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Abstract— Solar energy is a renewable energy used for urban
power generation, contributing to sustainable cities. In solar
energy generation, it is important to inspect the health of photo-
voltaic (PV) cells for safety and power transformation efficiency.
Defects in PV cells are usually irregular with different scales,
challenging automated defect detection for PV cells. Therefore,
this article presents a channel and coordinate aware-based
YOLO (CCA-YOLO) for efficient PV cell defect detection.
Specifically, to provide accurate backbone features from the
complex background defect images, the residual coordinate
convolution-based ECA (RCC-ECA) enhances the backbone
feature representation by learning from channel and coordinate
information. To learn the intraclass/interclass variations and
interclass similarity and convey coordinate information among
different scales, the multiscale defect feature localization module
(MDFLM) incorporates a larger backbone feature to improve the
robustness of multiscale defects. The RCC-Up/Down optimizes
the sampled features to minimize the inaccurate representation
of the features caused by the sampling process. In addition,
RCC-Up/Down conveys the coordinate information during the
up/down sampling process to maintain coordinate awareness,
which allows the network to learn from the coordinate
information efficiently. Furthermore, the residual feature fusion
with coordinate convolution-based CBAM (RFC-CBAM) is
introduced to maintain the channel and coordinate awareness for
efficient learning from fused features. The proposed CCA-YOLO
outperforms state-of-the-art (SOTA) methods in PVEL-AD on
precision (71.71%), recall (76.91%), F1-Scores (74.19%), mAP50
(98.57%), APS (26.80%), APM (64.78%), and APL (74.93%).

Index Terms— Convolutional neural networks, defect detection,
electroluminescence images, photovoltaic (PV) cell.

I. INTRODUCTION

SOLAR power is a renewable energy source, and presently,
the use of solar power for electricity generation is one
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Fig. 1. Example of defects from PVEL-AD dataset. (a) Crack (red box) and
Thick line (green box). (b) Finger (orange box) and Crack. (c) Black core
(yellow box) and Thick line. (d) Crack and Fragment (dark slate gray box).
(e) Horizontal dislocation (blue box). (f) Vertical dislocation (purple box).

of the most extensively employed methods. Multicrystalline
photovoltaic (PV) cells play a significant role in solar power
systems. However, defects in PV cells can occur during the
manufacturing process or due to environmental factors, which
may impede the conversion efficiency of solar power and
reduce the lifespan of the PV cell. Thereafter, it is valuable
to detect and classify the defects in PV cells. In industry, this
process can provide higher safety and more efficient operation
of PV cell power stations.

Electroluminescence imaging is a nondestructive, near-
infrared technology that can image PV cells at a high
resolution. Fig. 1 demonstrates an example of defects in PV
cells’ EL images from the PVEL-AD dataset [1]. Although
the EL image presents a clear vision of each defect, various
interferences between defects bring severe challenges to defect
detection on PV cell EL images.

1) Interclass Difference in Scales and Shapes: As demon-
strated in Fig. 1(d), there are multiple-class defects
(Crack and Fragment) that exist in a single EL image.
Crack usually presents an irregular linear structure with
darker colors while Fragment usually is a large black
area with a clear border. The scales and the shapes of
Crack and Fragment have significant differences, which
makes it difficult to learn and distinguish them.
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2) Intraclass Variations in Scales and Shapes: Thick
Line defects usually consist of multiple lighter-colored
columns as demonstrated in Fig. 1(a) and (c). Although
the structures of different Thick Line are similar, there
are variations in shapes and scales between different
defects. In addition, the Crack as illustrated in Fig. 1(a),
(b), and (d) also present variations in scales and shapes.

3) Interclass Similarity: As demonstrated in Fig. 1(c)
and (d), Fragment and Black Core gain high similarity
since the difference between them is Fragment has
more clear and regular borders. The interclass similarity
makes the network harder to classify similar defects
precisely.

4) Bounding Box Overlapping: As demonstrated in
Fig. 1(d), the overlapping exists between the bounding
box of Fragment and Crack, which brings challenges
for the network to learn efficient and accurate features
of these overlapped defects.

5) Location-Sensitive: Horizontal Dislocation and Vertical
Dislocation usually present as a linear-like horizontal or
vertical-distributed defects. However, the only difference
between these two kinds of defects is the location
distribution. Therefore, it is important for the network
to learn the distribution of the defects.

For the automated detection of defects in PV cell EL images,
many state-of-the-art (SOTA) methods have been proposed for
defect detection. The handcrafted feature-based methods usu-
ally extract features to represent the texture, color, and shape
of the EL images and use the data-based classifier to detect
defects. Su et al. [2] introduce a novel feature descriptor that
can obtain stronger discriminatory local defect information in
EL images. In addition, they calculate the descriptors in EL
images to train and test the discriminant classifiers, such as
support vector machine (SVM) and nearest neighbor classifier
(NNC). Xu et al. [3] propose a sigmod-Hough-transform-based
geometric segmentation method to extract the defect region in
EL images. Also, they propose a self-comparison method to
detect defects in the background with nonuniform luminance
and complicated texture.

