edges, the three blocks in the
middle are convoluted layers with dilation factor of 2, and
the last 4 blocks consist of convolution layers comprising
dilation factor of 4. The inner layers with larger dilated factors
along with cross layer up-skip connections to learn multi
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and high level features abstraction from input volumes. The
network is designed to train end-to-end in a cascade way
to exploit transferred knowledge learning and corresponding
convolutional layers along with rectified element and residual
blocks are arranged in a pre-activation manner to maintain
symmetry [42]. We have considered single class at output
(fore-ground) and employed dice loss to measure the overlap
between foreground prediction (i.e., segmented vessels) and
foreground ground truth.

B. Dilated Convolution With Up-Skip Connections

Generally, to recover feature spatial details, deconvolution
layers are usually integrated in the network design. In order
to efficiently produce dense feature maps, instead of using
down-sampling layer, we have employed dilated convolu-
tion with up-skip connections [43]. The core idea behind
employing dilated convolution with up-skip connection is that,
it enhances information flow between the encoding portion and
decoding portion to ensure more low level features are used for
optimizing the segmentation results. The up-skip connection
provides a new pathway between the convolution layers and
dilated convolution during the forward propagation process,
which allows the dilated convolution layers to extract more
low-level features and thus helps recover spatial information.
This concept up-sample the filters in successive convolutional
layers resulting in feature maps of enhanced spatial resolution
computed at a higher sampling rate with increased network
connectivity [41]. This policy offers a straightforward yet
prevailing substitute of deconvolutional layers for detailed
segmentation maps along delineated object boundaries to learn
multilevel features [41], [44]. Moreover, deconvolution layers
also introduce additional computational costs thus dilated
convolution is a way to reduce network computational cost
efficiently. Inspired by the work of [42], we have incorporated
dilated convolution for volumetric segmentation task. We have
up-sampled 3D convolution kernels with a dilation factor k.
Considering an input feature map of size X with N channels,
the output feature map Z is generated for our experimental
setup as:

2 2 2
Z Z Z Rab,enXitak),(j+bk),(14ck),n (1)

where, the variables (i, j,1) go through every spatial position
in the input volumes. Hence, we can set receptive field up
to a (2kl + 1)3 voxel with kernels R. For minimal use of
parameters, we have selected the kernel size of 3 x 3x3 for
3D convolution layer which can cover 3D features relative to
a central voxel [42] in all directions.

C. Residual Mapping With Inception Module

The depth of fully 3D CNN plays a fundamental role in
achieving finer performance [45]. However, with an increase in
network depth, the notorious problem of network degradation
enhances due to the gradient diffusion which makes network
training process difficult. Hence, CNN generates unsatisfying
segmentation results. To address this issue, He et al. [46]
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proposed and refined residual connections for effective training
and optimization. In our setup, instead of direct mapping
between input and output, we have added a residual block
after two layers with an inception module for deep analysis.

To advance the richer representation capacity of the seg-
mentation network for blood vessels close to skull and to
optimize the segmentation performance, we have adopted an
inception block within convolution layers, which has been
experimentally verified to boost the capturing of advanced
visual information under controlled computational complexity.
The inception module implemented in our end-to-end FCN is
redesigned, where a 3 x 3 convolution layer to enlarge the
receptive field and the max pooling layer is replaced by a
short path to directly incorporate input filters. The output filters
generated from the 1 x 1 and 3 x 3 convolutional layers are
concatenated with input feature map to achieve feature fusion.

According to our 3D CNN design, x represents the input and
F(z) denotes the original function of the network. By adding
a direct bypass from the input layer to the output layer,
we reshape the mapping function F' to newer version O :
O(z) = F(X) + X to make information propagation smooth
via network and for speedy training. The network is set to be
trained to estimate a residual function based on new modifi-
cation O(x) — x, which is cost effective and does not required
new parameters during training. Moreover, residual mapping
along with the inception module improves the gradient flow
in the backward propagation and helps to avoid the gradient
vanishing during training, offering additional guidance for the
learning of earlier layers.

