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Illumination-Guided Video Composition via
Gradient Consistency Optimization

Jingye Wang , Bin Sheng , Ping Li , Yuxi Jin , and David Dagan Feng , Fellow, IEEE

Abstract— Video composition aims at cloning a patch from
the source video into the target scene to create a seamless and
harmonious blending frame sequence. Previous work in video
composition usually suffers from artifacts around the blending
region and spatial–temporal consistency when illumination inten-
sity varies in the input source and target video. We propose
an illumination-guided video composition method via a unified
spatial and temporal optimization framework. Our method can
produce globally consistent composition results and maintain
the temporal coherency. We first compute a spatial–temporal
blending boundary iteratively. For each frame, the gradient field
of the target and source frames are mixed adaptively based
on gradients and inter-frame color difference. The temporal
consistency is further obtained by optimizing luminance gradients
throughout all the composition frames. Moreover, we extend
the mean-value cloning by smoothing discrepancies between the
source and target frames, then eliminate the color distribu-
tion overflow exponentially to reduce falsely blending pixels.
Various experiments have shown the effectiveness and high-
quality performance of our illumination-guided composition.

Index Terms— Illumination aware, image cloning, gradient
fields, video composition.

I. INTRODUCTION

V IDEO composition is the process of cloning a patch from
the source video into the target video sequence, where

the patch is often the moving foreground objects in the source
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video. Such composition is a popular and useful video editing
technique in the film, game and entertainment industries
[1]–[4]. To date, there is no acknowledged measuring standard
for evaluating the quality of composition video. In gen-
eral, three challenges are involved in such tasks, including
extracting the patch automatically, cloning it to the target
region naturally, and getting rid of supervision. A common
method is a cyclic process of cutting out and pasting using
interactive video editing tools or utilizing image blending
methods frame-by-frame. The 3D Poisson video composition
method [5] addressed the problem by solving a 3D Poisson
equation system. Apart from Poisson blending, mean-value
coordinates (MVC) interpolation [6] has also been introduced,
which can achieve similar blending results and is highly
parallelizable compared to Poisson blending. However, these
frame-by-frame processing methods cost intensive labor, and
the user-given trimap is not always precise enough.

Recently, many methods on video composition have been
proposed. Xie et al. [7] refined the composition results
by removing artifacts along the blending boundary, but the
method lacks temporal coherency with the challenge of illu-
mination varying and object motion. Chen et al. [8] proposed
to mix the gradient field and use mean-value interpolation to
support hybrid blending to deal with motion difference around
blending boundary. Shen et al. [9] introduced a superpixel
segmentation through density-based spatial clustering of appli-
cations with noise (DBSCAN) in real time. A fast two-step
approach is applied in their work to decrease the calculation
cost. Image matting [10], [11] can be utilized for video
composition. These matting-based methods are apt to produce
good composites with great discrepancies between the source
path and target scene. In general, many conventional video
composition methods are developed on the basis of image
composition like Poisson blending and mean-value coordinates
interpolation. They used optical flow and local features to keep
spatial and temporal consistency. They concentrate on dealing
with motion problems [8] or removing blending artifacts [7],
but are not effective enough to significant illumination con-
dition variation, including illumination intensity change and
cast shadow. Especially, if light intensity changes reversely
in source and target videos, the appearance of the blended
object is usually not in accordance with the target scene
brightness change. The challenges may also lead to object
appearance flickering and temporal incoherence. Furthermore,
it brings more difficulty to obtain high-quality compositions
if there is complex motion in surroundings like smokes,
clouds, etc.
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Fig. 1. A video composition example of our method on flower1 sequence. It demonstrates the effectiveness to illumination difference of our method. Note
that the flower is adjusted to suitable size in the composition video. The source frames are listed in the first row, where the red dashed rectangle marks the
blooming flower to blend. In the source scene, the global light intensity changes over time. The corresponding composition results are shown in the second
row. The region of interest is marked with a red rectangle. The flower in the blending region is harmonious with the target illumination condition.

Our key idea is to use gradient consistency optimization
and local discrepancy smoothing to address the above issues.
When processing each frame, we define a cost function for
spatial-temporal coherent blending boundaries where taking
into account the global and partial illumination variation
and motion difference. We propose a spatial-temporal con-
sistent mixing strategy to achieve seamless blending results
when illumination changes. The gradient mixing parameter
is generated in the first frame by the gradients ratio, and
adjusted by inter-frame color difference. We deal with sudden
illumination variation by designing the color terms in the cost
function to reduce color flickering in the blending regions.
We further enhance the temporal consistency by optimizing
a patch-based energy function. Moreover, we optimize the
mean-value interpolation with an additional term to smooth the
contrasts between the source patch and target scene. We further
eliminate the discoloration artifacts by constraining the color
overflow in interpolation. Fig. 1 shows the effectiveness to deal
with illumination difference using our approach, where we
intend to cut out the blooming flower in the source frame and
paste it into the region of interest. The global light intensity
varies in the source frames. Meanwhile, the illumination
condition changes due to the tree shadow as shown in Fig. 1.
In the composition video frames, the blended flower is in
accordance with the cast shadow of the tree in the target. Our
approach has the following three main contributions:

• Optimized interpolation for image cloning We make
the blending object consistent with the target bright-
ness by smoothing the local discrepancies between the
source and target videos, and constraining the overflow in
color distribution to reduce discoloration in the blending
region.

• Spatial-temporal consistent blending boundary
optimizing We propose a spatial-temporal consistent
boundary computing by optimizing an energy function
to tackle the challenge of illumination variation and
motion.

• Illumination-guided gradients mixing We propose a
seamless composition strategy by mixing gradients to
maintain temporal-spatial consistency, and further opti-
mize temporal coherency over all frames.

II. RELATED WORK

Video composition is a hot topic in video processing and
computer vision. We could not enumerate all literature, but
attempt to focus on the popular and effective work. Researches
on matting techniques, gradients domain methods, and video
composition approaches are reviewed here.

