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I. PERCENT OF ERROR COMPARISON ON MIDDLEBURY DATASETS

Our proposed approach is illustrated visually in Fig. 1–Fig. 3 and compared with a great many popular super resolution
methods. Among the figures, Fig. 1, Fig. 2, and Fig. 3 show the super resolution pixel errors of the Middlebury data. From
the figures, we can see that our proposed methods also generate more visual appealing results than the previously reported
approaches. Boundaries in our results are generally sharper and smoother along the edge direction.

II. COMPARISON WITH NETWORK BASED METHODS

Fig. 4 presents a comparison with different guided SRCNN [8] based methods. the classical SRCNN [8] models released
by the authors were trained on color patches, and we specifically retrained the models using depth patches. However, our
experimental results in Fig. 4 show that depth patches based method is also not very suitable for DSR. It will blur sharp depth
edges as discussed before and shown in error maps in Fig. 5(a) and Fig. 4. The reason is that depth images are normally quite
different from natural color images. They are textureless while having very sharp but sparse edges, the traditional CNN tends
to ignore sharp edges when trained with depth patches. The performance will be even lower than the original color-trained
SRCNN. It also proves that our color guidance is more effective.

III. VISUAL COMPARISON WITH METHODS THAT REQUIRE AN EXTERNAL DEPTH DATABASE

Fig. 5 presents visual comparison with methods that require an external depth database [7], [8] on Book, Laundry and
Reindeer databases when the upsampling factor is 4. SRCNN [8] is mainly designed for color image super-resolution. Unlike
disparity/depth images, sharp color edges are abnormal. As a result, SRCNN [8] tends to blur the disparity map a bit as can be
seen from the error maps in Fig. 5(a), although these errors are almost invisible from the disparity maps. PB [7] successfully
maintains the sharp edges as can be seen from Fig. 5(b). However, its performance is lower than SRCNN [8] around thin-
structured objects. This is mainly because PB [7] mainly depends on the similarity between the training data and the input
low-resolution disparity map (where the details of the thin-structured objects are gone) to find high-resolution patches from
training data as output. The proposed method is indeed an extension of SRCNN [8] with the use of an additional registered
color image to better preserve depth edges and thus outperforms [7], [8] on average.

Fig. 1: Visual comparison of pixel errors on Middlebury database (scaling factor = 4). (a) Color image. (b) Ground truth. (c) Our Proposed. (d) AP [1]. (e)
Bicubic. (f) CLMF0 [2]. (g) CLMF1 [2]. (h) Edge [3]. (i) Guided [4]. (j) JBFcv [5]. (k) JGF [6]. (l) PB [7]. (m) SRCNN [8]. (n) TGV [9]. (o) Tree [10].
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Fig. 2: Visual comparison of pixel errors on Middlebury database (scaling factor = 8). ((a) Color image. (b) Ground truth. (c) Our Proposed. (d) AP [1]. (e)
Bicubic. (f) CLMF0 [2]. (g) CLMF1 [2]. (h) Edge [3]. (i) Guided [4]. (j) JBFcv [5]. (k) JGF [6]. (l) TGV [9]. (m) Tree [10].

Fig. 3: Visual comparison of pixel errors on Middlebury database (scaling factor = 8). (a) Color image. (b) Ground truth. (c) Our Proposed. (d) AP [1]. (e)
Bicubic. (f) CLMF0 [2]. (g) CLMF1 [2]. (h) Edge [3]. (i) Guided [4]. (j) JBFcv [5]. (k) JGF [6]. (l) TGV [9]. (m) Tree [10].

Fig. 4: Comparison with both color and depth trained SRCNN [8]. First row: (a) is the ground-truth disparity map and (b)-(d) are the disparity
maps upsampled from the original color-trained SRCNN, depth-trained SRCNN and the proposed networks. Bottom row: disparity values
along the red line in the first row of (a). Note that the proposed networks can better preserve the sharp depth edges in (a).
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TABLE I: Synthesis performance comparison on the all databases [9] using MAD metric with 4× upsampling factor.