In recent years, using convolutional neural networks to
detect defects has received lots of interest in the industry. Chen
and Jahanshahi [4] incorporate naive Bayes data fusion and
CNN for crack detection of nuclear power plant components.
Su et al. [5] proposed a BAF-Detector that introduces a
bidirectional attention feature pyramid network (BAFPN) into
Faster R-CNN [6]. Chen and Jahanshahi [7] proposed a deep
fully convolutional network for real-time crack detection in
video. They introduce a naive Bayes-based data fusion into
the fully convolutional network, which significantly improves
the efficiency and capability of video crack detection. Bao and
Yuan [8] proposed a YOLO-based PV cell defect detection
method in five categories, which incorporate an improved
CBAM for YOLO. Qin et al. [9] proposed an efficient defect
detection network (EDDNet) that provides spatial information
on defects efficiently by a spatial attention mechanism. In addi-
tion to CNN-based approaches, Carion et al. [10] proposed a
detection transformer (DETR), which presents an end-to-end

method for object detection using transformer architecture.
Su et al. [11] proposed a prior-modulated and semantic-
aligned dynamic transformer (PMSA-DyTr) which introduces
a long short-term self-attention mechanism to eliminate noise
for the defect images and prior-modulated cross attention to
make the transformer suit the small-scale defects datasets.
Zheng et al. [12] proposed the Focus-DETR for efficient
object detection. They focus attention on more informative
tokens, which balance accuracy and efficiency. Du et al. [13]
proposed an AFF-Net based on YOLO architecture and Swin
Transformer [14] for strip steel surface defect detection. Zhang
et al. [15] proposed an LDD-Net based on YOLO architecture
for lightweight printed circuit board defect detection.

Across these defect detection methods, the attention mech-
anism plays an important role in allowing the network to
learn efficient information from the features. Efficient chan-
nel attention (ECA) [16] reallocates the channel weights to
achieve significant performance improvement with only a
small number of parameter increments. However, ECA lacks
the ability to handle global context dependencies and spatial
relationships. Furthermore, the convolution block attention
module (CBAM) [17] is a lightweight attention mechanism
that refines the features from both channel and spatial aspects.
Due to the additional parameters caused by the CBAM,
it runs the risk of overfitting, especially when dealing with
small or imbalanced datasets in the industry. In addition,
as the number of defect categories increases, the difficulty of
defect detection using deep learning techniques also increases.
Existing methods such as [18] only detect three categories of
defects on PV cell EL images. Therefore, [1] discussed the
eight-categories defect detection performance of several SOTA
methods on PVEL-AD [1] dataset where the experimental
results indicated that these methods lack generalization ability
in multicategories defect detection for PV cells EL images.
Additionally, some researchers have achieved 12-categories
defect detection in the PVEL-AD dataset recently such as [19]
and [20], but these methods still struggle with the identifi-
cation and localization of few-shot categories. Moreover, the
generalization ability of their network in other defect detection
datasets has not been validated.

Consequently, we propose a channel and coordinate
aware-based YOLO (CCA-YOLO) for 12-categories defect
detection for PV cells EL images. Specifically, we adopt
YOLOv4 as the baseline network and propose four novel mod-
ules: residual coordinate convolution-based ECA (RCC-ECA),
residual feature fusion with coordinate convolution-based
CBAM (RFC-CBAM), multiscale defect feature localization
module (MDFLM), and RCC-Up/Down for multiscale defect
detection. The RCC-ECA efficiently improves the channel and
coordinates awareness by making the network learn from both
channel and coordinate aspects. Therefore, we adopt RCC-
ECA to enhance the backbone feature representation, making
the backbone feature more sensitive to the structure and distri-
bution of the defects. Moreover, we propose an RCC-Up/Down
based on RCC-ECA and MDFLM for efficient feature fusion.
The RCC-Up/Down optimizes the sampled features to mini-
mize the inaccurate representation of the features caused by
the sampling process. In addition, RCC-Up/Down conveys the
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Fig. 2. Architecture of CCA-YOLO. The proposed CCA-YOLO is based on conventional YOLOv4, but we further propose RCC-ECA, MDFLM, and
RFC-CBAM to enhance the feature fusion process, thereby enhancing the feature representation in feature fusion to improve the multiscale defect detection
performance. In addition, we incorporate an RCC-Up/Down in Neck based on our RCC-ECA for up/down sampling. We use blue blocks to represent our
proposed modules and a blue arrow to highlight the new path incorporating these modules, distinguishing it from the conventional YOLOv4 architecture.
The RCC-ECA is first adopted for backbone feature refinement. Moreover, RCC-Up/Down conveys the coordinate information during the feature fusion by
incorporating RCC-ECA into the sampling process. Furthermore, MDFLM is proposed to introduce a large-scale feature map for fusion, which enhances
the robustness of the network to multiscale defects. In addition, the RFC-CBAM is utilized to refine the output feature of feature fusion to achieve better
performance for the bounding box regression and defect classification.

coordinate information during the up/down sampling process
to maintain coordinate awareness, which allows the network
to learn from the coordinate information efficiently. The
MDFLM incorporates a larger backbone feature for feature
fusion, which improves the robustness of multiscale defects by
providing more detailed information such as the structure and
texture of the defects. Furthermore, RFC-CBAM is adopted
to maintain the channel and coordinate information and to
learn from the refined features for accurate prediction by
the feature fusion-based channel attention module (FF-CAM)
and the coordinate convolution-based spatial attention module
(CC-SAM). The contributions of this article are summarized
as follows.

1) We propose a CCA-YOLO for defect detection on PV
cell EL images, allowing the network to efficiently learn
defect features from the channel and coordinate informa-
tion of the features. Data augmentation is applied to the
PVEL-AD dataset to address the data imbalance among
12 categories, thereby enhancing the generalization abil-
ity of the network. Experimental results demonstrate that
CCA-YOLO can handle multiscale defects of PV cells
in 12 categories and outperform the SOTA methods.
In addition, performance on the NEU-DET and PCB
datasets verifies and validates the generalization ability
of CCA-YOLO.