Matting techniques produce an alpha-matte, which pro-
vides the weights for linear pixel interpolation of two images.
Image matting methods often require a user-defined trimap
to compute the alpha values in the uncertain region and
the foreground. Video matting approaches are extended from
image matting. Thus, additional constraints are required to use
trimaps or other constraints before image matting approaches
are applied on all video frames [12]–[17]. Traditional trimap
propagation methods include: optical flow [18], graph-cut [19]
and geodesic segmentation [20]. However, it is difficult for
these methods to produce a precise trimap if foreground and
background layers have divergent motions. Matting Laplacian
methods can provide spatial-temporally coherent clusters of
source patch pixels, but user-provided trimap needs to be dense
and precise [21], [22]. Closed-form matting are proposed to
deal with scribbled pixels [11], [23], [24]. Many state-of-the-
art methods focus on maintaining temporal-spatial consistency,
but more manual supervision is required to address complex
motion and varying illumination.

Gradient domain methods are often used for their effec-
tiveness in seamless video composition. In video composition
and video editing technologies, gradients of two input frames
are mixed to create a consistent blending region around the
fuzzy object boundaries [25], [26]. However, the composition
quality depends heavily on the blending region boundary,
thus the boundary optimization is a necessary step in these
methods. Drag-and-drop pasting [27] computed a boundary
from user-drawn loop to minimize color mismatch then mix
the gradients. Chen et al. [8] proposed a mixing gradient
field and used mean-value interpolation to support hybrid
blending. Most gradient domain methods take into account the
intra-frame space information, and are often combined with
motion information methods like optical flow to create results
with temporal consistent effects [28]–[30]. If the illumination
varies in the source object and target scene, or the texture
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Fig. 2. Overview of the proposed illumination-aware video composition in the gradient domain on stone sequence. We intend to paste the tower into the
target scene, where the illumination intensity changes oppositely. User strokes are required in the keyframes, and preprocessing consists of bidirectional optical
flow estimating together with definite foreground extracting. We first optimize the blending boundary, then clone the patch by smoothing local discrepancies
and constraining color overflow. We also composite the video in the gradient domain where inter-frame color difference is taken into account. The output
video is spatial-temporal consistent with the challenge of dramatic illumination difference.

of the source object and target is inconsistent, users have to
re-draw the blending boundary in more key-frames. Moreover,
gradients mixing based methods cannot effectively suppress
color flickering in cloned region when illumination intensity
varies dramatically in the source or target scene, because they
consider the temporal consistency based on only optical flow
between adjacent frames.

Video composition approaches have been proposed to
paste an image patch into the region of interest. They are
developed based on image cloning methods like Poisson
blending [5] or mean-value coordinate composition [6]. 3D
Poisson video cloning obtains relatively good results but is
labor-intensive because it requires frame-by-frame supervi-
sion. Levin et al. [31] introduced Poisson blending into image
stitching in the gradient domain, and the artifacts caused
by misalignment are reduced. Chen et al. [32] solved the
Poisson equation by using the mixed boundaries to remove the
composition artifacts. Besides Poisson equation based cloning,
many composition methods can achieve similar composition
results. Mean-value coordinates interpolation [6] achieves sim-
ilar blending results but is lower in computational complexity.
Approaches on video editing and processing are also highly
related to video composition, which also concentrate on video
consistency. Intra-frame and inter-frame consistency is usually
incorporated with other cues like motion patterns to perform
video editing [33], [34]. The across-video consistency can
be further maintained by optimizing a temporal consistency
function over the entire video [35], [36].

The Poisson-based cloning methods often generate unreal-
istic blending results, and matting-based methods are recently
researched to deal with such problem. Chen et al. [37]
proposed a video composition method, which automatically
composites several related single frames into a long-take
video sequence using feature extracting and matching. Li and
Hu [38] extended mean-value cloning to decrease Dirichlet
energy and estimated a harmonic function to make the com-
position result realistic. Wang et al. [10] remove the falsely
computed pixel intensity of composition in the blending region
by enhancing usage of mattes to handle artifacts. However,

the excessive use of may lead to the loss of blending details
around the boundary. Most of the existing video composi-
tion approaches are developed based on Poisson blending or
mean-value cloning, and concentrate on removal of boundary
artifacts to improve composition quality. However, sudden
illumination intensity change and unclear object surroundings
like smoke or cloud still limit the applicability of these
approaches.

III. APPROACH OVERVIEW

The proposed video composition approach is effective to
deal with illumination intensity varying. Fig. 2 is the overview
of our approach. The input consists of two video sequences
including the source and target videos, where the illumination
intensity changes inversely. The output is the composition
video sequence by pasting the source patch into the region of
interest into the target scene. In the interaction part, the user
strokes are provided in the keyframes. The coarse blending
boundary Bout is provided by the user in the keyframe, which
is shown as the yellow closed curve in Fig. 2. The fuzzy
surroundings like the smoke, dust, etc. and motion blur which
is around the source object should be encompassed by Bout .
The inner boundary Bin is also given in the keyframes which
roughly surrounds the definite foreground object region. The
region of interest in the target video is provided as well.
It is marked as the green rectangle enclosed by the yellow
dashed line in Fig. 2. In the preprocessing step, the optical
flow field is estimated for each frame bidirectionally. Trimaps
are generated and updated based on the two boundaries and
matting results. Algorithm 1 shows our illumination-aware
video composition. Video composition is developed based on
image cloning methods, so we first introduce our improved
image cloning method in Section IV. We propose a local
smoothing term to compute the mean-value cloning interpolant
to decrease the discrepancies between the source and target in
Section IV-A. In Section IV-B, we further refine the computed
interpolant by constraining color overflow exponentially to
avoid discoloration artifacts in the blending region.
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Algorithm 1 Illumination-Aware Video Composition

To conduct composition task on the video sequences,
we introduce how we obtain the blending boundary on each
frame, and how to maintain the spatial-temporal consistency of
composition video frames in Section V. We define a cost func-
tion to compute a coherent blending boundary by minimizing
the neighboring pixel color mismatch between the source and
target in Section V-A. The gradient mixing and optimized
mean-value cloning are executed within the obtained boundary.
In Section V-B, we introduce our gradient mixing method
which helps obtaining a globally consistent composition result
and tackles the challenge of motion and illumination variation.
We further refine the composition results by considering the
temporal consistency over all frames.