KSVD
[11]

CDLLC
[12]

Xie
[13]

PB [7] SRCNN
[8]

ATGV-
Net
[14]

Song
[15]

Wang
[16]

MSG-
Net
[17]

Our CS Our FS

Average 3.30 3.05 2.30 4.08 4.62 3.48 2.23 4.39 2.18 2.17 2.10
Variance 2.08 1.89 0.64 5.53 4.33 2.14 0.61 4.00 0.57 0.55 0.57

95%
confidence

interval

Lower
Bound 2.47 2.25 1.84 2.62 3.42 2.63 1.78 3.23 1.74 1.74 1.67

Upper
Bound 4.14 3.84 2.76 6.33 5.83 4.32 2.68 5.54 2.62 2.59 2.54

Fig. 5: Visual comparison with methods that require an external depth database [7], [8] on three Middlebury databases (Book, Laundry and
Reindeer) when the spatial resolution is enhanced 16× (4×4). (a)-(c) are the upsampled disparity and error maps of [8], [7] and the proposed
method respectively. The numbers under the disparity and error maps are the corresponding percentage of error pixels and the top performers
are marked in bold. SRCNN [8] is mainly designed for color image super-resolution. Unlike disparity/depth images, sharp color edges are
abnormal. As a result, SRCNN [8] tends to blur the disparity map a bit as can be seen from the error maps in (a), although these errors are
almost invisible from the disparity maps. PB [7] successfully maintains the sharp edges as can be seen from (b). However, its performance is
lower than SRCNN [8] around thin-structured objects. This is mainly because PB [7] mainly depends on the similarity between the training
data and the input low-resolution disparity map (where the details of the thin-structured objects are gone) to find high-resolution patches
from training data as output. The proposed method is indeed an extension of SRCNN [8] with the use of an additional registered color image
to better preserve depth edges and thus outperforms [7], [8] on average.

IV. VISUAL COMPARISON WHEN THE SPATIAL RESOLUTION IS ENHANCED

Fig. 6 presents a comprehensive visual comparison with three other algorithms on the Laundry and Dolls databases. As can
be seen from the close-ups of the Laundry database in Fig. 6(b)–Fig. 6(c), AP [1] is more likely to blur the depth edges while
JGF [6] may produce false depth edges (due to color textures). The depth edges obtained from Edge [3] is better. However,
similar to AP [1] and JGF [6], it may remove the depth details between pixels with similar colors as can be seen from the
close-up of the Dolls database (in last row of Fig. 6(d)). As demonstrated in Fig. 6(e), the proposed method is more robust to
inconsistent color and depth edges with the learned data-driven filter kernel.

To verify the superiority of our algorithm, we provide a 95 percent confidence interval performance comparison for the
evaluated measures. From Table I, we can see that our algorithm has the lowest average and variance values on the all
databases using MAD metric with 4 upsampling factor. That is to say, our method performs better on the entire database than
any other methods.

Fig. 7 reveals the potential texture-copying artifact in the previous edge-preserving filtering based DSR methods using the
Dolls dataset. Note that [5] and [10] have obvious texture-copying artifacts when the upsampling factor is high. For instance,
around the eyes and ears of the donkey. The proposed method can better suppress this artifact as can be seen in Fig. 7(g). And
it can be seen our approach can solve the texture-copying problem very well.
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Fig. 6: Visual comparison when the spatial resolution is enhanced 64× (8×8). As seen from the close-ups of the Laundry database in (b)-(c),
AP [1] is more likely to blur the depth edges while JGF [6] may produce false depth edges (due to color textures). The depth edges obtained
from Edge [3] is better. However, similar to AP [1] and JGF [6], it may remove the depth details between pixels with similar colors as
can be seen from the close-up of the Dolls database (in last row of (d)). As can be seen from (e), the proposed method is more robust to
inconsistent color and depth edges with the learned data-driven filter kernel.

Fig. 7: Texture-copying artifact. (a) presents the high-resolution color image and the ground-truth disparity map. (b) and (c) are close-ups from (a). (d)-(g) are
the close-ups of the disparity maps upsampled using different methods and the corresponding disparity error maps (obtained with error threshold 1). Note that
[5] and [10] have obvious texture-copying artifacts when the upsampling factor is high. For instance, around the eyes and ears of the donkey. The proposed
method can better suppress this artifact as can be seen in (g).
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[14] G. Riegler, M. Rüther, and H. Bischof, “ATGV-Net: Accurate depth super-resolution,” in European Conference on Computer Vision, 2016, pp. 268–284.
[15] X. Song, Y. Dai, and X. Qin, “Deep depth super-resolution: Learning depth super-resolution using deep convolutional neural network,” in Asian Conference

on Computer Vision, 2016, pp. 360–376.
[16] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks for image super-resolution with sparse prior,” in IEEE International Conference on

Computer Vision, 2015, pp. 370–378.
[17] T.-W. Hui, C. C. Loy, and X. Tang, “Depth map super-resolution by deep multi-scale guidance,” in European Conference on Computer Vision, 2016,

pp. 353–369.