D. Optimization by Maximizing Mean Dice Coefficient

CNN can suffer from biased classification towards majority
class problem when the training data is severely unbalanced
for medical image segmentation task. To mitigate the effects
of biases and resultant misclassification, one optimal solution
is to maximize the mean dice coefficient directly, a solution
proposed by [47]. End-to-end trained fully 3D CNN reduce
the entropy of total error function L by utilizing K voxel of
volume {ay }%_, and the training data of S class segmentation
map{by}5_,, bl,....S as:

1 K S
L(ak,bk) = —E ZZ)\(bk = S) 1ogE5(ak) (2)
k=1k=1

where A shows Dirac delta function, Eg(ay) is the final
score of a; over the s class. To overcome the problem
of imbalance training data we have maximized the mean
dice coefficient by employing the following, where C' is dice
coefficient.

LS 23 A = 8)Eu(ar)

S 2 S Mbe = 8)% + Sk [Eo(ar)]?

C(ag,br) = (3)

E. Cascaded Training Strategy

Inspired by the success of knowledge transfer in boosting
performance [29], this research employed a three-stage cas-
caded training approach for concrete segmentation of brain
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vessels close to skull (basic, complete, and enhanced sub-
stages) sequentially. During cascade training of the FCN,
the knowledge learned from the basic segmentation sub-stage
is transferred to the complete segmentation sub-stage, and the
information learned from the complete segmentation sub-stage
is shared with the enhanced segmentation sub-stage. Cascaded
training approach gradually optimizes the segmentation results
for blood vessels near to skull considering the inclusion asso-
ciations of topologies between basic, complete and enhanced
sub-stages. To summarize the whole concept, the well trained
basic sub-stage is utilized as pre-trained model to initialize the
complete segmentation training sub-stage, and the enhanced
sub-stage is fine-tuned via well-trained complete segmentation
stage at both image and sub-volume level.

F. Data Pre-Processing

The CTA volumes from our original dataset have size up
to 300 x 256328, which increases computation cost (mainly
the GPU memory). We have incorporated a concept of sliding
windows to split the whole volume into slices with a fixed
size of 128 x 128x128. Additionally, we have employed
re-sampling method with bilinear interpolation to make the
image spacing of all the CTA volumes as (Imm, lmm,
Imm) and divide the dataset according to the width of the
window. To augment the dataset for avoiding over-fitting
segmentation results, we have applied augmented operation
such as rotating (10 degrees left, 10 degrees-right), scaling
by (1.2 times), reducing (up to 0.8 times) and symmetrical
transformation (upper, lower, left, and right). We have utilized
method described in [42] to initialize the hyper-parameters
for training, such as Adam as training optimizer, the learning
rate is 0.00005 coefficient of weight decay regularization is
0.000006, the batch size is 4, the regularization type is L2,
and dice similarity coefficient (DSC) as the loss function.
It costs around 15 hours to complete the training procedure
on a Nvidia Telsa V100 GPU.

IIT1. EXPERIMENTAL RESULTS

This section discusses the dataset preparation, implementa-
tion details, experimental setup, qualitative and quantitative
evaluation of results along with a comparison of proposed
method with state-of-the-art methods.

A. Dataset Preparation and Implementation Details

This study has been evaluated on clinical dataset of 70 CTA
volumes and their corresponding labeled ground truth collected
from the cooperative Shanghai hospital, China. The manual
labeling of the dataset for validation purposes is done by
an expert medical physician, for 20 CTA it cost around one
month to complete manual labeling, five to six hours for each
CTA. The implementation was conducted on P3xlarge server
instance provided by AWS (Amazon Web Service). It is set
to a Tesla V100 GPU, 16GB GPU memory, 8 virtual CPUs.
The operating system was 64-bit version of the 16.04LTS,
the deep learning library was TensorFlow 1.3.0 version with
cuda9.0 and cuDNN7.1 of the NVIDIA. For 3D visualiza-
tion of results, we have used 3D slicer version 4.7.0 [40]
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Fig. 3. The segmentation result of our approach. Visualized using volume
rendering of the blood vessels, together with the trans-axial multi-planar
views.

