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Abstract—Automated detecting lung infections from computed
tomography (CT) data plays an important role for combating
coronavirus 2019 (COVID-19). However, there are still some
challenges for developing AI system: 1) most current COVID-19
infection segmentation methods mainly relied on 2-D CT images,
which lack 3-D sequential constraint; 2) existing 3-D CT segmen-
tation methods focus on single-scale representations, which do not
achieve the multiple level receptive field sizes on 3-D volume; and
3) the emergent breaking out of COVID-19 makes it hard to anno-
tate sufficient CT volumes for training deep model. To address
these issues, we first build a multiple dimensional-attention con-
volutional neural network (MDA-CNN) to aggregate multiscale
information along different dimension of input feature maps and
impose supervision on multiple predictions from different convo-
lutional neural networks (CNNs) layers. Second, we assign this
MDA-CNN as a basic network into a novel dual multiscale mean
teacher network (DM2T-Net) for semi-supervised COVID-19 lung
infection segmentation on CT volumes by leveraging unlabeled
data and exploring the multiscale information. Our DM2T-Net
encourages multiple predictions at different CNN layers from
the student and teacher networks to be consistent for computing
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a multiscale consistency loss on unlabeled data, which is then
added to the supervised loss on the labeled data from multiple
predictions of MDA-CNN. Third, we collect two COVID-19 seg-
mentation datasets to evaluate our method. The experimental
results show that our network consistently outperforms the
compared state-of-the-art methods.

Index Terms—Chest computed tomography (CT), coron-
avirus 2019 (COVID-19), infection segmentation, semi-supervised
learning.

I. INTRODUCTION

AS AN ongoing pandemic, novel coronavirus 2019
(COVID-19) has infected about 6 898 613 cases and

incurred 399 832 deaths in the world by 7 June 2020. Reverse
transcription-polymerase chain reaction (RT-PCR) test is con-
sidered as the gold standard of screening COVID-19. However,
RT-PCR testing is time-consuming and requires repeated test-
ing for accurate confirmation of a COVID-19 case due to
its low sensitivity, thereby resulting in the ineffectiveness of
timely confirming CVOID-19 patients. By working as a com-
plement to RT-PCR, easily accessible imaging equipments
[e.g., chest X-ray and computed tomography (CT)] have pro-
vided huge assistance to clinicians in both current diagnosis
and follow-up assessment of disease evolution [1], [2], [3].
Further, quantitative CT information (e.g., lung burden, per-
centage of high opacity, and lung severity score) are used
widely to monitor disease progression and understand the
course of COVID-19 [4], [5], [6]. In clinical practice, CT
screening is usually more preferred since typical infection
signs can be observed from CT data, covering ground-glass
opacity (GGO) in the early stage to pulmonary consolidation
in the late stage. Moreover, the qualitative evaluation of infec-
tion and longitudinal changes in CT images could thus provide
useful and important information in combating COVID-19.

Accurate segmentation of the COVID-19 infected region
plays a crucial role in achieving a reliable quantification of
infection in chest CT images. However, the manual delineation
of lung infections is tedious, labor-consuming, and expen-
sive for radiologists. Also, annotating the lung infections in
CT is a challenging task due to highly variant textures, sizes
and positions of infected regions, as well as low contrast
and blurred GGO boundaries [7]. Recently, convolutional neu-
ral networks (CNNs) have been developed to automatically
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Fig. 1. Schematic illustration of the developed DM2T-Net. We first develop an MDA-CNN (see Fig. 2) to detect infected regions. The MDA-CNN produces
five segmentation results from different CNN layers. After that, we compute a multiscale supervised loss on the five segmentation results (i.e., P1 to P5) of
unlabeled data. For unlabeled data, we compute a multiscale supervised loss on two pairs of five results from the student network (i.e., S1 to S5) and the
teacher network (i.e., T1 to T5). Finally, we combine the supervised loss and consistency loss to train our 3-D COVID-19 infection segmentation network.

segment the lung infections from CT images [3], [7], [8], [9],
[10], [11], [12]. Such automatic segmentation tools contribute
to the quantification of lung infections and can eliminate the
possibility of subjective impact. Moreover, for saving medical
resources and accelerating daily diagnosis of the overburdened
hospitals under the COVID-19’s large-scale outbreak, build-
ing artificial intelligence (AI) system will be greatly helpful.
However, there are still some challenges for developing AI
system.

1) Most current COVID-19 infection segmentation methods
mainly relied on 2-D CT images, resulting in a lower
segmentation accuracy due to lack of inter-relations
among different 2-D images of raw clinical CT volume.
Moreover, infected regions of a 3-D volume only exist
in a few 2-D images and using 2-D images to train a
segmentation network tends to produce many false pos-
itives in these images without any lung infection. By
contrast, the 3-D context makes a meaningful difference
in exploring inter-relation between continuous slices and
determining the infection regions from features of more
dimensions so as to increase the segmentation accuracy.

2) The 3-D volume segmentation methods [13], [14] only
exploited the single scale of the input 3-D CT volume,
which do not consider the multiple level receptive field
sizes on 3-D volume.