2) A RCC-ECA is adopted to enhance the network aware-
ness of channel and coordinate information, which is
beneficial for accurate feature representation. Due to the
complex background of the defect images in the indus-
try, we adopt RCC-ECA to enhance the backbone feature
representation at four scales, making the backbone fea-
tures more sensitive to the structure and distribution
of the defect features. In addition, an RCC-Up/Down
is introduced to convey the coordinate information and
optimize the sampled features to minimize the inaccurate
feature representation caused by the sampling process.

3) A RFC-CBAM is proposed to refine the fuse features for
efficient learning from the fused features. Specifically,
FF-CAM fuses the output features of average and max
pooling layers to make full use of the channel informa-
tion and avoid information loss. Meanwhile, CC-SAM
provides additional coordinate information, which is
beneficial for locating defect features from the fused
features.

4) Since low-dimensional features usually contain more
detailed information, we incorporate an MDFLM to
enhance the ability of the network to locate the defect
features. In CCA-YOLO, MDFLM provides larger fea-
tures to the feature fusion path, thus enhancing the
multiscale feature representation.

This article is organized as follows. Section II gives a
detailed explanation of the proposed architecture and modules.
Section III presents the experimental results and ablation
studies. Finally, Section IV gives a conclusion to this article.

II. PROPOSED CCA-YOLO

A. Architecture of CCA-YOLO

Fig. 2 demonstrates the architecture of the proposed
CCA-YOLO. Our CCA-YOLO is based on YOLOv4, but we
further propose an RCC-ECA, MDFLM, and RFC-CBAM to
enhance the feature representation ability, thereby meeting the
requirement for multiscale defect detection in PV cell EL
images. To demonstrate the difference between CCA-YOLO
and YOLOv4, we use blue blocks to represent our pro-
posed modules and a blue arrow to highlight the new path
incorporating these modules, distinguishing it from the con-
ventional YOLOv4 architecture. First, given an input image,
the backbone extracts multiscale backbone features. Before the
feature fusion, the proposed RCC-ECA is adopted to refine
these backbone features of different scales through channel
and spatial information. Then, the coordinate information
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is further conveyed from the backbone features to enhance
coordinate awareness by the proposed RCC-ECA during the
feature fusion process. Thereafter, the proposed RFC-CBAM is
adopted to further refine the fused features of different scales
and three YOLO Head predict the categories and bounding
box of the defects using the refined features.

1) Backbone: Given an input image I ∈ RC×H×W , the
CSPDarkNet [21] backbone extracts multiscale feature maps
F ∈ RCi ×(H/2i )×(W/2i )(i = 1, 2, 3, 4, 5), where the channel
dimension are 64, 128, 256, 512, 1024. Then, a spatial pyramid
pooling (SPP) is adopted to the feature F5 ∈ R1024×H×W to
aggregate different scales of feature maps, thereby improving
the detection capabilities for defects of different scales.

2) Neck: The Neck focuses on making full use of the
backbone features for defect detection by aggregating the
features of different scales. We follow the conventional archi-
tecture of the Neck in YOLOv4 [22] and we further propose
three novel modules RCC-ECA, RFC-CBAM, and MDFLM
to enhance the feature fusion. We first adopt RCC-ECA to
enhance the backbone feature representation by enhancing
the channel and coordinate awareness at four different scales
of features: F2, F3, F4, and F ′

5, respectively. In addition,
we propose an RCC-Up and RCC-Down which incorporate
the RCC-ECA into the up/down sampling process. Moreover,
we proposed an MDFLM to introduce a new path of feature
fusion into the Neck. Last, an RFC-CBAM is adopted to refine
the fused features for detection at three different scales of
features: f3, f4, and f5. Therefore, during the feature fusion
in Neck, the backbone features Fi (i = 2, 3, 4) and F ′

5 will
be further refined by RCC-ECA. Thereafter, the RCC-ECA
refined feature P5 will be upsampled by RCC-Up and then
concatenated with the refined feature P4. The fused features
P ′

4 will further be upsampled by RCC-Up and then be con-
catenated with P3. Furthermore, compared to the conventional
YOLOv4, the proposed MDFLM further introduces a new path
of feature fusion by aggregating the fused features P ′

3 with a
large feature P2. In addition, P ′

2 will go through an RCC-Down
to be aggregated with P ′

3 to obtain the fused features f3.
Similarly, the fused features f4 and f5 will be obtained
by aggregating P ′′

3 with P ′

4 and P ′′

4 with P5. Finally, the
RFC-CBAM integrates the channel and spatial information of
the fused features to ensure that the network can accurately
capture the categories and locations of defects.

3) Head: Three YOLO Heads are used to detect the defect.
Furthermore, the loss function of the proposed CCA-YOLO
is defined as (1), where IoU represents the intersection over
union between ground truth (GT) and the predicted bounding
box, d is the distance between GT and the predicted bounding
box, c is the diagonal length of the smallest enclosing box cov-
ering the two boxes, and v is used to measure the relationship
between the width-to-height ratio WGT/HGT of GT and the
width-to-height ratio W/H of the predicted bounding box as
defined in (2)

LcIoU = 1 − IoU +
d2

c2 +
v2

(1 − IoU) + v
(1)

v =
4
π2

(
arctan

WGT

HGT
− arctan

W
H

)2

. (2)

Fig. 3. Architecture of RCC-ECA. The channel attention weights are obtained
by a GAP and a 1-D convolution. Subsequently, a residual connection is
incorporated to maintain efficiency. Thereafter, the spatial awareness is further
enhanced by coordinate convolution.