which reconstruct blood vessels of the brain in 3D with
multiple viewpoints (sagittal, horizontal, and frontal plane)
using iso-surface extraction. 3D slicer axis with respect to the
segmented brain vessels is shown in Fig. 3.

B. Quantitative Evaluation

For quantitative assessment of this research, we have used
four types of metrics named as spatial overlap, distance based,
accuracy measure, and volumetric metric. The training process
of proposed OFF-eNET is based on backpropagation. The dice
coefficient quantifies extent of spatial overlapping between two
binary images [48]. A dice value varies from 0 to 1 (0 means
no overlap and 1 means perfect agreement). Additionally,
we have reported three other metrics for showing the quanti-
tative evaluation of this study, i.e., Hausdorff distance (HD),
positive predictive value (PPV), and absolute volumetric dif-
ference (AVD) [48]. The Hausdorff distance H,, across
two sets of points x and y is the maximum value of the
distance for all volume voxels defined as H = max (hyy, hyg)-
The PPV or precision measure is the relation between true
positives output divided by all elements classified as positives.
For our experimental setup, it is defined as the percentage
of how many truly segmented vessels are actually taking
part in measuring the accuracy of segmentation result. AVD
represents percentage ratio of the absolute difference between
input volume and the segmented output volume, to the input
volume.

C. Segmentation Results With Respect to Different
Combination of Proposed Method Architectural Variants

Table I implies that integrating residual connections along
with a different variation of activation function with a various
combination of architectural designs (i.e. ReLU, elastic ReL.U,
and parametric ReLU) improved the segmentation results.
We have achieved best results in terms of DSC which are
90.75% for deploying 22 layers + ReLU combination. More-
over, it is inferred from the Table I that PPV and AVD
values are increased and Hausdorff distance got decreased
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TABLE I

QUANTITATIVE ANALYSIS OF INTEGRATING VARIATIONS OF ACTIVATION
FUNCTION WITH A DIFFERENT COMBINATION OF ARCHITECTURAL
DESIGNS USING 20 AND 22 LAYERS OF OUR PROPOSED NETWORK

(I.E., RELU, ELASTIC RELU, AND PARAMETRIC RELU). THE
SECOND SECTION IN THE TABLE DEMONSTRATES THE
PROPOSED METHOD VARIANTS WITH INCREMENTAL
USAGE OF DIFFERENT ARCHITECTURAL MODULES

Layers: Metrics DSC (%) PPV (%) AVD (%) Hausdorff (mm)
20L:ReLUs 89.56 90.47 89.28 5.32+1.10
20L:ELUs 88.32 89.17 87.93 5.71+1.52
20L:PReLUs 88.85 89.45 87.78 5.57+1.34
221.:ReL.Us 90.75 91.56 89.86 5.01£1.05
221:ELUs 89.23 90.23 88.95 542+41.22
22L.:PReLUs 89.89 90.79 89.25 5.354+1.08

with layer setting of 22 Layers + ReLUs comparing with
other combination of layers. Additionally, We present an
ablation experiment of the gated sum in Table IIl. we have
demonstrated the incremental performance gained from vari-
ous combination of modules like dilated convolution, inception
module, up-skip connections, and cascade training. Where the
last row in Table III shows that the novel fusion strategy
improves the performance visibly. Comparing the following
two combinations i.e. (base net (22 layers) + dilated), (base
net (22 layers) + up-skip), (base net (22 layers) + dilated, up-
skip), and (base net(22 layers) + inception, up-skip, cascade
training), we can see that the best results are achieved by
utilizing the advantages of all the above-mentioned extensions
in the proposed network. We have carried out another set of
experiments for the proposed method to validate the results
with various batch sizes and learning rates to investigate
the impact of dice loss with respect to three sub-stages of
segmentation, see Table II. The comparison results indicate
that with a larger batch size (i.e., 64) and higher segmentation
sub-stage leads to better segmentation performance. Similarly,
with a higher learning rate up to 0.00005 our method achieves
the best performance for enhanced segmentation stage.