IV. REFINED INTERPOLATION FOR IMAGE CLONING

Poisson equation can be utilized for image blending, but
Poisson-based methods cost much time to solve a linear
equation system, thereby is not time efficient. In view of
this issue, our approach is developed based on mean-value
interpolation [6]. Mean-value cloning has advantageous in
terms of speed and parallelization. However, similar to Pois-
son blending, it is still limited with the presence of color
flickering and spatial inconsistency when introduced into
video composition. We optimize mean-value cloning by first
smoothing discrepancies between the source and target, then
constraining the color overflow, which aims to make blending
region harmonious with target surroundings and eliminate the
discoloration artifacts.

Let � denote the region of source patch, which is pasted
into the region of interest in target, and let B be the boundary
of �. The outer boundary Bout is a closed loop curve in
key-frames defined by the user. A possible way to extract
foreground object is to identify the background in dynamic
videos [39]. We use semi-supervised image segmentation
method the obtain the foreground region. The inner boundary
Bin is generated by applying GrabCut [40] to generate a
closed loop based on another user-drawn loop curve which
surrounds the object boundary in the key-frames. The trimap
of the first source frame is provided by the user, and then

generated using propagation in the subsequent frames. The
inner boundary Bin is projected to the next frame with the
method of Bai et al. [41], and the outer boundary Bout is
updated using propagation using [8]. Chen et al. [32] classified
the blending region into two types R1 and R2, and we follow
the similar approach. The pixels between Bin and Bout are
classified as R1 if the difference of Gabor feature vectors and
the UV color components of them are small, and other pixels
are regarded as R2.

A. Local Smoothing Interpolant

In mean-value cloning [6], the membrane value at each
interior point in the blending region is computed as the
weighted sum of values around the boundary. After the blend-
ing region is triangulated, two steps are involved in image
cloning: mean-value coordinate computing and interpolation.
Let Fs , Ft and F denote the image intensities of the source,
target and composition frame, respectively. In this method,
the interpolant at each point is obtained based on mean-value
coordinates, then F is computed by adding up Fs and the
interpolants in each channel of color space. Considering an
interior point q ∈ �, we denote r1(q) as the mean-value inter-
polant with respect to point q which diffuses the difference
of the source patch and the target image. The interpolant is
computed as:

r1(q) =
n−1∑

i=0

wi∑n−1
j=0 w j

(
Ft (pi ) − Fs(pi)

)
(1)

where, pi ∈ R
2 is denoted as a boundary point and

pi ∈ B. The blending boundary B is denoted as B =
{p0, p1, p2...pn−1}. The mean-value interpolant weight wi for
boundary point pi is computed as:

wi = tan(βi−1/2) + tan(βi/2)

||pi − q|| (2)

where, βi is the angle � pi , q, pi+1, ||pi − q|| is the space
distance between boundary point pi and inner point q .

When color discrepancy between the patch and target scenes
is large, the result of conventional mean-value cloning is
sometimes not natural or realistic, which manifests as dramatic
appearance brightness difference between the blending region
and background. In this case, illumination difference in the
source and target video can lead to spatial-temporal inconsis-
tency in the composition video. Wang et al. [10] optimized
mattes computing by suppressing the difference around the
object of interest. We follow the idea of its usage in mattes and
design an additional term for interpolant computing to smooth
the local discrepancies around the boundary and extend it to
image cloning. We utilize the added term to meliorate the
blending results to make the composition result more realistic.
We add up the conventional interpolant in Eq. (1) and the
additional term to compute the new interpolant as:

r2(q) = r1(q) + κ ·
∑

x∈�

Hx · S(q, x) · (
Ft (x) − Fs(x)

)
(3)

where, Hx is a normalized weight for smoothing, we compute
Hx for point x in blending region based on alpha matting. Hx
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Fig. 3. An example on hummingbird showing the effectiveness of the additional smoothing term in Eq. (3). We intend to clone the hummingbird into
the anthemy, and we show our strategy can achieve realistic results by adjusting the discrepancies between the source and target surroundings. The source
and target frames are shown in (a), (e) and (b), (f) respectively. (c) and (g) show the blending results using [6]. In (d) and (h) we list the results using
Eq. (3).

is computed as: Hx = (1 − αx )/
∑

y∈� (1 − αy), in which αx

and αy are the matte value at point x and y, respectively. Hx

tends to be large for points between B and Bin , while relatively
small for points inside Bin . Hence, the effects of the source are
restrained in region between B and Bin if κ is set to a positive
value. S(q, x) is designed based on the space distance between
the points and is computed as: S(q, x) = exp(−||q − x ||2),
which makes the points near q have greater influence to the
interpolant so that the object appearance is well preserved. κ
is a parameter controlling the effect of the term, and we set it
to 0.08 in most cases in experiments.

Denote N as the number of pixels in �. The computa-
tional complexity of Eq. (3) can be reduced to O(N) by
pre-computing the summation of mattes in �. As the value
of S(q, x) will be negligible when the distance of point q
and x is large, we can further cut down the computational
complexity by only taking into account the neighborhood
pixels around point q . We consider the points inside a 7 × 7
window of q rather than all points in � in the experiments,
and the blending results is visually similar. Fig. 3 shows the
effectiveness of our interpolant which is computed by Eq. (3).
Compared to Farbman et al. [6], our blending results pre-
serve more source patch information and look more realistic.
In Fig. 4, the difference of brightness between the target is
restrained, and the flower is adjusted to be harmonious with the
target illumination condition compared to the results without
smoothing.