B. Residual Coordinate Convolution-Based ECA (RCC-ECA)

In this article, RCC-ECA is proposed to efficiently enhance
the channel and coordinate awareness of the network. Specif-
ically, we adopt RCC-ECA to enhance the backbone feature
representation, making the backbone features more sensitive to
the structure and distribution of the defects. In addition, RCC-
ECA is introduced into up/down sampling in feature fusion
by RCC-Up/Down to convey the coordinate information and
minimize the inaccurate feature representation caused by the
sampling process.

The architecture of the proposed RCC-ECA is demonstrated
in Fig. 3. Specifically, RCC-ECA starts by applying global
average pooling (GAP) on the input feature f , adapting the
dimensionality of the input features to 1 × 1 × C . Then, a
1 × 1 convolution and a sigmoid activation function are used
to generate the channel attention weights. Consequently, the
channel-refined feature fc is generated by an element-wise
multiple between the input features and the channel attention
weights. Additionally, to avoid gradient vanishing, we further
introduce a residual connection between the input feature
and the channel-reallocated feature fc. Furthermore, since the
types of defects on PV cells are related to their location on
the PV cells, we incorporate coordinate convolution opera-
tions [23] to provide additional coordinate information for
the extracted backbone features. In summary, the reallocated
features fRCC-ECA by RCC-ECA are generated as follows:

ωc = GAP(Conv1D( f ))

fc = f ⊗ ωc

frc = f + fc

fRCC-ECA = CoordConv( frc)

(3)

where ωc is the channel attention weights, GAP represents the
GAP layer, Conv1D represents the 1-dimensional convolution,
and ⊗ is the element-wise multiplication. In addition, f is
the input feature, fc is the channel-reallocated feature, frc
is the channel-reallocated feature after residual connection,
and fRCC-ECA is the final output feature after coordinate
convolution.

Consequently, RCC-ECA improves the channel and coor-
dinates awareness of the network, allowing a better feature
representation for efficient learning. Introducing RCC-ECA to
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the backbone features significantly reduces the noise of the
complex background of the defect images and enhances the
backbone feature representation to capture the structure and
distribution of the defects. Moreover, RCC-Up/Down conveys
the coordinate information during the feature fusion process,
which enhances the network to learn from the coordinate
information.

C. Multiscale Defect Feature Localization Module

Considering the significant variances in shape, size, and
location of defects across different types of PV cells, it is
imperative for the network to focus on accurately identifying
and distinguishing these diverse defects. Since conventional
YOLOv4 only uses F3, F4, and F5 for feature fusion and defect
detection, the ability of the conventional YOLOv4 to locate
multiscale defects has been limited. Therefore, we propose
an MDFLM to further incorporate a large feature F2 into the
conventional feature fusion process.

Specifically, the feature F2 will be refined by RCC-ECA
first. Simultaneously, the up-bottom path aggregated feature
P ′

3 will be upsampled by RCC-Up and then be concatenated
with P2. Subsequently, the concatenated feature P ′

2 will be
further downsampled by RCC-Down and then concatenated
with P ′

3 to obtain the fused feature f3. Since a large size of
feature maps usually contains more detailed image informa-
tion, incorporating a larger feature F2 with other three smaller
sizes can significantly help the network to locate the multiscale
defects, which can enhance the robustness of the network to
multiscale defects.

D. Residual Feature Fusion With Coordinate
Convolution-Based CBAM

In this article, we propose RFC-CBAM to refine the fused
features by maintaining the channel and coordinate awareness
from the fused features for efficient learning and prediction.

Fig. 4(a) demonstrates the architecture of the proposed
RFC-CBAM. Specifically, given an input feature map fin ∈

RW×H×C , we first calculate 1-dimension channel attention
ωc ∈ R1×1×C by FF-CAM. By an element-wise multiple
between fin and ωc, the channel-refined feature fc is obtained
as denoted in (4). Subsequently, a CC-SAM is applied to f ′

to calculate a 2-D spatial attention map ωs ∈ RW×H×1 by
CC-SAM. Thereafter, the spatial-refined feature fs is gener-
ated by multiplying fc with ωs as denoted in (5). Furthermore,
a residual connection is incorporated to generate the output
feature fRFC-CBAM as denoted in (6)

fc = ωc ⊗ fin (4)
fs = ωs ⊗ fc (5)

fRFC-CBAM = fs + fin (6)

where ⊗ denotes element-wise multiplication, fc is the
channel-refined feature, ωc is the channel attention weights
by FF-CAM, fs is the spatial-refined feature, ωs is the spatial
attention weights by CC-SAM, and fin is the input feature.

Fig. 4(b) demonstrates the proposed FF-CAM. Similar to
CBAM [17], we first aggregate spatial information of the

Fig. 4. Architecture of RFC-CBAM. (a) Demonstrates the flow of the
proposed RFC-CBAM. The input feature will first be refined by FF-CAM.
Then, a CC-SAM is utilized to provide spatial information. (b) Demonstrates
the architecture of the proposed FF-CAM. (c) Demonstrates the architecture
of the proposed CC-SAM.

input feature map fin by using both average pooling and max
pooling operations. Then, the generating feature maps will
be forwarded to a shared multilayer perceptron (MLP) where
the output feature maps are average-pooled feature favg and
max-pooled feature fmax as denoted as follows:

fmax = MLP(MP( fin))

favg = MLP(AP( fin)) (7)

where fin is the input feature, MLP represents the MLP layer,
AP represents the average pooling, and MP represents the max
pooling.