3) It is difficult to collect sufficient high-quality labeled 3-D
CT data within a short time for training a deep model,
which limits the developing of deep 3-D segmentation
models.

To address above issues, we propose a dual multiscale mean
teacher network (DM2T-Net) for boosting the 3-D COVID-19
lung infection segmentation performance. As shown in Fig. 1,

our DM2T-Net utilizes two kinds of multiscale structures. One
is the multiple dimensional-attention for learning a hierarchi-
cal representations of 3-D volume, while another is multiscale
consistency loss for constraining the semi-supervised learn-
ing. Specifically, a novel multiple dimensional-attention CNN
(MDA-CNN) is designed as the basic network for both teacher
and student networks of DM2T-Net. The proposed MDA-CNN
attentively integrates multiple scales of the input 3-D volumes
along different dimensions for segmenting lung infections,
simultaneously, produces multiple side-outputs at different
CNN layers. Two kinds of loss are employed to constrain our
DM2T-Net. One is multiscale supervised loss in the student
network for labeled data to integrate the deeply supervised
side-outputs. The second is multiscale consistency loss for
the unlabeled data to encourage multiple predictions at dif-
ferent CNN layers from the student and teacher networks to
be consistent. Overall, the main contributions are summarized
as follows.

1) We develop an MDA-CNN for 3-D lung infection seg-
mentation, which attentively aggregated CNN features
extracted from multiple dimensional-scale information
of the input 3-D data and generates multiple predictions
at different CNN layers.

2) We propose a DM2T-Net for leveraging the unlabeled
data. A multiscale consistency loss is devised on the
side-output predictions to encourage the predictions
consistent on both intermodel and intramodel. As a
semi-supervised learning model, our framework has the
potential to be used for other 3-D segmentation tasks.

3) Moreover, we collect two COVID-19 segmentation
datasets to evaluate our method. The experiments show
that our proposed network outperforms state-of-the-art
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methods on both supervised and semi-supervised man-
ners. We have released the code, trained models, and
collected unlabeled 3-D CT data at https://github.com/
jcwang123/DM2TNet.

II. RELATED WORK

This section reviews three kinds of works that are most
related to our method, including segmentation in chest
CT, semi-supervised learning, and data-driven methods for
COVID-19.

A. Segmentation in Chest CT

Segmenting organs and tumors from chest CT images
provides crucial information for clinicians to diagnose and
quantify lung diseases [15], [16]. Early data-driven algorithms
converted the lung segmentation task into voxel classification
and then applied different classification models with manually
designed features for segmenting target regions. Wu et al. [17]
designed a set of texture and shape features to represent vox-
els and then trained conditional random field (CRF) model to
classify voxels for lung segmentation. Keshani et al. [18] seg-
mented lung nodules by the support vector machine (SVM)
classifier with 2-D stochastic and 3-D anatomical features.
However, relying on these hand-crafted features is difficult
to segment nodules due to similar appearances of nodules and
background details. Motivated by the outstanding performance
of CNNs in medical image analysis [19], [20], [21], [22],
[23], [24], [25], deep learning-based methods have been intro-
duced to learn discriminative representation for lung nodule
detection from CT images. Wang et al. [26] formulated a cen-
tral focused CNN to capture both 2-D and 3-D lung nodule
features for identifying lung nodules from heterogeneous CT
images. Jin et al. [27] developed a conditional GAN model
to generate CT-realistic high-quality 3-D lung nodules and
utilized these synthesized data to enhance the pathological
lung segmentation model [28]. Jiang et al [29] simultaneously
leveraged features across multiple image resolution and CNN
feature levels via residual connections to identify the lung
tumors.

B. Semi-Supervised Learning

Annotations in large-scale medical data are tedious, time-
consuming, and difficult to obtain. More and more researchers
have shifted their attentions from supervised fashion to
the semi-supervised learning, which improves the model
performance by combining limited labeled data and sufficient
unlabeled data [30]. From a high-level view, these semi-
supervised learning methods devised an objective function,
which consists of supervised loss on labeled data and unsu-
pervised learning on unlabeled data or both the labeled data
and unlabeled data. Lee [31] picked up the class which has
the maximum predicted probability and used this class as
the pseudo-labels for unlabeled data. Bai et al. [32] alter-
nately updated the network parameters and the segmentation
on unlabeled data in a semi-supervised learning framework.
Based on an adversarial learning-based semi-supervised fash-
ion [33], [34], Zhang et al. [35] encouraged the segmentation

of unlabeled images to be similar to those of the labeled
ones in a deep adversarial network. Yu et al. [36] estimated
an uncertainty information as a guidance to eliminate unre-
liable predictions and maintain only the reliable ones (low
uncertainty) when devising the consistency loss of student and
teacher network predictions for labeled and unlabeled data.