We use the closed-form matting [11] to remove the artifacts
in the uncertain region. We intend to compute the mattes of the
source frame for mean-value interpolant, so that the boundary
region smoothness and the structure transfer characteristics in
matting are well maintained. The cost function for closed-form
alpha mattes is:

Em(α) = (α − γ )T �(α − γ ) + αT Lα (4)

where, γ is the user-supplied constraint and we use the
trimap as constraint in experiments. � is the diagonal matrix

which consists of constraint values. In Eq. (4), L is the
matting Laplacian matrix. The (i, j)-th element of L is chosen
to be:

Li j = |wk |(ξi j − Uij (I )) (5)

where, ξi j is the Kronecker delta, and Uij (I ) is computed
as the kernel weight of the guided filter [42]. Compared to
with Poisson-based blending methods, mean-value cloning can
achieve similar blending results and faster computing speed,
but it may lead to smudging pixels around blending boundary,
especially when there is a fuzzy boundary around the definite
foreground in source frame.

B. Discoloration Artifacts Removing

We can obtain a relatively natural composition result by
using the smoothing term. However, the discoloration artifact
often exists in some composition images, which appears as
dramatic visual difference between the source region and
the target background. It primarily derives from overflow of
the color distribution in the process of mean-value cloning.
To address the problem, conventional mean-value cloning
limits the overflow intensity value to 255 in RGB channels.
Discoloration artifacts often derive from immoderate color
transferring. Based on this fact, we further constrain the color
distribution in the interpolant in Eq. (3) to achieve moderate
color transferring. Denote μ and δ as the mean intensity and
standard deviation value of pixels in the source patch. We think
the color distribution in the interval [μ−δ, μ+δ] of the source
are non-overflow, and intend to limit the variable range of
mean of the composition to [δ, 255 − δ].

The composition image intensity F is computed by adding
up Fs and the computed interpolant. We compute the intensity
of the composition frame at point q as:

F(q) = Fs(q) + r2(q) · ζ (6)
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Fig. 4. An example of our color distribution constraining on flower1 sequence. (a) and (f) are two selected source frames where we mark the source patch
with red dashed rectangles. (b) and (g) are the target frames in which the region of interest is marked. (c), (h) and (d), (i) are the corresponding blended
results using Eq. (1) and Eq. (3) as the interpolant for cloning, respectively. (e) and (j) are the cloning results which computes the mean-value interpolant
with Eq. (4). The results of our method are harmonious with the target illumination condition, and discoloration artifacts are well reduced. Meanwhile the
inter-frame color difference is restrained in the blending region as well.

where ζ is a coefficient to refine the interpolant in Eq. (3),
and it is computed as:

ζ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp (τ · ( δ − μ

r̄
− 1)), if μ + r̄ ∈ [0, δ)

1, if μ + r̄ ∈ [δ, 255 − δ]
exp (τ ·(255−μ−δ

r̄
− 1)), if μ + r̄ ∈ (255 − δ, 255]

(7)

where, r̄ is the mean value of r2 in the blending region �
and computed as: r̄ = 1

N

∑
x∈� r2(q), τ is a controlling

parameter and are set to 0.02 in experiments. If color intensity
not overflows, which means μ + r̄ ∈ [δ, 255 − δ], r(q)
is computed as r2(q). Once μ + r̄ is out of the range
[δ, 255 − δ], the interpolant is constrained to control the
immoderate overflow of color distribution. We use the new
interpolant r for cloning, and Fig. 4 is an example showing
the color distribution constraining, where we can see the
constrained mean-value interpolant removes the discoloration
artifacts effectively. Meanwhile, it is worth noticing that there
is illumination intensity variation in the target or source scene,
the color in the blending region may flicker over the time,
and the limited color distribution can enhance the temporal
consistency of composition. From Fig. 1, we can also find
that color flickering in the blending region is weakened when
there is illumination change. Note that our approach computes
the mean-value interpolant in Eq. (1) and Eq. (3) in LUV
color space, while we first transfer the color space into RGB
channels to compute Eq. (6), and change the new interpolant r
back to LUV as the interpolant which is used in Eq. (7). The
blending boundary is optimized when tackling each frame as
introduced in Section V-A, but it would be computationally
unbearable to repeat computing the tangents of each pixel of
the patch. We use the method in [8] to compute the mean-value
interpolants approximately and the computational complexity
is largely reduced by pre-computing the tangents values. The
membrane evaluation at each vertex is performed independent
to others. This allows us to provide a parallel implementation
on a GPU.

V. ILLUMINATION-AWARE VIDEO COMPOSITION

The refined image cloning can composite frames seam-
lessly and plausibly when illumination varies. In this section,
we introduce our adaptive composition. With the deformation
of source patch and variation of illumination intensity, blend-
ing boundary should be modified automatically in each frame.
Gradient domain mixing can achieve a seamless blending, but
the brightness change may lead to temporal incoherency in
blending region. We first introduce how to find a blending
boundary, which maintains spatial-temporal consistency with
the challenge of motion and illumination difference. Then we
combine gradient fields of the source patch and target frames,
which tackle sudden illumination changes.