Furthermore, we first fuse fmax and favg by an element-wise
summation to enhance the generalization ability of the net-
work. Moreover, we further fuse the F with fmax and favg,
respectively, as denoted as follows:

F = fmax + favg

f ′

max = F + fmax

f ′

avg = F + favg. (8)

Consequently, the channel attention weights are calculated
according as follows:

ωc = Sigmoid
(

f ′

max + f ′

avg

)
. (9)

Fig. 4(c) demonstrates the proposed CC-SAM. Specifically,
we first utilize a coordinate convolution so that the network
can better capture spatial attention. Thereafter, the features
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TABLE I
DISTRIBUTION OF THE PVEL-AD DATASET BEFORE AND

AFTER DATA AUGMENTATION

after the coordinate convolution are flattened and stacked
using the average pooling layer and the max pooling layer,
respectively. Furthermore, a one-dimensional convolution is
adopted to generate the spatial attention weights ωs .

Consequently, RFC-CBAM maintains the channel and coor-
dinate information from the fused features at 13 × 13,
26 × 26, and 52 × 52, which is beneficial for the network
to learn the multiscale defects.

III. EXPERIMENTAL RESULTS

A. Implementation Details

The proposed CCA-YOLO is trained on a 64-bit Ubuntu
OS running with i9-10980XE, 256 GB of RAM, and a single
Nvidia RTX A4000 with 16 GB of RAM.

1) Datasets: We use a large-scale publicly available dataset
PVEL-AD [1] for defect detection in PV cells EL images,
which consists of 7842 images of 12 categories of defects
for PV cell defects. To achieve diversity and balance in the
dataset, we conduct several data augmentation methods such
as up-down flip, left-right flip, zoomed-in view, rotation, and
random noise. Specifically, we mainly increase these few-shot
categories such as star vertical dislocation, star crack, printing
error, corner, fragment, and scratch. Therefore, the distribution
of the training validation and test sets is shown in Table I.
In addition, the NEU-DET [24] and PCB [25] dataset are
adopted to evaluate the generalization ability of the proposed
CCA-YOLO. Specifically, the NEU-DET dataset contains
1770 images with six categories of defects in hot-rolled steel
strips, and the PCB dataset contains 1386 images with six
categories of defects in the printed circuit board.

2) Parameters: In the PVEL-AD dataset, we apply a
stochastic gradient descent (SGD) with a weight decay of
5e−4, and a momentum of 0.9 as the optimizer. In addition,
the learning rate starts from 1e−2 and decays to 1e−4 gradu-
ally. Furthermore, the batch size is set to 8 and trained for
300 epochs on 640 × 640 images. In the NEU-DET [24]
dataset, CCA-YOLO is trained on 192 × 192 images with
300 epochs while other parameters are the same. In addi-
tion, we train our CCA-YOLO on 416 × 416 images with
300 epochs while other parameters are the same.

3) Evaluation Metrics: In this article, five evaluation met-
rics are used to evaluate the performance of defect detection,

which are listed as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1-Score = 2 ×
precision × recall
precision + recall

(12)

AP =

∫ 1

0
precision(recall)d(recall) (13)

mAP =
1
N

N∑
0

AP (14)

where TP refers to true positives, FP refers to false positives,
and FN refers to false negatives. precision (P), recall (R),
and F1-Score (F) measure the classification performance. The
average precision (AP) is evaluated with different intersections
over union (IoU). Specifically, it can be reported as AP50
to evaluate the single-category object detection with an IoU
of 0.5. Similarly, AP75 is used to evaluate the detection
performance with an IoU of 0.75. Therefore, AP50, AP75, and
AP50:95 are used to evaluate the defect detection performance
among all categories. In addition, multiscale detection metrics
APS , APM , and APL are used to evaluate the AP for small-,
medium-, and large-scale objects, respectively. Furthermore,
mean AP (mAP) is used to evaluate the AP of all categories.

B. Ablation Study

In this section, we conduct an ablation study to evalu-
ate the performance of each proposed module: RCC-ECA,
RFC-CBAM, and MDFLM. Table II demonstrates the com-
parison of the detection performance between ECA [16],
CBAM [17], RCC-ECA, RFC-CBAM, and MDFLM on the
baseline (YOLOv4 [22]) in terms of precision (P), recall
(R), F1-Score (F), APS , APM , APL , and mAP50 on the
PVEL-AD [1] dataset, where the best results have been high-
lighted in bold, and the second-best results have been labeled
in underline.