C. AI Techniques for COVID-19

AI methods, especially deep learning techniques, have been
employed widely in medical imaging applications against
COVID-19 [1], [37]. Tang et al. [38] calculated quantitative
features from chest CT images and then passed these features
into to train a random forest model for COVID-19 severity
assessment. Wang et al. [39] modified an inception transfer-
learning model for the identification of viral pneumonia
images. Chen et al. [41] first collected 46 096 image slices
from 106 admitted COVID-19 patients, and then trained U-
Net++ [40] to extract valid areas and detect suspicious lesions
in CT images. Song et al. [42] formulated a detail rela-
tion extraction neural network (DRE-Net) to extract top-K
details and obtain the image-level predictions for patient-level
diagnoses. Xie et al. [11] presented a relational two-stage
U-Net to segment pulmonary lobes in CT images by intro-
ducing a nonlocal neural network module to model the global
structured relationships. Chen et al. [7] exploited both the
residual network and attention mechanism to improve the
efficacy of the U-Net for the lung CT image segmentation.
Wu et al. [43] created a COVID-19 dataset with 3855 labeled
CT images and performed a joint explainable classification
and accurate lesion segmentation. Qiu et al. [10] presented a
lightweight deep learning model for efficient COVID-19 image
segmentation. Observing that the boundary of the infected
region can be enhanced by adjusting the global intensity,
Qiu et al. [10] introduced a deep CNN with feature variation
block, which adaptively adjusted the global properties of the
features for segmenting COVID-19 infection in 2-D images.
Zhou et al. [8] incorporated a spatial and channel attentions
to U-Net model for capturing richer contextual relationships
for COVID-19 CT segmentation. He et al. [44] first used a set
of 2-D image patches to represent each CT image and then
developed a multitask multi-instance to assess the severity of
COVID-19 patients and segment the lung lobe simultaneously.
Fan et al. [3] devised an Inf-Net to utilize an implicit reverse
attention and explicit edge-attention for the identification of
infected regions and then further enhance the segmentation
performance by embedding the Inf-Net into a semi-supervised
learning strategy. Ding et al. [45] proposed the MT-nCov-Net
to formulate 2-D lesion segmentation as a multitask shape
regression problem that enables the feature fusion between
various tasks. Pang et al. [46] proposed a novel group equiv-
ariant segmentation framework by encoding the 2-D inherent
symmetries, that is, rotations and reflections, for learning more
precise representations. Methods above almost relied on 2-D
images to train CNNs for the classification or segmentation.
Ma et al. [13] created a COVID-19 3-D CT dataset with 20
cases and explored the U-Net [47] for 3-D lung and infection
segmentation.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 12,2025 at 09:12:16 UTC from IEEE Xplore.  Restrictions apply. 



6366 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 10, OCTOBER 2023

Fig. 2. Schematic illustration of our MDA-CNN. Given an input 3-D CT volume, MDA-CNN first down-samples it along two spatial dimensions and then
passes the three 3-D volumes to obtain a set of CNN features (Fj

i) with different spatial resolutions. Then, the attention modules are introduced after each CNN
layer to attentively aggregate features (AMFi) from three volumes and these aggregated features are then adjacently merged. Finally, multiple side-outputs
(Pi) are produced from different decoder layers. Note that we empirically take P1 as the output segmentation result of MDA-CNN.

III. PROPOSED METHOD

Fig. 1 shows the schematic illustration of the proposed
DM2T-Net which integrates dual multiscale details of
labeled data and unlabeled data for COVID-19 lung infec-
tion segmentation. In our DM2T-Net, an MDA-CNN is
developed to attentively aggregate CNN features extracted
from multiple dimensional-scale information and produce
multiple predictions from different CNN layers. This MDA-
CNN is then integrated into DM2T-Net as the basic network
for both the student and the teacher networks. In the train-
ing stage, the labeled data is fed into the student network,
and a multiscale supervised loss is calculated to constrain the
consistency of multiple side-outputs on intramodel. Then, the
unlabeled data is inputted into the both student and teacher
networks, respectively. Meanwhile, a multiscale consistency
loss is devised on the two groups of side-outputs to encourage
the predictions consistent on intermodel.

A. Multiple Dimensional-Attention CNN

Although achieving remarkable results, existing 3-D seg-
mentation networks produce unsatisfactory results when
detecting 3-D lung infected regions, since only single-scale
information of input volume is considered. To address this
issue, we argue that exploring multiscale information is help-
ful to boost lung infection segmentation in 3-D CT volume. In
this article, we propose an MDA-CNN to model and fuse the
complementary of multiple dimensional-scale details within
a single network, as shown in Fig. 2. Given a 3-D lung CT
volume (I), we first generate another two auxiliary volumes
(denoted as J and K) by downsampling I along the two
spatial dimensions. Then, we pass the three volumes into sev-
eral convolutional blocks and obtain multiple feature maps
with five different spatial resolutions for each volume (I, J ,
and K). We use Fi

I , Fi
J , and Fi

K to denote the three features
at the ith CNN layer (see Fig. 2). After that, we develop an
attention module in each CNN layer to learn attention maps for
aggregating the features with multiple dimension-aware scale
information. By doing so, the dimension-aware multiscale
representations of the input volume are well modeled and

Fig. 3. Schematic illustration of the developed attention module of Fig. 2.

fused together for segmenting COVID-19 infected lung
areas.