D. Analysis of Segmentation Results for Three Sub-Stages
Using Cross Entropy Loss and Dice Loss

For this study, we have calculated two losses, i.e. dice
loss and cross entropy loss (CEL), to compare and reveal
the effectiveness of dice loss over CEL for mitigating class
imbalance problem. CEL is calculated as the log loss, summed
over all possible class values to get final score for all pixels
and then averaged. Considering equal learning to each pixel
in the input image, CEL evaluates the class predictions for
each pixel vector individually which may can cause a problem
when output classes have unbalanced representation in the
image. Hence dice loss as an optimum choice to overcome the
class imbalance problem. Table IV demonstrates the results of
proposed method with CEL and dice loss functions for three
segmentation sub-stages.

E. Qualitative Evaluation

In this subsection qualitative results of proposed method
have been demonstrated by vessel segmentation outputs and
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Fig. 4. Our segmentation results with respect to multiple views on three
sub-stages of basic, complete, and enhanced. The first row shows an original
CTA volume, and the second row shows the segmentation results. The columns
represent the axial (left), sagittal (middle), and coronal (right) views. The third
row illustrates the corresponding 3D visualizations of the segmentation results.

their visualizations are provided. Fig. 4 shows the output of
three stages of our segmentation process (i.e. basic, complete,
and enhanced) with respect to the sagittal, horizontal, and
frontal plane in a 3D slicer. The top layer is the representation
of raw data with anterior, superior and right 3D viewpoints of
the brain. The second layer is automatic segmentation results
of respective 3D views and last layer is 3D visualization of
labeled and segmented blood vessels with clear boundaries.
Fig. 5 demonstrates the detailed analysis of achieved results
especially for the blood vessels close to skull, each part in
the illustration from (a-1) is showing a labeled vessel marked
with colored boxes. We have marked and identified 12 major
intracranial blood vessels (i.e., internal carotid vertebral, verte-
bral, basilar, posterior, medial, anterior, paracentral, precuneal,
lateral orbitfrontal, angular, central, and uperior cerebellar
arteries) for brain in areas close to skull [51]. The results
were verified by medical physician with satisfied performance.
Fig. 6 compares the results of automatic blood vessel seg-
mentation with that of manually labeled CTA’s by medical
experts. It is shown from the illustration that the proposed
method delivered comparable segmentation results with the
ground truth, where the major blood vessels close to skull can
be clearly seen with an enlarged view on automatic segmented
results. More qualitative results are represented in Fig. 7.

F. Comparison With State-of-the-Art

We have carried out comparisons with five recent
state-of-the-art volumetric segmentation techniques includ-
ing Noori ef al. [49], Shi et al. [50], Li et al [42],
Chen et al. [35], and Livne et al. [24]. We have utilized mean
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(i) Lateral orbitfrontal artery

(j) Angular artery

(k) Central artery (1) Superior cerebellar artery

Fig. 5. Qualitative results of our method for the blood vessels located close to the skull. From (a)-(1) yellow, green, and blue boxes show the labeled vessels.
From (a)-(1), 12 major blood vessels are internal carotid vertebral, vertebral, basilar, posterior, medial, anterior, paracentral, precuneal, lateral orbitfrontal,

angular, central, and superior cerebellar arteries.