1) Performance of RCC-ECA: As shown in Table II, row 1
(baseline), row 2 (with ECA [16]), and row 3 (with RCC-
ECA), we evaluate the performance of using RCC-ECA for
backbone feature and sampling. The backbone feature plays
an important role in downstream tasks such as object detec-
tion; however, the complex background of the PV cell EL
images and the diversity of the defects bring challenges to
efficient defect detection. The proposed RCC-ECA enhances
the backbone feature representation by applying channel and
spatial attention. Specifically, an efficient one-dimensional
convolution is applied to make the backbone feature aware
of the defect and nondefect features. In addition, we further
enhance the defect feature coordinate information awareness
of the network by incorporating a coordinate convolution after
channel attention. To overcome the shortcomings of informa-
tion loss and lack of spatial information during feature fusion,
RCC-ECA is further applied to the up/down sampling process
to convey coordinate information from the backbone features,
which helps the network track defects during the feature
fusion. Consequently, by focusing on the channel information,
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TABLE II
ABLATION STUDY ON RCC-ECA, RFC-CBAM, AND MDFLM IN TERMS OF P, R, F, APS , APM , APL , AND MAP50 ON

YOLOV4 ARCHITECTURE ON THE PVEL-AD DATASET

RCC-ECA demonstrates its ability to identify and classify the
defects, which achieves an improvement in classification as
P (+2.91%), R (+2.54%), and F (+2.76%) compared to ECA
and P (+8.6%), R (+6.73%), and F (+7.95%) compared to
the baseline. On the other hand, providing and conveying
coordinate information also brings improvement in locating
the defect areas as an increment in APL (+4.78%) compared
to ECA and APL (+10.48%) compared to the baseline.

2) Performance of RFC-CBAM: As illustrated in Table II,
row 3 (with CBAM [17]) and row 4 (with RFC-CBAM),
we further evaluate the performance of using the proposed
RFC-CBAM for fused feature refinement. As discussed in
the last paragraph, information loss may be caused dur-
ing the feature fusion process. Therefore, we further introduce
the RFC-CBAM to integrate the fused features to ensure that
the network can accurately capture the categories and location
of defects by FF-CAM and CC-SAM. The proposed FF-CAM
helps to reallocate the channel information from different
scales of features in the fused features to enhance the aware-
ness of defects categories, while CC-SAM maintains the
coordinate information from the feature fusion to ensure the
effective multiscale defect localization ability. As a result,
applying RFC-CBAM brings a balanced improvement in both
classification and detection as P (+5.38%), R (+4.27%),
F (+4.95%), APS (+5.8%), APM (+3.41%), APL (+6.4%),
and mAP50 (+2%) compared to the baseline. In addition,
compared to the conventional CBAM, RFC-CBAM achieves
a significant improvement in APL (+3.9%).

3) Performance of MDFLM: During the convolution pro-
cess, shallow feature maps (corresponding to large-scale
feature maps) have a small receptive field and are more
suitable for detecting small targets while deep feature maps
(corresponding to small-scale feature maps) have a large
receptive field and are suitable for detecting large targets.
Since conventional YOLOv4 only uses 13 × 13, 26 × 26,
and 52 × 52 feature maps for detection, it lacks the ability to
localize small-scale defects. Therefore, our proposed MDFLM
incorporates a high-resolution feature map that contains more
detailed information to allow the network to learn more
information, which significantly improves the awareness of
the network to defect in medium scales as a APM (+4.76%).

In addition, the excellent mAP50 (+8.96%) compared to the
baseline indicated that MDFLM brings overall improvement
in defect detection for all categories.

4) Performance of RCC-ECA and RFC-CBAM: The per-
formance of RFC-CBAM for fused feature refinement is
associated with the fused features, which explains the reason
why RFC-CBAM only achieves balanced but not signifi-
cant improvement in classification and detection. Therefore,
we further discuss the situation of using RCC-ECA and
RFC-CBAM simultaneously. The RCC-ECA enhances the
feature representation before and during the feature fusion
process, and RFC-CBAM further refines the fused feature,
which allows the network to capture the defect feature and
its location accurately during the complete learning process.
Consequently, the combination of RCC-ECA and RFC-CBAM
achieves impressive improvement in both classification and
detection as reflected in Table II row 8 where P (+15.16%),
R (+13.19%), F (+14.57%) APS (+12.9%), APM (+18.89%),
APL (+15.94%), and mAP50 (+10.07%) compared to the
baseline. In addition, we have noticed that the combination of
ECA and CBAM only achieves similar performance compared
to using ECA individually, suggesting that our RCC-ECA and
RFC-CBAM are more generalizable.

5) Performance of RCC-ECA and RFC-CBAM and
MDFLM: Due to the significant improvement of using
both RCC-ECA and RFC-CBAM and the individual use of
MDFLM, we further evaluate the performance of using both
three modules. As listed in row 9 of Table II, incorporat-
ing MDFLM improves the performance of classification as
reflected in P (+12.45%), R (+17.21%), and F (+11.2%)
while the ability to localize medium- and large-scale defects
has also been enhanced as a better APM (+18.21%),
APL (+12.81%) compared to using both RCC-ECA and
RFC-CBAM.

C. Comparison With SOTA Methods

In this section, we conduct an experiment to compare the
proposed CCA-YOLO with SOTA methods such as Faster
R-CNN [6], YOLOv4 [22], EfficientDet [31], YOLOv5 [26],
YOLOv7 [27], YOLOv8 [28], YOLOv11 [29], RetinaNet [30],
DETR [10], and SQR-DETR [32] on PVEL-AD [1] dataset.
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TABLE III
COMPARISON OF THE PROPOSED CCA-YOLO WITH SOTA METHODS IN TERMS OF AP50 , MAP50 , MAP75 , AND MAP50:95 ON THE PVEL-AD DATASET