Fig. 3 shows the schematic illustration of the attention mod-
ule at the ith CNN layer. It takes three feature maps (Fi

I , Fi
J ,

and Fi
K) from I, J , and K at the ith CNN layer and outputs

a new feature map (AMFi) to attentively aggregate the input
features. The attention module starts by using one average
pooling operation (GAP) on Fi

J , one fully connected (FC)
layer, and one Sigmoid activation function to obtain an atten-
tion map (A2). Then, we multiply the attention map A2 with
Fi

I , and the resultant features are then elementwisely added
with Fi

I to obtain a refinement of Fi
I , which is denoted as Hi.

Similarly, we further employ an average pooling operation on
Fi

K to obtain another attention map (A3), which is then multi-
plied with Hi. We then elementwisely add the resultant feature
map to Hi to obtain attentive multiscale features (denoted as
AMFi), which is taken as the output of the developed attention
module. After the encoder layers and attention modules, we
obtain five attentive feature maps (denoted as AMFi) with dif-
ferent scales i = 1, . . . , 5, which are then adjacently merged
for decoding them. Then, we use three 3×3 CNN layers, one
1 × 1 CNN layer, and one Sigmoid activation layer on each
decoder output to produce five segmentation predictions, and
then apply the deep supervision mechanism [48] to impose the
supervision on each segmentation result.

B. Multiscale Supervised Loss on Labeled Data

Given a labeled data, we can have a pair of input 3-D CT
data and the corresponding annotated lung infection mask. It
is natural that we take the annotated infection mask as the
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ground truth of the COVID-19 infected region segmentation.
As shown in Fig. 2, the proposed MDA-CNN predicts multiple
segmentation results at different CNN layers and these results
have different spatial resolutions; see P1 to P5 of the last
column in Fig. 2. Hence, we downsample the original segmen-
tation mask into the same resolution of the prediction result
at each CNN layer as its ground truth. After obtaining the
ground truths for the segmentation result at each CNN layer,
we devise a multiscale supervised loss (denoted as Ls) for a
labeled image (xn) by adding the supervised losses of all the
CNN layers

Ls(xn) =
5∑

k=1

�dice(Pk, Gk) (1)

where Pk denotes the predicted lung infection detection map
at the kth CNN layer. Gk is the down-sampled ground truth
at kth CNN layer and it has the same resolution of Pk. Here,
we empirically use the dice loss to compute the difference
between Pk and Gk.

C. Multiscale Consistency Loss on Unlabeled Data

The unlabeled 3-D CT data was fed into the student network
and teacher network to obtain their infection segmentation
results, which are the five predictions at different CNN layers.
We then devise a multiscale consistency loss (Lc) to enforce
the five predictions from the student network and teacher
network to be consistent. The definition of Lc is given by

Lc(ym) =
5∑

k=1

�MSE(Sk, Tk) (2)

where ym is the input unlabeled image. Sk and Tk are the
segmentation results of the student network and the teacher
network at the kth CNN layer. Here, we empirically use the
mean square error (MSE) loss to compute the difference of Sk

and Tk.
Like the original mean teacher framework [49], the

multiscale consistency loss on unlabeled data is designed to
improve the segmentation performance. The reason why the
consistency loss on unlabeled data can increase the segmenta-
tion accuracy is summarized as: our semi-supervised network
first generates an initial pseudo-label for unlabeled data by
training the segmentation network on the labeled data, and
then computes the consistency loss on the predictions of a
teacher network and a student network to progressively refine
the pseudo-labels for unlabeled data. By doing so, we can
generate more reliable predictions on unlabeled data, and these
reliable unlabeled data are combined with the labeled data into
the training process, thereby boosting the overall segmentation
performance.

D. Our Loss Function

The total loss (Ltotal) of our network is computed as

Ltotal =
N∑

n=1

Ls(xn) + λ

M∑

m=1

Lc(ym) (3)

where N is the number of labeled CT scans of the training
set. M is the number of unlabeled CT scans of our training
set. Ls(xn) denotes the multiscale supervised loss (1) for the
nth labeled image (xn) while Lc(ym) is the multiscale consis-
tency loss (2) for the mth unlabeled image (ym). The weight λ

balances the multiscale supervised loss of labeled data and
the multiscale consistency loss of unlabeled data. As sug-
gested in [36] and [49], we compute λ via a time-dependent
Gaussian warming up function: λ(i) = λmaxe(−5(1−i/imax)

2),
where t denotes the current training iteration and imax is the
maximum training iteration. We empirically set λmax = 5 in
our experiments.

Note that averaging model weights over CNN training steps
tends to produce a more accurate model than using the final
weights directly. Based on this, the mean teacher [49] com-
putes the weights of a network (called teacher network) as
an exponential moving average (EMA) weights of a network
(called student network) to generate a better target model,
which the student network learns from. Hence, one network
learns from another network during the training process of the
mean teacher framework, and the former network is named
the student network, and the latter network is named the
teacher network. In the t training iteration, the teacher network
parameters �′

t is computed by

�′
t = β�′

t−1 + (1 − β)�t (4)

where �t is the student network parameter at the t train-
ing iteration. We set EMA decay β = 0.99 as same as
in [36] and [49].