A. Spatial-Temporal Consistent Boundary Computing

Blending boundary optimization is necessary for video com-
position because the inner and outer boundary is only given
in keyframes. Pérez et al. [26] deal with problem of pasting
a patch into the region of interest by solving a minimization
problem with a guidance field to refine the user-defined blend-
ing boundary. Jia et al. [27] addressed the optimal boundary
by solving the minimization equation in the Laplacian form
instead of Poisson equations, and found that a smoother
boundary with the minimal color mismatch (color intensity
difference at each boundary points) has the least variational
energy in solving the Laplacian equations. For the frames
with fuzzy boundaries like dust or smoke etc. and motion
blur, we determine a blending boundary between Bin and Bout

which has the minimal color mismatch considering illumi-
nation change and similar optical flow between the source
and target boundary pixels. The optimization step operates
on super-pixels by applying over-segmentation for efficiency.
This strategy effectively suppresses visible seam around the
foreground patch and appearance variation. As introduced in
Section IV, the blending region is divided into R1 and R2
according to Gabor feature vectors. The boundary in R2 can
be generated using matting technique. Thus, we only need to
optimize the boundary in R1.
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Jia et al. [27] optimized the blending boundary using
dynamic programming in order to minimize the color mis-
match. GradientShop [43] minimized the color mismatch
between the motion-compensated neighborhood pixels to
maintain temporal coherence. Chen et al. [8] use optical flow
to address the complex motion of boundary pixels. We define
an energy function for boundary curve B as:
Eh(B, h) =

∑

p∈B

S(p, h) + λ1

∑

p∈B

N (p, h)

+ λ2

∑

p∈B

W(p, h) + λ3

∑

p∈B

V(p) (8)

The energy function consists of three color terms S(p, h),
N (p, h), W(p, h) and a motion term V(p). λ1, λ2 and λ3
are weighting parameters. These terms are designed to seek a
spatial-temporal coherent boundary so that pixel values will be
stably changed if there is a fuzzy boundary around the object.

The first term S(p, h) is designed to maintain spatial
consistency, which is computed as:

S(p, h) = exp (−ε‖hp − h‖2) (9)

where hp is the color mismatch vector of target and source
at the location of a boundary point p, h is average color
mismatch vector of all boundary points on current frame.
Initially, the average color mismatch vector is set as the mean
color difference at all points in Bout . ε is a constant and is
computed [40] as:

ε = (
2 ·

∑

(p1,p2)∈Us

‖C(p1) − C(p2)‖
)−1

(10)

where Us consists of all 8-neighboring point pairs within the
same frame.

The second term of Eq. (8) is designed to maintain temporal
consistency, and is computed as:

N (p, h) = exp (−ε‖hp − h̄n
p‖2

) (11)

where h̄n
p is the average mismatch color vector between point

p and the nearest boundary points on the two adjacent frames.
When there is noticeable illumination variation, including
partial appearance change caused by cast shadow and light
intensity change in global scene, the second term in Eq. (8) is
not practical. This issue may lead to temporal inconsistency
in composition videos.

The third term W(p, h) in Eq. (8) is the energy term
considering the inter-frame pixel intensity difference caused
by illumination variation to enhance temporal coherency when
illumination changes, and it is computed as:
W(p, h) = e1 · exp (−ε‖h − hn‖2)

+ e2 · exp (−ε‖h̄p,w − h̄n
p,w‖2

) (12)

where e1 and e2 are two ’toggle’ parameters. When there is
sudden illumination intensity change in the global target or
source scene, e1 is set to 1, otherwise 0. Similarly, when
the source object appearance or the target blending region
changes partially due to cast shadow, e2 is set to 1, otherwise
0. hn is denoted as the average color mismatch vector at all

Fig. 5. Optimizing blending boundary on rainbow sequence. We intend to
drag the rainbow as the source patch in (a), where the orange dashed loop
curve is the initial outer boundary Bout , and the dark blue curve encircles
the definite foreground region. (b) is a zoom-in region of rainbow, where we
show the optimized blending boundary with the white curve.

boundary points on the next frame. The first term of Eq. (12)
penalizes the illumination variation in the global scene. h̄p,w

and h̄n
p,w are the average color mismatch of all points inside

the 3 × 3 window of point p on the current frame and the
corresponding pixel obtained by optical flow in the next frame,
respectively. The second term of Eq. (12) takes into account
the fractional intensity variation of object appearance which
appears when there is cast shadow or uneven light distribution
in the background.

In the last term of Eq. (8), we optimize the temporal
coherency of motion-compensated neighbor points with optical
flow. V(p) is computed as:

V(p) = ‖vs
p − vt

p‖2 (13)

where vt
p and vs

p are optical flow vectors at point p in the
current target and source frames, respectively. In Fig. 5(b),
we determine a closed curve to be the blending boundary as
shown with the white curve between Bout and Bin . In the first
frame, the initial blending boundary is set to Bout . In Eq. (8),
λ1, λ2 and λ3 are set to 1, 5 and 0.6 in implementation.
We solve the function iteratively and the maximum number of
the iteration is set to 25 except that the boundary converges.
With the optimized boundary in R1 and the boundary com-
puted in R2, a loop curve is obtained as the final optimized
boundary.

B. Illumination-Aware Gradient Fields Mixing

We mix the gradient of source patch and target frames
between region of B and Bin to obtain a seamless compo-
sition result. We create a gradually mixed gradient field to
remove motion inconsistent artifacts and immoderate color
transferring in definite foreground region. The gradients at
pixels near Bin in the composition image should be more
affected by source frame, while the ones which locate besides
B should depend more on the gradient values of target scene.
Wang et al. [44], [45] proposed a framework for video editing
in gradient domain by considering two constraints: spatial
consistency and temporal coherence. At the i -th pixel of
blending region, the new gradients are obtained by linear
superposition of those of source and target frames. The naive
form of gradient combination mixes gradients at each pixel
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crosswise and lengthways with same parameter. Denote Gs

and Gt as gradient vectors of source and target respectively,
We denote ai = (ax

i , ay
i ) as the mixing weighting factor at

pixel i , so that the mixing parameter is computed discrepantly.
The gradient mixing parameter value approximates to 1 when
the pixel locates near the inner boundary Bin , and is close to
0 when the pixel position is around the determined blending
boundary B. The mixing gradients are the weighted sum of
gradients in the source and target frames.