1) Detection on 12 Categories: Table III demonstrates the
comparison between the proposed CCA-YOLO with SOTA
methods in terms of AP50, mAP50, mAP75, and mAP50:95
on PVEL-AD, where the best results have been highlighted
in bold and the second-best results have been labeled using
underline. As demonstrated in Table III, CCA-YOLO achieves
the best AP50 on six categories (Ft, Sh, HD, VD, PE, and SCt)
and the second-best AP50 on two categories (Fr and SCk).
Although we only achieve better AP50 on eight categories,
CCA-YOLO achieves a more balanced performance in mul-
ticategory defect detection as reflected in all 12 categories of
AP50 beyond 90% while the second-best method (SQR-DETR)
only achieves 87.27% in PE. In addition, as for those failure
cases of CCA-YOLO (Ck and Bc), the difference between
our CCA-YOLO and the best is small as DETR [10] in
Ck (−1.13%), and YOLOv8-l [28] in BC (−0.67%). Conse-
quently, our CCA-YOLO not only achieves the best overall
performance among the 12 categories but the performance
under each category is impressive. In addition to mAP50,
we further evaluate our method on a high IoU threshold
and the comprehensive detection performance using mAP75,
and mAP50:95. The results have indicated that our method
significantly outperforms YOLOv11-x on mAP75 (84.36%).
Although our method is 0.04% lower in mAP50:95, we believe
this slight difference is primarily due to YOLOv11-x is a
general-purpose object detection method that usually focuses
on medium and large scales of the object. The medium and
large sizes of defects usually occupy a larger area in the PV
image, making it easier to achieve better performance in high
IoU confidence, resulting in significant overall detection per-
formance mAP50:95. In contrast, our method focuses on multi-
scale defect detection, especially small-scale defects, thus, our
CCA-YOLO is able to achieve the best mAP50 and mAP75.

2) Overall Classification and Multiscale Detection Perfor-
mance: We further conduct an experiment to evaluate the
classification and multiscale defect detection performance.
Table IV demonstrates the comparison between the proposed
CCA-YOLO with SOTA methods in terms of precision (P),
recall (R), F1-Score (F), APS , APM , and APL where the best
results have been highlighted in bold and the second-best have
been labeled using underline. In terms of classification perfor-

TABLE IV
COMPARISON OF THE PROPOSED CCA-YOLO WITH SOTA METHODS IN

TERMS OF P, R, F, APS , APM , AND APL ON THE PVEL-AD DATASET

mance, our CCA-YOLO is slightly inferior to YOLOv11-x
in precision (−0.04%) but our method outperforms the exist-
ing methods by achieving the highest recall (76.91%) and
F1-Score (74.19%). For multiscale detection performance,
CCA-YOLO achieves the best APS (26.80%) and the second-
best APM (64.78%) and APL (74.93%). Although our method
is slightly inferior to the current SOTA YOLOv11-x in terms
of APM (−2.27%) and APL (−1.19%), we believe that these
gaps are mainly due to the different emphasis of different
models on multiscale target detection capabilities. YOLOv11
is a general-purpose object detection method designed to
identify common objects such as pedestrians, vehicles, and
animals. Therefore, YOLOv11-x achieves a better APM and
APL , which also explains why it can achieve a better mAP50:95.
In contrast, our primary focus is on enhancing the ability to
locate multiscale defects, particularly small-scale defects like
Finger, Thick Line, Star Crack, and Printing Error, which
constitute more than half of the dataset. Usually, it is hard
to locate the small-scale defects accurately; therefore, our
CCA-YOLO achieves the best mAP50, AP75, and APS but
slightly lower than YOLOv11-x in mAP50:95. Since small-scale
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TABLE V
COMPARISON OF THE PROPOSED CCA-YOLO WITH SOTA METHODS IN

TERMS OF AP50 AND MAP50 ON THE NEU-DET DATASET

defects are more common in PV cells, we believe that our
CCA-YOLO has made its own contribution to defect detection
for PV cells from different perspectives. Additionally, com-
pared to other SOTA methods such as DETR, SQR-DETR,
Focus-DETR, and YOLOv8, our method demonstrates supe-
rior performance in multiscale defect detection. In summary,
our method performs well in relatively high-confidence and
small-scale defect detection. Although it is slightly lower than
YOLOv11-x in mAP50:95, this gap is minimal. Future work
will further optimize our model to achieve overall performance
improvements.

3) Generalization Ability: We further conduct an experi-
ment to demonstrate the generalization ability of the proposed
CCA-YOLO on the NEU-DET [24] dataset as demonstrated
in Table V. Specifically, our proposed CCA-YOLO achieves
the best AP50 on two categories (PS and RS), one second-
best AP50 on Pa, and the best mAP50 (84.8%). Moreover,
we conduct another experiment to evaluate the generalization
ability in PCB dataset [25] as demonstrated in Table VI.
The experimental results have indicated that our CCA-YOLO
achieves the best mAP50 (96.7%) and also achieves the
best AP50 on two categories (MH of 100.0% and Sc of
99.7%). Therefore, the generalization ability of the proposed
CCA-YOLO has been demonstrated.