IV. RESULTS AND DISCUSSION

A. Evaluation Dataset and Metric

Evaluation Dataset: For evaluation, we build a new CT vol-
ume segmentation dataset (named COVID-19-P20) with 11
unlabeled data and 20 labeled data. The labeled data is col-
lected from COVID-19 3-D CT dataset [13], which provides
20 COVID-19 CT volume data with pixel-level lung infection
masks. The infections are first delineated by junior annotators
with 1–5 years experience, then refined by two radiologists
with 5–10 years experience and, finally, all the annotations
were verified and refined by a senior radiologist with more
than 10 years experience in chest radiology. According to [13],
the last ten scans have been adjusted to the lung window
[−1250, 250], and then normalized to [0, 255]. Meanwhile, we
adjust the first ten scans to the lung window [−1000, 400], and
the intensity values are normalized to [0,1]. Then, we also col-
lect 11 3-D lung CT scans from 11 confirmed COVID-19 cases
(8 female and 3 male), as the unlabeled data. These unlabeled
data is captured from Philips in Zhongshan Hospital, affiliated
to Xiamen University. Similar to the labeled dataset [13], we
also adjust these 11 scans to the lung window [−1000, 400],
and then normalized to [0, 1] for training.

Here, we conduct a two-fold evaluation on 20 labeled
data. Specifically, COVID-19 3-D CT dataset [13] con-
tains ten CT volumes from Coronacases and ten vol-
umes from Radiopaedia. We randomly select five volumes
from Coronacases and randomly select five volumes from
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Radiopaedia to form the first fold, and the remaining ten
scans are for the second fold. Then, one fold combined
with the unlabeled data is used as the training set, while
the rest fold is utilized as the test set. Finally, we compute
the mean±variance of two-fold segmentation results of each
method for comparisons.

We extensively build the experiment on a large public
dataset, MosMedData [53], which has 50 labeled CT volumes
and 806 unlabeled CT volumes. The infections are annotated
by the experts of Research and Practical Clinical Center for
Diagnostics and Telemedicine Technologies of the Moscow
Health Care Department. During the annotation for every given
image ground-glass opacifications and regions of consolidation
are selected as positive (white) pixels on the corresponding
binary pixel mask. Same preprocessing as COVID-19-P20 is
adopted here and five-fold evaluation is conducted on the
labeled data.

Evaluation Metric: We employ five widely used metrics
to quantitatively evaluate the COVID-19 lung infection seg-
mentation performances, including Dice coefficient, Jaccard
coefficient, normalized surface dice (NSD), average distance
of boundaries (ADBs), and Hausdorff distance of boundaries
(95th percentile; HD95). In general, a better segmentation
performance shall have higher Dice, Jaccard, and NSD scores,
as well as lower ADB and HD95 scores. It is noteworthy that
all the metrics in this article are calculated in volumewise,
which is more meaningful for clinics and convincing for the
assessment of 3-D segmentation.

Dice and Jaccard coefficients compute the region-based
similarity of the predicted segmentation result P and the
ground truth G

Dice = 2 · |P ∩ G|
|P| + |G| , Jaccard = |P ∩ G|

|P ∪ G| (5)

where |P∩G| denotes the number of voxels in the intersection
area of P and G; |P ∪ G| is the number of voxels in the union
area of P and G; |P| and |G| are the number of voxels in the
region P and the region G, respectively.

NSD evaluates how close the segmentation and ground-truth
surfaces are to each other at a specified tolerance, defined as

NSD =
∣∣∣∂G ∩ B(τ )

∂P

∣∣∣ +
∣∣∣∂P ∩ B(τ )

∂G

∣∣∣
|∂G| + |∂P| (6)

where B(τ )
∂P and B(τ )

∂G denote the border region of segmentation
surface and ground truth, and they are: B(τ )

∂P ={u ∈ R3|∃̃u ∈
∂P, ‖u − ũ‖ ≤ τ }, and B(τ )

∂G ={v ∈ R3|∃̃v ∈ ∂G, ‖v − ṽ‖ ≤ τ }.
And tolerance τ is empirically set as 1 mm and 3 mm for lung
segmentation and infection segmentation, respectively.

ADB and HD estimate the surface distance between the
predicted segmentation result and the manual ground truth

ADB = 1

2

{∑
vi∈�P

h(vi,�G)

|G| +
∑

vj∈�G
h
(
vj,�P

)

|P|
}

HD = max

(
max
vi∈�P

h(vi,�G), max
vj∈�G

h
(
vj,�P

))

h(vi,�G) = min
vj∈�G

dist
(
vi, vj

)

h
(
vj,�P

) = min
vi∈�P

dist
(
vj, vi

)
(7)

where �P and �G denote the surface of the prediction segmen-
tation and ground truth, respectively. vi is a vertex of �P and vj

is a vertex of �G. dist(vi, vj) is the Euclidean distance between
the vertex vi and the vertex vj. Apparently, ADB counts the
average surface distance of the predicted segmentation and the
ground-truth surfaces. HD computes the maximum distance
between two segmentation surfaces, and HD95 is a modified
HD by using the 95% percentile instead of the maximum dis-
tance (100% percentile) in HD in order to eliminate the impact
of a small subset of the outliers; see [36] for more details.