Denote G as the mixing gradients, and we compute the
mixing gradients as: G = ai ◦ Gs + [(1, 1) − ai ] ◦ Gt ,
where ◦ is the symbol of Hadamard product of matrix. In the
first frame, we compute the initial mixing weight based on
gradient magnitudes which is adjusted by optical flow and
inter-frame color difference. We denote the initial mixing
weight as ainit

i = (ainit
i , ainit

i ). The initial value for pixel i
is computed as:

ainit
i = ‖Gs

i ‖2

‖Gs
i ‖2 + ‖Gt

i‖2 + η(Ct − Cs) (14)

where, ||Gs
i || and ||Gt

i || are the gradients of the source and
target at location of pixel i , respectively. η is a parameter
and we set it to 0.03 in the experiments. The initial weight
is determined based on the ratio of L2-Norm gradients, and
the first term gives more priority to the preservation of
larger gradient magnitudes. The second term emphasizes color
transfer which is different from backgrounds. We denote Cs

as the difference of normalized histograms of the current and
next source frame in Kullback-Leibler distance, and define Ct

in the target video the same way. We denote the histogram in
each bin in frame I f as c f (b), where b = 1...K and K is the
number of bins. The histograms of the current and previous
frame are normalized so

∑
c f (b) = ∑

c f −1(b) = 1. The
Kullback-Leibler distance between the subsequent frames is:

C(I f , I f −1) =
K∑

b=1

c f (b) log
c f (b)

c f −1(b)
(15)

If C(I f , I f −1) is small either for the source or the target frame,
we assume that there is no significant illumination change
between frame I f and I f −1. On the other hand, if C(I f , I f −1)
is relatively great, it implies that the color cues are not
reliable, thus the effects of the corresponding frame should
be constrained in gradient mixing. We design the second term
in Eq. (14) to reduce color flickering in the blending region.

In view of object deformation and occlusion, the mixing
parameters in the subsequent frames are updated by solving the
cost function. The mixing parameter is determined based on
the initial value and adjusted to ensure feature preservation and
smoothness. The cost function for mixing parameter updating
is defined as:
EG(ai ) = (

1 + ω1 · (Ct + Cs)
) · ‖ai − ainit

i ‖2

+ ω2 ·
∑

j∈Um(i)

‖ai − a j‖2 + ω3 ·
∑

k∈Un(i)

‖ai − ak‖2

(16)

where, the first term requires that the mixing weights tempo-
rally stable and penalizes illumination variation in source and

target, and we use Eq. (15) to measure inter-frame likelihood
of color in the target video sequence. When illumination
intensity varies, the gradient mixing parameter should be
close to initial value to reduce color flickering in blending
region. Um(i) is the pixel set of temporal neighbors of pixel
i computed by bi-directional optical flow. Un(i) is the set of
spatial 4-connected neighbors of pixel i . ω1, ω2 and ω3 are
controlling parameters, and are set to 0.05, 0.3 and 0.5 in
experiments, respectively. The optimal mixing parameter ai

can be obtained in the linear time by seeking partial derivative
of ai in Eq. (14). Fig. 6 is an example of our composition
method based on gradient mixing, where a jet aircraft is
pasted into the target with complex illumination condition.
Our method provides a seamless composition result, which is
in accordance with the target light condition.

We have considered the temporal consistence between adja-
cent frames in the gradient domain. In many cases the input
frames are inconsistent due to varying illumination or object
deformation. We further interpolate the source patch and target
image temporally by optimizing a cost function for all frames
I 1...T . The cost function Ec to optimize is computed as:

Ec(I t , I c) =
T∑

f =1

{Eb(I t
f , I c

f ) + φ1 Eb(I c
f , I c

f −1)

+ φ2 Eb(I c
f , I c

f +1)} (17)

where, T is the number of frames, I t and I c are the target
frames and composition result frames respectively, φ1 and φ2
are two parameters which indicate the temporal coherency
weight, and we set them both to 5 in our experiments. The first
term is designed to help make the composition result similar
to the target frame, so that the composition result is globally
consistent. The latter two terms help ensure similarity between
adjacent frames of composition frames. We use bidirectional
similarity [46] as measurement between images I1 and I2 as
Eb(I1, I2) = EL(I1, I2) + EL(I2, I1). The second term helps
the content of source patch which will appear in the target
prevent converging to excessively smooth. EL is posed as
a patch-based energy function which makes the local region
appear most similar to some local neighborhood regions:
EL(I1, I2)=�p1∈I1 min

p2∈I2
(Dssd(P1, P2) + λDDssd(∇ I1,∇ I2))

(18)
where P1 is a w ×w local window with pixel p1 at its center,
and we define P2 in the similar way. Ds is the sum of squared
distance (SSD). We measure the dissimilarities between two
windows with three color channels of LUV color space in
the first term in Eq. (18), and use gradients of luminance in
the second term. λD controls the contribution of luminance
gradient dimensions. We chose the gradient weight λD = 0.2
for most of our cases. We refine the video composition results
with Eq. (17) by iteratively optimizing it for 5 times.

VI. EXPERIMENTAL RESULTS

We use several challenging video sequences with illumi-
nation differences as inputs for our video composition. The
high-quality composition results are demonstrated by showing
the results and composition results comparison with previous
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Fig. 6. Gradient field mixing of our method on jet aircraft sequence. The illumination condition changes over time in the target. The source patch is zoomed
out in the composition. From (a) to (d) are source frames, composition results using [8], [27] ours. A visible seam can be seen in (b) and (c). We create a
spatial consistent composition results by applying our illumination-aware gradient mixing. The color flickering is also suppressed in the composition results.