TABLE II

QUANTITATIVE RESULTS OF OUR PROPOSED APPROACH WITH RESPECT TO DIFFERENT BATCH SIZES
AND LEARNING RATES FOR THREE SUB-STAGES OF SEGMENTATION PROCESS USING DSC METRIC

DSC w.r.t Batch Size DSC w.r.t Learning Rate
Batch Size @8 @16 @32 @64 | Learning Rate | @0.00002 | @0.00003 | @0.00004 | @0.00005
Basic 75.86 | 78.45 | 80.25 | 82.15 | Basic 77.44 78.56 79.38 80.99
Complete 83.15 | 85.75 | 87.66 | 88.12 | Complete 81.75 84.63 86.53 87.67
Enhanced 85.75 | 81.35 | 89.11 | 90.75 | Enhanced 87.83 88.11 89.09 90.70
TABLE III

ABLATION STUDY OF THE PROPOSED METHOD. HERE, 22L IS USED FOR
BASE NET (22 LAYERS), D IS FOR DILATED CONVOLUTIONS, I FOR
INCEPTION MODULES, U FOR UP-SKIP CONNECTIONS, AND C FOR
CASCADED TRAINING STRATEGY

Layers: DSC PPV AVD  Hausdorff  Training Time

Metrics (%) (%) (%) (mm) (sec)

22L:D 86.75 91.56 89.86  5.01£1.05 35-40

221L:U 89.23  90.23 8895 5.42+1.22 30-35

22L:D+U 89.890  90.79  89.25 5.35£1.08 25-30

22L:1+U+C  90.75 89.56 87.86 5.01%1.05 15-20
TABLE IV

QUANTITATIVE ANALYSIS OF SEGMENTATION RESULTS FOR THREE
SUB-STAGES BY COMPARING DICE LOSS AND CROSS ENTROPY LOSS

Segmentations Stages | Dice Loss | Cross Entropy Loss
Basic 78.37 73.34
Complete 85.43 76.34
Enhanced 90.03 80.45

DSC, AVD, PPV, and Hausdorff distance (mm) as the perfor-
mance metrics for the comparisons. For testing the significance

of the differences between the results of comparison methods,
we computed the p-value using the paired t-test (two-sample
t-test) with significance level of p at 0.05. Table V and
Fig. 8 demonstrate the comparison results. With reasonably
fewer parameters than Noori et al. [49] and Shi er al. [50],
the proposed method outperforms the competing method in
terms of mean DSC of 90.75%, PPV up to 89.56%, AVD
value increases up to 87.86% and Hausdorff distance (mm)
decreased to 5.014+1.05mm. These results show that we have
achieved significantly higher results, i.e., approximately 3-4%
accuracy compared to Livne et al. [24] and Chen et al. [35]
in terms of DSC and PPV.

The obtained dice coefficient with error value of approxi-
mately 10% shows that the OFF-eNET is an accurate solution
to optimally detect thin vessels, and outperforming the existing
models such as Livne et al. [24], and Li et al. [42]. Quali-
tatively, we can see that the OFF-eNET resulted in slightly
greater amount of depiction of the thick blood vessels when
compared to the manual labelling counterpart. We assessed
our model’s performance using four different measures:
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TABLE V
COMPARISON OF OUR APPROACH WITH FIVE STATE-OF-THE-ART METHODS IN TERMS OF MEAN DSC, PPV, AND AVD

Method DSC (%) PPV (%) AVD (%) Hausdorff Distance (mm)
Noori et al. [49]  83.44+0.79 82.23+0.64  81.75+0.98* 6.24+1.78*
Shi et al. [50] 87.994+0.34*  85.324+0.73* 83.45+0.67 6.89+1.57*
Li et al. [42] 84.03+0.75  87.11+0.77*  86.49+0.16* 6.25+1.96*
Chen et al. [35]  86.99+0.41* 86.91+0.25  85.43+0.54* 6.01+1.25
Livne et al. [24] 87444032  86.99+0.94*  86.111+0.44* 6.51+1.05
Our Method 90.75+0.30 89.56+0.20 87.86+0.10 5.01+1.05

P < 0.05, * derived for a paired t-test shows statistically significance difference.