B. Implementation

Training Parameters: All parameters of our network are ini-
tialized from scratch, without requiring any pretrained weight.
We augment the training set using a random flipping in all
directions and adding Gaussian noise with the noise intensity
σ = 10. Adam is employed to optimize the whole network
with an initial learning rate of 0.0003 and 5000 iterations. We
randomly sample 3-D blocks with a size of 160 × 160 × 64
for COVID-19-P20 or 160 × 160 × 32 for MosMedData from
each training CT volume for training our network on a single
TITAN RTX. The mini-batch size is 4, which consists of two
labeled images and two unlabeled images. The model size of
our network is 18.79 Mb (megabyte), and the training time is
23 h.

Inference: In the testing stage, we adopt the sliding win-
dow with a 50% overlapping rate to continually crop a set
of volumes with a size of 160 × 160 × 64 for COVID-19-
P20 or 160 × 160 × 32 for MosMedData. Moreover, we feed
these cropped volumes into the student network of developed
DM2T-Net to generate multiple segmentation masks. Finally,
we obtain the final segmentation of our network by stitch-
ing these small segmentation masks according to their crop
positions. The average inference time (including preprocessing
time) is 2.12 s for one volume.

C. Comparison With the State-of-the-Art Methods

We compare our method against seven state-of-the-art seg-
mentation methods, including 2-D U-Net [14], U-Net++ [40],
DLA [50], 3-D U-Net [47], V-Net [51], nn-UNet [52], and
UA-MT [36]. Among them, the first three segmentation meth-
ods are based on 2-D images while the other four methods
directly perform the segmentation on 3-D volumes. And the
last one (UA-MT) is a state-of-the-art 3-D semi-supervised
segmentation method, which presented an uncertainty-aware
self-ensembling model. To make the comparisons fair, we
adopt the released code of compared methods and fine-tune
the parameters to obtain their best segmentation results.

Table I reports the quantitative results of different meth-
ods on COVID-19-P20. Apparently, the 3-D deep-learning-
based methods [47], [51], [52] have superior performance of
five metrics scores than 2-D-image-based CNNs (i.e., 2-D
U-Net [14] and 2-D U-Net++ [40]), since these 3-D segmen-
tation methods can learn more interslice relations among 3-D
volume and reduce the false predictions on 2-D slice without
any COVID lung infection, which usually happen in the seg-
mentation results of 2-D U-Net and 2-D U-Net++. Moreover,
due to the additional unlabeled data in the training set, the
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TABLE I
RESULTS (MEAN ± VARIANCE) OF DIFFERENT SEGMENTATION METHODS ON COVID-19-P20.

WE USE THE BOLD FONTS TO HIGHLIGHT THE BEST PERFORMANCE

TABLE II
RESULTS (MEAN ± VARIANCE) OF DIFFERENT SEGMENTATION METHODS ON MOSMEDDATA.

WE USE THE BOLD FONTS TO HIGHLIGHT THE BEST PERFORMANCE

semi-supervise method, UA-MT [36], further outperforms all
these 3-D supervised techniques in terms of all the five metrics.
Compared to the best-performing existing method (UA-MT),
our method has 4.72% improvement on Dice, 6.87% improve-
ment on Jaccard, 7.64% improvement on Jaccard, and 45.86%
reduction on ADB, 33.58% reduction on HD95, respectively. It
indicates that our network can more accurately detect COVID-
19 infected lung regions than state-of-the-art methods from
3-D CT scans. We extensively evaluate the effectiveness of
our method on MosMedData. The results in Table II show
that our network has larger Dice, Jaccard, and NSD scores,
as well as smaller ADB and HD95 scores than state-of-the-art
methods. It further indicates that our network can more accu-
rately segment COVID-19 infected regions from CT scans.
Moreover, compared to COVID-19-P20, we can find that our
network and state-of-the-art methods suffer from a degraded
performance on MosMedData for all five metrics. The main
reason is that the data in MosMedData is more challenging and
the infected regions in MosMedData are smaller than COVID-
19-P20, thereby increasing the segmentation difficulties. On
the other hand, we argue that there are two main reasons why
2-D U-Net performs poorly on two datasets in our network.
First, existing works computed the DSC value of 2-D U-Net on
2-D slices, while our work computes all five metrics (includ-
ing DSC metric) on the whole 3-D volume. Second, existing
works have not tested the 2-D U-Net model on slices with-
out COVID-19 infections, and thus a large amount of false
positives will not be involved for computing the DSC score.