4) Visual Comparison: Fig. 5 demonstrates the defect
detection results using YOLOv4 [22], YOLOv5-x [26],
YOLOv7-x [27], YOLOv8-x [28], YOLOv11-x [29], Faster

TABLE VI
COMPARISON OF THE PROPOSED CCA-YOLO WITH SOTA METHODS IN

TERMS OF AP50 AND MAP50 ON THE PCB DATASET

R-CNN [6], DETR [10], and the proposed CCA-YOLO on
the PVEL-AD dataset. Specifically, the first row is the GT,
the second row is the result of YOLOv4, the third row is the
result of YOLOv5-x, the fourth row is the result of YOLOv7-x,
the fifth row is the result of YOLOv8-x, the sixth row is
the result of Faster R-CNN, the seventh row is the result of
DETR, the eighth row is the results of YOLOv11-x, and the
ninth row is the results of the proposed CCA-YOLO. (a1)–(f1)
are the detection results in raw images. (a2)–(f2) are the
detection results in binary images. Furthermore, the red cycle
demonstrates missed detection, the green cycle demonstrates
incomplete detection, and the yellow cycle demonstrates mis-
diagnosis in the raw images. In the binary images, the black
area represents the background, and the white area represents
the detected defect areas. As demonstrated in Fig. 5, our
CCA-YOLO demonstrates a better ability to locate and classify
multiscale defects than existing methods. Regardless of the
large-scale defects, such as horizontal and vertical dislocations,
that are difficult to locate precisely, or the small-scale defects,
like finger anomalies, as well as irregularly-scaled defects such
as thick lines and cracks, our CCA-YOLO is able to demarcate
boundary with notable accuracy, while correctly categorizing
each defect.

5) Computation Efficiency: As illustrated in Table VII,
we evaluate the computation efficiency between CCA-YOLO
with SOTA methods in terms of parameters, inference time,
and FLOPs on the PVEL-AD dataset. Compared to these
time-efficient methods such as YOLOv5-l (11.7 ms infer
time), YOLOv5-x (14.74 ms infer time), and RetinaNet
(13.95 ms infer time), our CCA-YOLO sacrifice a little
computational complexity but achieves significant detection
performance improvement as reflected in the increased mAP50
compared to YOLOv5-l (+22.59% mAP50, −4.59 ms infer
time), YOLOv5-x (+23.09% mAP50, −1.55 ms infer time),
and RetinaNet (+18.28% mAP50, −2.34 ms infer time).
In addition, compared to the baseline YOLOv4, our method
only costs 1.25 ms infer time more but achieves 16.8%
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Fig. 5. Visualization of the defect detection results using YOLOv4, YOLOv5-x, YOLOv7-x, YOLOv8-x, Faster R-CNN, DETR, YOLOv11-x, and the
proposed CCA-YOLO: the first row is the GT; second row is the result of YOLOv4; third row is the result of YOLOv5-x; fourth row is the result of
YOLOv7-x; fifth row is the result of YOLOv8-x; sixth row is the result of Faster R-CNN; seventh row is the result of DETR; eighth row is the results of the
YOLOv11-x; and ninth row is the results of the proposed CCA-YOLO. (a1)–(f1) detection results in raw images. (a2)–(f2) detection results in binary images.
Furthermore, the red cycle demonstrates missed detection, the green cycle demonstrates incomplete detection, and the yellow cycle demonstrates misdiagnosis
in the raw images. In the binary images, the black area represents the background, and the white area represents the detected defect areas.

TABLE VII
COMPARISON OF THE PROPOSED CCA-YOLO WITH SOTA METHODS IN

TERMS OF PARAMETERS, INFER TIME, AND FLOPS
ON THE PVEL-AD DATASET

improvement in mAP50. Moreover, compared to the methods
with high detection performance such as SQR-DETR, DETR,
YOLOv8-l, and YOLOv8-x, our CCA-YOLO achieves the
best detection results with the shortest infer time. Further,

compared to the recent YOLOv11-x, we take 2.83 ms more but
achieve improvement in mAP50 (+1.94%), mAP75 (+8.55%),
and APs (+6.89%). Although we sacrifice some inference
time, we provide a novel and effective PV cell defect detection
solution. Therefore, our CCA-YOLO demonstrates its advan-
tages in balancing time efficiency and multiscale detection
performance.

IV. CONCLUSION

In conclusion, we propose a novel PV cell defect detec-
tion method called CCA-YOLO, which incorporates four
modules: RCC-ECA, MDFLM, RCC-Up/Down, and RFC-
CBAM. Specifically, the RCC-ECA enhances the backbone
feature representation by focusing on both channel and coor-
dinate aspects, which is beneficial for efficiently learning
from the backbone features. Furthermore, we introduce an
RCC-Up/Down that incorporates RCC-ECA into the sampling
process to convey coordinate information during the sampling
process. To learn the interclass/intraclass variations and intra-
class similarity, we further propose an MDFLM to incorporate
a large-scale feature map into the feature fusion process, which
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overcomes the shortcomings of multiscale defect detection
capabilities. Moreover, the RFC-CBAM is adopted to refine
the fused feature at three scales by FF-CAM and CC-SAM to
maintain the channel and coordinate awareness. An ablation
study has demonstrated the superiority of the proposed RCC-
ECA, RFC-CBAM, and MDFLM. Finally, we compared the
proposed CCA-YOLO with several SOTA methods and the
experimental results indicate that our CCA-YOLO achieves
better performance on 12-category multiscale defect detection
in the PVEL-AD dataset. In addition, we further demonstrate
the generalization ability of our CCA-YOLO in the NEU-DET
and PCB datasets.

Although our CCA-YOLO achieves impressive performance
on defect detection, it still has some limitations, such as
more computational resources costs, insufficient bounding box
localization, and limited capability for small-scale defects.
Multiscale especially small-scale defect detection still faces
lots of challenges in the industry, therefore, we will focus on
efficient multiscale defect detection in the future. In addition,
since time efficiency is important for defect detection, we will
also try to find an efficient solution for defect detection in the
industry precisely and rapidly.
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