Fig. 7. The composition results comparison on dog sequence by setting different parameter on κ . We compose a running dog on a beach, where the
brightness differs in the source and target scene. (a) and (e) are two input video frames from the video sequence about the source scene. We set κ to 0.08 in
(b) and (f), 0.02 in (c) and (g), and 0.2 in (d) and (h). It can be observed that the composition effects are far from satisfied in (d) and (h). Composition results
in (b) and (f) are more realistic compared to (c) and (g), as the brightness of the source object is consistent with target scene.

methods are also shown. The experiments are performed in
a computer equipped with a 2.5GHz of Inter Core i5-3210M
CPU, 16 GB memory and NVIDIA GeForce GT 740M.

A. Parameter Analysis

In the image cloning part, the controlling parameter of the
smoothing term κ can notably influence the visual effects of
composition results. We set it to 0.08 in most cases of our
experiments. We set it relatively great when the brightness
difference between the source and target scene is conspicuous,
so that luminance of the blending region and the target scene

is consistent. On the other hand, κ is set relatively small if
the user intends to preserve the color and texture information
of the source patch. Fig. 7 shows the results by setting
κ to 0.02, 0.08 and 0.2, respectively. If κ is set small as
in Fig. 7(c) and Fig. 7(g), the luminance discrepancy between
the blending region and the target scene is obvious, thus the
composition result is not globally consistent. On the contrary,
κ is set too large in Fig. 7(d) and Fig. 7(h), the composition
result is far from satisfying because it takes into account too
much background color information.

In the blending boundary computing section, e1 and e2 are
two toggle parameters which are set by the user. When there
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Fig. 8. An example of our video composition method on desert sequence. We list the source frames and the corresponding composition results in the first
and the second row, which are selected from sunset and sunrise sceneries respectively. The source scene illumination becomes more intensive while the target
illumination changes inversely. The appearance of the stone changes in accordance with the target scene brightness.

Fig. 9. Video composition results on goose sequence. There is complex
motion for the goose and a fuzzy boundary exists around the feather of the
goose. Meanwhile, the illumination condition changes over time in the target.
Our composition results are shown in the second row, where the blended
object is harmonious with the target illumination condition.

is no obvious illumination change in the source nor target
video, they are both set to 2. As Fig. 8, e1 is set to 1 because
the global illumination changes in the target desert. On the
other hand, in the outdoor scenarios where the illumination
changes due to shadow, we set e2 to 1. In Fig. 4 where we try
to compose the flower under the shader of a tree, the toggle
parameter e2 should be set to 1.

B. Composition Quality

Fig. 8 shows the composition results by cutting out a stone
in the sunset and paste it into the region of interest in target
sunrise desert. The light intensity in the source scene decreases
dramatically, while the target scene is becoming brighter which
is opposite to the source frames. The object is marked by
red dashed rectangles in the first row in Fig. 8, and the red
solid rectangles shows the region of interest and the blending
results inside. Illumination difference is the main challenge
for this video, that is, the illumination varies inversely in
the source patch and target video scenes. Thanks to our
refined interpolant computing strategy, the blending region
appearance harmonizes with the target brightness condition,
which demonstrates the effectiveness to illumination variation
of our method. In Fig. 1, the light intensity changes over
time in source sequence, and there is luminance disaffinity
inside the region of interest due to the cast shadow. Obviously,
the brightness of appearance of the blending flower in the

Fig. 10. A composition result on butterfly sequence. The foreground is a
flying butterfly. The boundary of the object is fuzzy, and its motion is complex
due to dramatic deformation. The background is a time-lapse video of flower
blooming, and the flowers swaying over time due to the wind. Our method
can achieve realistic and consistent composition results with the challenge of
complex motion.

second row is in accordance with the shadows on the ground,
which demonstrates that our approach is illumination-aware
and can handle illumination intensity varying. There is chal-
lenge of deformation and motion blur in the source frames
in Fig. 9. Meanwhile, the sunlight condition changes in
the target scene. We utilize our illumination-aware gradient
mixing strategy, which helps achieve seamless and globally
consistent composition results. Fig. 10 shows the capability
of our method to deal with complex motion in input video,
where the source deformation and background motion is both
complex.

Composition comparison results on flower2 sequence are
shown in Fig. 11. In Fig. 11(a), the input source patch is
a blooming flower on the grassland, and the appearance of
petal changes partially due to illumination variation. We also
show the target sunset scene where the shadow expands
gradually. From Fig. 11(b) to Fig. 11(e) are the outputs
of copy and paste [47], enhanced use of matting [10],
motion-aware [8], and ours. The composition results of state-
of-the-art methods are not effective to tackle illumination
change, including global light intensity variation and drop
shadow. The composition video of our method is in accor-
dance with the target illumination condition. Matting-based
method [10] maintained the information in definite region well,
but neglected the target color cues and the blending results
are not natural. Similarly, the composition results of copy and
paste [47] are also not in accordance with the varying global
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Fig. 11. Blending results comparison on flower2 which demonstrates the effectiveness to deal with illumination difference of our method. In (a), we use
red dashed rectangles to mark the source patches in the left 3 columns, where the appearance of the blossoming flower changes due to illumination. The
region of interest is also marked in the right 3 columns where the illumination condition changes due to cast shadow. From (b) to (e) are the results of
copy and paste [47], matting-based method [10], motion-aware method [8] and ours. We show the composition results in the left 3 columns, and illustrate
the corresponding zoom-in images on the right. We also use yellow rectangles to emphasize the region where our method outperforms other methods. The
comparative experiment shows the effectiveness of our optimized mean-value blending approach, which makes composition results harmonious with the target
surroundings.