Figs. 4 and 5 visually compare the COVID-19 lung infec-
tion segmentation results produced by our network and com-
pared methods. Apparently, compared methods tend to include
many noninfection regions or neglect parts of infection regions
in their segmentation results, while our network predicts more
accurate infection segmentation results. For these challenging
inputs with multiple infection regions and different infection
region sizes in Fig. 5, our network can still better segment
these infected regions than all the compared methods. It fur-
ther verifies the effectiveness of the developed dual multiscale
mean teacher framework in our work. From the perspective of
clinical importance, our method brings obvious improvement
on those small and challenging infections, which are even hard
for junior radiologists to determine. Although these infections
are too small to make a great difference on the statistics, suc-
cessful segmentation of them has much larger significance in
practice.

D. Ablation Analysis

Here, we provide several experiments to validate the effec-
tiveness of main components of our network, including the
multiple dimensional-scale mechanism, multiscale supervised
loss, and multiscale consistency loss.

Effectiveness of Multiple Dimensional-Scale
Downsampling: First, we construct a basic model (denoted as
“basic”) by removing the teacher network from our method,
the dimensional-scale downsampling operations of the input

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 12,2025 at 09:12:16 UTC from IEEE Xplore.  Restrictions apply. 



6370 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 53, NO. 10, OCTOBER 2023

Fig. 4. Visual comparison of segmentation results produced by different methods on the COVID-19-P20 dataset. (a) Input images; (b) ground truths (denoted
as GT); (c)–(h) segmentation results predicted by our method, UA-MT [36], nn-UNet [52], 3-D U-Net [47], DLA [50], U-Net++ [40], and 2-D U-Net [14].
Apparently, our network can more accurately identify COVID-19 lung infected regions than other methods.

Fig. 5. Visual comparison of segmentation results produced by different methods on the COVID-19-P20 dataset (continued from Fig. 4). (a) Input images
with multiple infected regions; (b) ground truths (denoted as GT); (c)–(h) segmentation results predicted by our method, UA-MT [36], nn-UNet [52], 3-D
U-Net [47], DLA [50], U-Net++ [40], and 2-D U-Net [14]. Apparently, our network can more accurately identify COVID-19 lung infected regions than other
methods.

volume, and the segmentation predictions P2, P3, P4, and P5
(see Fig. 1). In this way, the basic model almost becomes the
classical 3-D U-Net model. After that, we add the multiple

dimensional-scale mechanism to basic by fusing features from
multiple down-sampled volumes for building another model
(denoted as “basic + multidimensional-scale”) to evaluate the
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TABLE III
RESULTS (MEAN ± VARIANCE) OF DIFFERENT ABLATION STUDY EXPERIMENTS ON THE COVID-19-P20 DATASET.

WE USE THE BOLD FONTS TO HIGHLIGHT THE BEST PERFORMANCE

Fig. 6. Visual comparisons on COVID-19 infection segmentation results produced by different networks of the ablation study experiment on the COVID-
19-P20 dataset. Note that “mul-dimsca” “dual-mulsca,” and “semi-mdsca” denote “basic + multidimensional-scale,” “basic + dual-multiscale,” and “semi-
multidimensional-scale,” respectively. (a) Inputs. (b) GT. (c) Our method. (d) semi-mdsca. (e) semi-basic. (f) dual-mulsca. (g) mul-dimsca. (h) Basic.

contribution of our multiple dimensional-scale mechanism.
As shown in Table III, basic + multidimensional-scale has a
superior performance of five metrics over basic. It shows that
fusing features from multiple down-sampled volumes enables
our method to accurately identify COVID-19 lung infected
regions.

Effectiveness of Multiscale Supervised Loss: We then inves-
tigate the importance of the multiscale supervised loss.
To do so, we build a model (denoted as “basic + dual-
multiscale”) by removing the multiscale consistency loss from
our network. Compared to basic + multidimensional-scale, we
predict additional four segmentation results from P2, P3, P4,
and P5 in basic + dual-multiscale, and thus formulate the
multiscale supervised loss [see (1)]. From the results shown
in Table III, basic + dual-multiscale performs better than
basic + multidimensional-scale. It demonstrates that aggre-
gating the supervised losses from different CNN layers via a
multiscale supervised loss helps our method to better identify
COVID-19 infected regions in our method.

Effectiveness of Multiscale Consistency Loss: We finally
investigate the importance of the multiscale consistency loss
by constructing another two models with unlabeled data.
The first one (“semi-basic”) adds the unlabeled data and
encourages the segmentation results of basic from the student
network and the teacher network to be consistent. The sec-
ond model (“semi-multidimensional-scale”) is to produce the
infection segmentation results via basic + multidimensional-
scale and regularize the segmentation results from the student
and teacher network to be consistent.