Manual labeled data

OFF-eNET

Fig. 6. This figure compares the results of our proposed OFF-eNET with
manually labeled CTA volumes by medical experts. The second and fourth
rows are amplified areas of the first and third rows respectively for the marked
critical arteries close to skull, i.e. anterior, posterior, and medial brain arteries.

Fig. 7. Qualitative results of another patient.

First, the dice coefficient which is a well-known for quan-
titative measure of segmentation accuracy [24]; Second and

W DSC (%) PPV (%)

86 -
8844
B
s 82 -

80 -

78 -

76 -

Mehrdad et al Chenetal.

AVD (%)

Fengetal. Wenql etal. Mlchelle et aI

Fig. 8. Comparison of proposed method with five state-of-the-art
Noori et al. [49], Shi et al. [50], Li et al. [42], Chen et al. [35], and
Livne et al. [24] methods.

TABLE VI
CROSS VALIDATION
Validation | DSC (%) | PPV (%) | AVD (%) | Hausdorff (mm)
Fold; 90.45 86.34 86.11 6.0
Folds 89.95 88.46 87.49 5.4
Folds 88.36 87.56 88.56 5.0
Fold4 87.49 86.23 89.67 4.5
Folds 90.75 89.11 86.89 4.8
Foldgvg 89.46 87.8 87.2 5.04

third are the distance-based measures, the HD and the AVG,
respectively; Fourth one is the accuracy measure, i.e., PPV.
These differences suggest that the use of hybrid combina-
tion of dilation factor wit up skip connection and inception
module with cascade training strategy can actually improve
the performance of segmentation networks especially for thin
intracranial blood vessels.

Currently, our technique takes approximately 120 seconds
to complete the segmentation process on an image volume of
size 128 x 128x 128 voxel on Nvidia GTX 1060. The time is
reduced to 15-20 seconds when using Tesla V100. We have
used 70 CTA volumes out of which we have used 50 for
training and 20 for testing. We divided the image volume in to
128 x 128 x 128 size sub-volumes, thereby dividing the testing
set of 20 CTA volumes approximately 5 million sub-volumes.
We have conducted 5-fold cross validation to estimate how
accurately our automatic segmentation results will perform
in clinical practice. We divided the 70 volumes dataset into
five equal folds, with each of the first four folds used exactly
once as the validation data. The 5" fold was solely used for
validation to test the dataset. Table VI shows the results for
five folds with averaged results in terms of four metrics.

In summary, this study provides a starting point to develop
a brain vessels segmentation solution which can be applicable
in the neuropathology settings. For qualitative evaluation,
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two experienced medical experts visually assessed the superi-
ority of our segmentation. We found an excellent performance
for thick, as well as thin blood vessels close to the skull area
which showed higher performance of OFF-eNET as compared
to state-of-the-art segmentation methods.

IV. CONCLUSION

We presented an efficient OFF-eNET architecture for auto-
matic intracranial vascular segmentation from CTA volumes.
We focused on enhancing our work compared to the existing
methods by segmenting thin blood vessels near the skull for
improving the accuracy of dense volumetric segmentation.
We have applied various preprocessing techniques to resample
3D volumes for effective training. To handle network con-
vergence, this research mainly employed residual mapping
along with inception module. To deliver richer representation
for preserving spatial feature map, we have employed dilated
convolution along with innovative use of up-skip connections.
The proposed method is evaluated by verifying the automatic
segmentation result against manually labeled gold standard
CTA volumes. This type of segmentation has remained ignored
in previous state-of-the-art due to requirement of preserving
concrete details. Our proposed architecture proved to be a
promising contribution having clinical importance both during
diagnosis, where the volume of brain CTA needs to be ana-
lyzed, and during treatment planning when the estimation of
the anatomical structure of blood vessels needs to be accurate.
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