illumination condition. Poisson-based methods like [5] achieve
relatively good results like mean-value cloning, but the cloning
speed is slow due to the large linear system to solve. Moreover,
the amount of manual work is also unbearable. Chen et al. [8]
preserve the texture in the blending region well. However,
it still produces unrealistic results, where the brightness is not
consistent with the target scene. The appearance of the flower
should be darker under the shadow of the tree in Fig. 11.
We follow the blending boundary optimization in [8], while
further considering the illumination variation. This helps us
obtain a temporal coherent boundary when the illumination
condition changes. Moreover, our results are globally consis-
tent in a single frame thanks to the proposed image cloning
method. In Fig. 12, we give the composition comparison
on horse sequence. We can see that matting-based video
composition [10] gives unrealistic composition in uncertain
region, like the shadow and tail. Copy and paste [47] removes
the smudging pixels, but the color in the blending region is
still not harmonious with the target surroundings, and the
composition region is falsely severely affected by the back-
ground information. Visible smudging pixels can be seen in the
fuzzy boundary region in the results of matting method [10].
Chen et al. [8] also addresses the issue by blending in the
gradient domain. However, the method gives false optimized
outer blending boundary when light intensity varies on the
grass in Fig. 12. The shadow of the horse is not successfully
composed due to the false blending boundary computing.
The falsely blending shadow of the horse is manifested with
blue rectangles in Fig. 12. Moreover, in the first column the
appearance of the composed horse in Chen et al. [8] is not

TABLE I

PERFORMANCE OF OUR APPROACH

realistic. Our method achieves consistent blending results and
compose the shadow region well with the challenge of source
patch motion and background illumination varying.

We further conduct a user study to compare the composition
quality between the state-of-the-art and our method. We aim
to investigate the effectiveness, enjoyability and fidelity of
the methods. The study was carried out offline. We invited
40 participants to take part in the study by answering ques-
tionnaires. All the participants are undergraduate students.
They are aged from 19 to 22 and do not major in computer
science. And we assume they know nothing about our work.
We only showed the composition video to them, while the
source and target videos were not given to them. The evaluated
videos are listed in Table I. These video sequences with the
challenge of illumination difference, motion difference and
fuzzy boundaries are tested as input data. The composition

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:38:31 UTC from IEEE Xplore.  Restrictions apply. 



5088 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 10, OCTOBER 2019

Fig. 12. Composition results on horse sequence. We use red dashed rectangles to mark the region of interest in the right 3 columns in (a). The shadow
of the horse deforms over time in the source, and the illumination condition changes on the grassland of the target. From (b) to (e) are the results of copy
and paste [47], enhanced matting method [10], motion-aware method [8] and ours. We show the composition results in the left 3 columns, and illustrate the
corresponding zoom-in images of the red rectangle region on the right. We also use blue rectangles to emphasize the region where our method outperforms
other methods. It can be observed that our method can achieve natural blending results compared to (b) and (d). Our method can also obtain reasonable results
of the shadow compared to (c) and (d) as marked using blue rectangles.

videos are evaluated by the users as “Good”, “Acceptable”
and “Failed”. Each composition video sequence has around
20 frames and participants are required to evaluate each
frame. We received 38 valid responses to the evaluated videos.
We count the number of three levels and compute the pro-
portion of them. We show the statistics of the user study
in Fig. 13. It can be observed that our method outperforms
other methods in enjoyability and fidelity when dealing with
videos with illumination difference and other challenges.

C. Composition Efficiency

Table I shows more details for the composition imple-
mentation of our approach, where MNBPF, NGT, PTPF and
BTPF are the abbreviation of mean number of blended pixels
per frame, number of given trimaps, preprocessing time per
frame and blending time per frame (seconds), respectively.
Preprocessing part consists of dense optical flow estimat-
ing bidirectionally, foreground segmentation in source video,
in which the bidirectional optical flow computing occupies
the most time, especially dealing with the frames with high
resolution. For the hummingbird sequence, preprocessing part
takes up 24.2 seconds, in which optical flow computing con-
sumes 22.7 seconds. We mix the gradient field of source patch
and target video then perform cloning. More user supervision
of initial inner and outer boundaries in keyframes should be

Fig. 13. The user study for evaluating the composition quality by copy and
paste [47], enhanced matting method [10], motion-aware method [8], and our
approach.

provided when the source patch has fuzzy object boundaries
or the boundaries generated by propagation are severely wrong
like jet aircraft and horse sequence. Compared to frame-by-
frame methods, Chen et al. [8], Xie et al. [7] and ours are
more efficient in timing performance, because user supervision
is not required in all frames, while the previous methods such
as Farbman et al. [6] needs dense and accurate trimap as
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necessary input. The solving procedure of mean-value coordi-
nates interpolation can be computed parallelly, so we perform
it on GPU to accelerate image cloning, and we pre-compute
tangents approximately to further speed up cloning patch into
target frame. Poisson blending based methods like [5] need
to solve a large system of linear equations, they are still
computationally in disadvantage by solving the problem with
large sparse linear equation solving tools like TAUCS.

D. Limitation

As discussed in Section VI-B, our method can achieve
satisfying performance when processing on many challenging
videos, but may fail when the texture of the source patch
and the target region of interest are not consistent. Moreover,
when source object and target surrounding motion is hard
to estimate, more user supervision is required to correct the
computed blending boundary. This needs a further study.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce a new illumination-guided video
composition in gradient domain, which tackles the challenges
of illumination intensity varying. The user-defined inner and
outer blending boundaries in the source video and the region
of interest in the target are required on keyframes in interaction
steps. We mix the gradient fields of source patch and target
video inside blending boundary, which is optimized iteratively
from user-provided boundaries. On the basis of mixed gra-
dient field, we further propose an effective implementation
of mean-value coordinates interpolation, which approximately
computes mattes first, then smooths the differences between
source and target. And it constrains overflow in color distri-
bution. The strategy enables the effectiveness to illumination
condition changing and fuzzy object boundaries. In the future,
we will work on illumination-invariant features extractions like
intrinsic image decomposition to tackle illumination differ-
ences. Another possible future work is to extend the saliency
cues into foreground object extraction and spatial consistency
maintaining in the process of composition. Occlusion handling
strategies are critical for video composition and editing with
good performance, we will also investigate and incorporate
latest occlusion-aware detection strategies [48], [49] to open
our method for more general video datasets as our future work.
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