Table III reports the quantitative results of “semi-basic,”
semi-multidimensional-scale, and our method. Apparently,
“semi-basic” can more accurately segment COVID-19 infected
lung regions than basic due to its superior performance of
all the five metrics. It indicates that the additional consis-
tency loss from the unlabeled data incurs a superior infection
segmentation performance. Then, as shown in Table III, semi-
multidimensional-scale outperforms semi-basic in terms of all
five metrics, demonstrating that aggregating CNN features
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(a)

(b)

(c)

Fig. 7. Loss analysis during training our DM2T-Net on the COVID-19-
P20 dataset. (a) Training multiscale supervised loss. (b) Training multiscale
consistency loss. (c) Testing multiscale supervised loss.

from multiple dimensional-scaled inputs enables a more accu-
rate supervised loss and a more accurate consistency loss,
thereby improving the lung infection segmentation accu-
racy. Moreover, compared to semi-multidimensional-scale, our
method has higher Dice, Jaccard, and NSD scores, as well as
lower ADB and HD95 scores, which shows that computing
the consistency loss from multiscale predictions at CNN layers
further boosts the segmentation performance of our method.

Visual Comparisons: Fig. 6 visually compares the seg-
mentation results produced by our method and the five
constructed baseline networks of the ablation study experi-
ment (see Table III). By observing these segmentation results,
we can easily find that our DM2T-Net better segments the
COVID-19 infections than all the five baseline networks. It
further proves the effectiveness of considering unlabeled data
and dual multiscale information within an end-to-end network
in our work.

E. Discussion

In this part, we provide the detailed analysis about: 1) how
the multiscale consistency loss makes contribution to the
DM2T-Net, including the loss curves and visual consistency
between teacher and student networks and 2) generalization
analysis of the infection segmentation performance.

How Does Multiscale Consistency Loss Work? Fig. 7
presents the loss curves during semi-supervised learning pro-
cess. It includes the multiscale supervised segmentation loss
[Fig. 7(a)] for labeled data and multiscale consistency loss
[Fig. 7(b)] for unlabeled data during training, as well as the

Fig. 8. Segmentation results from the teacher and student networks at dif-
ferent scales on the COVID-19-P20 dataset. (a) Inputs. (b) Scale 1. (c) Scale
2. (d) Scale 3. (e) Scale 4. (f) GT.

testing multiscale supervised loss [Fig. 7(c)]. It is observed
that the consistency loss progressively increases at the first 20
epochs and then converges to a lower value after training 60
epochs. Since the teacher network’s parameters are an aver-
age of consecutive student networks [49], the difference at
early epochs will be increasing and the averaging weight over
large training steps tends to produce a more accurate supervi-
sion to the student network. Moreover, the supervised loss on
the training set and the testing set decreases and then reaches
stable values as the epoch number increases.

We additionally visualize all layers outputs (scales)
from the teacher and student networks in Fig. 8. First, consid-
ering the teacher network’s parameters are the averaged result
of the student network’s, we can find that the teacher network’s
predictions are naturally more accurate than that of the student
network, when compared to the ground truth of the labeled
data. More importantly, combining the multiscale labeled data
loss and the multiscale unlabeled data enables our network
to produce good predictions for labeled data and unlabeled
data. Hence, integrating the unlabeled data into the network
training improves the COVID-19 infected region segmentation
performance.

Generalization Analysis: We make the discussion about
model generalization in Table IV, where we use the model
trained on one dataset to segment the infections of the other
one dataset and assess the performance. From the quantitative
results, we have the following observations.

1) Due to the imaging variance and infection difference
on two datasets, the segmentation performance of both
3-D-based UA-MT and 2-D-based U-Net++ decrease,
but the 3-D-based segmentation method has a better gen-
eralization capability than the 2-D-based U-Net++ on
both cross-dataset evaluation settings. The underlying
reason is that the 3-D-based method is able to capture
more high-level information of lung infections among
multiple image slices than the 2-D-based segmentation
performance.

2) More importantly, compared to the best existing 3-D-
based method (UA-MT), our method still outperforms
it in terms of Dice and HD95, which demonstrates
the generalized advancement of our network. We have
added this experiment into Section IV-E of the revised
manuscript.
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TABLE IV
GENERALIZATION ANALYSIS, WHERE WE USE ONE DATASET TO TRAIN

THE NETWORK AND EVALUATE IT ON THE OTHER ONE DATASET. LET C
AND M DENOTE THE COVID-19-P20 AND MOSMEDDATA DATASETS,

SO THAT C → M MEANS TRAINING THE NETWORK ON C
AND EVALUATING IT ON M

V. CONCLUSION

This work has presented a novel COVID-19 lung infection
segmentation network from 3-D CT volumes by developing
a DM2T-Net. Our key idea is to first develop an MDA-CNN
to explore multiple dimensional-scale details of the input 3-D
CT scan. Moreover, we also employ a semi-supervised system
to leverage additional unlabeled data and dual multiscale
information for further boosting the COVID-19 infected lung
region segmentation. Two datasets for COVID-19 segmen-
tation are collected to evaluate the effectiveness, where our
model finally achieves the Dice score of 72.59% on the
COVID-19-P20 dataset and achieved the Dice score of 60.19%
on the MosMedData dataset. The results show that our DM2T-
Net performs better than the state-of-the-art methods by a large
margin.
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